image

Frederick Eberhardt - publications

causal & statistical inference

E.L. Jahn, F. Eberhardt & L. Schulman (2025). Lower Bounds on the Size of Markov Equivalence Classes. In Proceedings of the 41st Conference on Uncertainty in Artificial Intelligence (UAI).

P. Burauel, F. Eberhardt & M. Besserve (2025). Controlling for discrete unmeasured confounding in nonlinear causal models. In Proceedings of Causal Learning and Reasoning conference (CLeaR).

F. Eberhardt, N. Kaynar & A. Siddiq (2025). Discovering Causal Models with Optimization: Confounders, Cycles, and Instrument Validity. In Management Science 71.4:3283-3302. (ADIA Lab best paper award, 2nd place)

F. Eberhardt & L.L. Lee. (2022). Causal emergence: When distortions in a map obscure the territory. In Philosophies 7.2:30.

S. Beckers, F. Eberhardt & J.Y. Halpern (2019). Approximate Causal Abstraction. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI).

Zhalama, J. Zhang, F. Eberhardt, W. Mayer & M. J. Li (2019). ASP-based Discovery of Semi-Markovian Causal Models under Weaker Assumptions. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI).

F. Eberhardt (2019). Beyond Cause-Effect Pairs. In I. Guyon, A. Statnikov & B. Batu (eds.), Cause Effect Pairs in Machine Learning, Springer.

J. Dubois, H. Oya, J. M. Tyszka, M. Howard III, F. Eberhardt & R. Adolphs (2018). Causal mapping of emotion networks in the human brain: Framework and initial findings. In Neuropsychologia 145, 106571.

Zhalama, J. Zhang, F. Eberhardt & W. Mayer (2017). SAT-based causal discovery under weaker assumptions. In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI).

A. Hyttinen, S. Plis, M. Järvisalo, F. Eberhardt & D. Danks (2017). A Constraint Optimization Approach to Causal Discovery from Subsampled Time Series Data. In International Journal of Approximate Reasoning 90: 208-225.

K. Chalupka, F. Eberhardt & P. Perona (2017). Causal feature learning: an overview. In Behaviormetrika 44(1): 137-167. [abstract][pdf][link]

F. Eberhardt (2017). Introduction to the foundations of causal discovery. In International Journal of Data Science and Analytics 3.2: 81-91. [abstract][pdf] [link]

F. Eberhardt, E. Bareinboim, M. Maathuis, J. Mooij & R. Silva, editors (2017). Proceedings of the UAI Workshop on Causation: Foundation to Application. In CEUR Workshop Proceedings Vol-1792. [link]

A. Hyttinen, S. Plis, M. Järvisalo, F. Eberhardt & D. Danks (2016). Causal Discovery from Subsampled Time Series Data by Constraint Optimization. In Proceedings of the International Conference on Probabilistic Graphical Models (PGM). [abstract][pdf] [link]

K. Chalupka, T. Bischoff, P. Perona & F. Eberhardt (2016). Unsupervised Discovery of El Nino Using Causal Feature Learning on Microlevel Climate Data. In Proceedings of the 32st Conference on Uncertainty in Artificial Intelligence (UAI). [abstract][pdf] [link]

K. Chalupka, P. Perona & F. Eberhardt (2016). Multi-Level Cause-Effect Systems. In Journal of Machine Learning, Workshop and Conference Proceedings (AISTATS 2016). [abstract][pdf] [link]

K. Chalupka, P. Perona & F. Eberhardt (2015). Visual Causal Feature Learning. In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI). [abstract][pdf] [link]

A. Hyttinen, F. Eberhardt & M. Järvisalo (2015). Do-calculus when the true graph is unknown. In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI). [abstract][pdf] [link]

F. Eberhardt (forthcoming). Green and Grue Causal Variables. In Synthese. [abstract]

A. Hyttinen, F. Eberhardt & M. Järvisalo (2014). Constraint-based Causal Discovery: Conflict Resolution with Answer Set Programming. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI). [abstract][pdf] [link]

R. E. Tillman & F. Eberhardt (2014). Learning causal structure from multiple datasets with similar variable sets. In Behaviormetrika 41(1): 41-64. [abstract][pdf] [link]

F. Eberhardt (2013). Direct Causes and the Trouble with Soft Interventions. In Erkenntnis 79(4): 755-777. [abstract][pdf] [link]

A. Hyttinen, F. Eberhardt & P. O. Hoyer (2013). Experiment Selection for Causal Discovery. In Journal of Machine Learning Research, 14:3041-3071. [abstract][pdf] [link]

F. Eberhardt (2013). Experimental Indistinguishability of Causal Structures. In Philosophy of Science (contributed paper to PSA 2012). [abstract][pdf] [link]

A. Hyttinen, P. O. Hoyer, F. Eberhardt & M. Järvisalo (2013). Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI). [abstract][pdf] [link]

A. Hyttinen, F. Eberhardt & P. O. Hoyer (2012). Learning Linear Cyclic Causal Models with Latent Variables. In Journal of Machine Learning Research, 13(Nov):3387-3439. [abstract][pdf] [link]

A. Hyttinen, F. Eberhardt & P. O. Hoyer (2012). Causal Discovery of Linear Cyclic Models from Multiple Experimental Data Sets with Overlapping Variables. In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI). [abstract][pdf] [link]

A. Hyttinen, F. Eberhardt & P. O. Hoyer (2011). Noisy-OR models with Latent Confounding. In Proceedings of 27th Conference in Uncertainty in Artificial Intelligence (UAI). [abstract][pdf] [link]

A. Hyttinen, F. Eberhardt & P. O. Hoyer (2010). Causal discovery for linear cyclic models with latent variables. In Proceedings of the 5th European Workshop on Probabilistic Graphical Models (PGM). [abstract][pdf] [link]

F. Eberhardt, P. O. Hoyer & R. Scheines (2010). Combining Experiments to Discover Linear Cyclic Models with Latent Variables. In Journal of Machine Learning, Workshop and Conference Proceedings (AISTATS 2010), 9:185-192. [abstract][pdf] [link]

F. Eberhardt (2010). Causal Discovery as a Game. In Journal of Machine Learning, Workshop and Conference Proceedings (NIPS 2008 causality workshop), 6:87-96. [abstract][pdf] [link]

F. Eberhardt (2009). Introduction to the Epistemology of Causation. In The Philosophy Compass, 4(6):913-925. [abstract][pdf] [link]

F. Eberhardt (2008). Almost Optimal Intervention Sets for Causal Discovery. In Proceedings of 24th Conference in Uncertainty in Artificial Intelligence (UAI), 161-168. [abstract][pdf] [link]

F. Eberhardt (2008). A Sufficient Condition for Pooling Data. In Synthese, special issue, 163(3):433-442. [abstract][pdf] [link]

F. Eberhardt (2007). Causation and Intervention (Ph.D. Thesis). Carnegie Mellon University. [abstract][pdf]

F. Eberhardt & R. Scheines (2007). Interventions and Causal Inference. In Philosophy of Science, 74:981-995. [abstract][pdf] [link]

F. Eberhardt, C. Glymour & R. Scheines (2006), N-1 Experiments Suffice to Determine the Causal Relations Among N Variables. In D. Holmes and L. Jain (eds.) Innovations in Machine Learning, Theory and Applications Series: Studies in Fuzziness and Soft Computing, Vol. 194, Springer-Verlag. See also Technical Report CMU-PHIL-161 (2005). [abstract][pdf] [link]

F. Eberhardt, C. Glymour & R. Scheines (2005). On the Number of Experiments Sufficient and in the Worst Case Necessary to Identify All Causal Relations Among N Variables. In F. Bacchus and T. Jaakkola (eds.), Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), 178-184; (Note the error described in the linked abstract.). [abstract][pdf] [link]

human learning

D. Danks & F. Eberhardt (2011). Keeping Bayesian models rational: The need for an account of algorithmic rationality [Commentary on Jones & Love: Bayesian Fundamentalism or Enlightenment?]. In Behavioral and Brain Sciences, 34(4):197. [abstract][link]

F. Eberhardt & D. Danks (2011) Confirmation in the Cognitive Sciences: The Problematic Case of Bayesian Models. In Minds & Machines, 21(3):389-410. [abstract][pdf] [link]

D. Danks & F. Eberhardt (2009). Explaining Norms and Norms Explained [Commentary on precis of Bayesian Rationality by Oaksford & Chater]. In Behavioral and Brain Sciences, 32:86-87. [abstract][pdf] [link]

D. Danks & F. Eberhardt (2009). Conceptual Problems in Statistics, Testing and Experimentation. In J. Symons & F. Calvo (eds.) Routledge Companion to the Philosophy of Psychology, Routledge. [pdf] [link]

Hans Reichenbach

F. Eberhardt (2022). A contemporary example of Reichenbachian coordination. In Synthese, 200.2:1-14.

F. Eberhardt (2011). Reliability via Synthetic A Priori - Reichenbach's Doctoral Thesis on Probability. In Synthese, 181(1):125-136. [abstract][pdf] [link]

F. Eberhardt & C. Glymour (2011). Hans Reichenbach's Probability Logic. In D. M. Gabbay, J. Woods & S. Hartmann (eds.), Handbook of the History of Logic, Vol. 10, Elsevier. [pdf] [link]

C. Glymour & F. Eberhardt (2008, updated 2012, 2021, 2025). Hans Reichenbach. Entry in Stanford Encyclopaedia of Philosophy. [link]

F. Eberhardt & C. Glymour (2008). The Concept of Probability in the Mathematical Representation of Reality. Translation of Hans Reichenbach's doctoral thesis, Open Court. [abstract][link]

none of the above

J. Dubois, F. Eberhardt, L.K. Paul & R. Adolphs (2020). Personality beyond taxonomy. In Nature Human Behaviour, 4(11), 1110-1117.

F. Eberhardt (2015). Equidynamics and reliable reasoning about frequencies (review of M. Strevens' Tychomancy). In Metascience 24:180-183. [abstract][link]

C. Glymour, D. Danks, F. Eberhardt, B. Glymour, J. Ramsey, R. Scheines, P. Spirtes, C. Teng & J. Zhang (2010). Actual Causation: A Stone Soup Essay. In Synthese, 175(2):169-192. [abstract][pdf] [link]

B. Bryan, F. Eberhardt & C. Faloutsos (2008). Compact Similarity Joins. In Proceedings of 24th International Conference on Data Engineering (ICDE), IEEE: 346-355. [abstract][pdf] [link]

S. Autexier, F. Eberhardt, D. Hutter, M. Kohlhase & R. Angelhache (2003). Distributed Knowledge Management and Version Control. In Information Society Technologies Programme, Report n. D5.a. [abstract][pdf]

Banner: tilework in Samarkand, Uzbekistan