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Abstract

We present a domain-general account of causa-
tion that applies to settings in which macro-level
causal relations between two systems are of in-
terest, but the relevant causal features are poorly
understood and have to be aggregated from vast
arrays of micro-measurements. Our approach
generalizes that of Chalupka et al. (2015) to
the setting in which the macro-level effect is
not specified. We formalize the connection be-
tween micro- and macro-variables in such situa-
tions and provide a coherent framework describ-
ing causal relations at multiple levels of anal-
ysis. We present an algorithm that discovers
macro-variable causes and effects from micro-
level measurements obtained from an experi-
ment. We further show how to design experi-
ments to discover macro-variables from observa-
tional micro-variable data. Finally, we show that
under specific conditions, one can identify mul-
tiple levels of causal structure. Throughout the
article, we use a simulated neuroscience multi-
unit recording experiment to illustrate the ideas
and the algorithms.

1 INTRODUCTION
In many scientific domains, detailed measurement is an in-
direct tool to construct and identify macro-level features
of interest which are not yet fully understood. For exam-
ple, climate science uses satellite images and radar data to
understand large scale weather patterns. In neuroscience,
brain scans or neural recordings constitute the basis for
research into cognition. In medicine, body monitors and
gene sequencing are used to predict macro-level states of
the human body, such as health outcomes. In each case the
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aim is to use the micro-level data to discover what the rele-
vant macro-level features are that drive, say, the “El Niño”
weather pattern, face recognition or debilitating diseases.
We propose a principled approach for the identification
of macro-level causes and effects from high-dimensional
micro-level measurements. Standard approaches to cau-
sation using graphical models (Spirtes et al., 2000; Pearl,
2009) or potential outcomes (Rubin, 1974) presuppose this
step—these methods focus on discovering the causal rela-
tions among a given set of well-defined causal variables.
Our approach does not rely on domain experts to identify
the causal relata but constructs them automatically from
data.

Throughout the article we use the setting of a neuroscien-
tific experiment with high-dimensional input stimuli (im-
ages), and high-dimensional output measurements (multi-
unit recordings) to illustrate our approach. We emphasize,
however, that our theoretical results are entirely domain-
general.

Our contribution is threefold:

1. We rigorously define how the constitutive relations
(supervenience) between micro- and macro-variables
combine with the causal relations among the macro-
variables when both the macro-cause and macro-
effect have not been pre-defined, but have to be con-
structed from micro-level data. The key concept is
the fundamental causal partition, which is the coars-
est macro-level description of the system that retains
all the causal (but not merely correlational) informa-
tion about it. We show how it can be learned from
experimental data.

2. We prove a generalization of the Causal Coarsening
Theorem of Chalupka et al. (2015) that now applies to
high-dimensional input and high-dimensional output.
The theorem enables efficient experiment design for
learning the fundamental causal partition when exper-
imental data is hard to obtain (but observational data
is readily available).

3. We identify the conditions under which it is possible
to have causal descriptions of a system at multiple lev-
els of aggregation, and show how these can be learned.
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Code that implements our algorithms and reproduces the
full simulated experiment is available online at http://
vision.caltech.edu/˜kchalupk/code.html.

1.1 A Motivating Example: Visual Neurons

Our research is partially inspired by a problem at the core of
much of modern neuroscience: Can we detect which fea-
tures of a visual stimulus result in particular responses of
neural populations without pre-defining the stimulus fea-
tures or the types of population response?

For example, Rutishauser et al. (2011) analyze data from
multiple electrodes implanted in the human amygdala.
The patient is asked to look at images containing either
whole human faces, faces randomly occluded with Gaus-
sian “bubbles”, or images of specific regions of interest in
the face—say the eye or the mouth. The neurons are then
sorted according to whether they are full-face selective or
not, and the response properties of the neurons are ana-
lyzed in the two populations. This set-up is an instance of
a widely used experimental protocol in the field: prepare
stimuli that represent various hypotheses about what the
neurons respond to; record from single or multiple units;
and analyze the responses with respect to the candidate hy-
potheses.

But what if the candidate hypotheses are wrong? Or if they
do not line up cleanly with the actually relevant features?
Our method proposes a less biased and more automatized
process of experimentation: Record neural population re-
sponses to a broad set of stimuli. Then jointly analyze what
features of the stimuli modify responses of the neural pop-
ulation and what features of neural activity are changing
in response to the stimuli. To our knowledge, such joint
cause-and-effect learning is a novel contribution not only
in the neuroscientific setting, but to a whole array of other
scientific disciplines.

We will use a simple neural population response simula-
tion as a running example throughout the article. In the
simulation (see Fig. 1), we observe a population of 100
neurons which act spontaneously using dynamics defined
by Izhikevich’s equations (Izhikevich, 2003). The equa-
tions are designed to reproduce the behavior of human cor-
tical neurons. As the ground-truth structures of interest,
we define simple macro-level causes and effects: Presented
with an image containing a horizontal bar (h-bar), the “top
half” of the neural population produces a pulse of joint ac-
tivity after about 100ms. When presented with a vertical
bar (v-bar), the same population synchronizes in a 30Hz
rhythm after roughly the same delay. The remaining (“bot-
tom half”) population acts independently of the visual stim-
uli (perhaps the experimenter unwittingly placed some of
the electrodes in a non-visual brain area). Half the time
these “distractor neurons” follow their spontaneous noisy
dynamics, and half the time they synchronize to produce a

Figure 1: A simulated neuroscience experiment. A stim-
ulus image I can contain a horizontal bar (h-bar), a vertical
bar (v-bar), neither, or both (plus uniform pixel noise). In
response to an image, a simulated population of neurons
(the “top” population) can produce a single pulse of joint
activity, a 30 Hz rhythm, both, or neither, with probabilities
P (pulse | do(h-bar)) = 0.8 and P (30Hz | do(v-bar)) =
0.8. These two causal mechanisms compose to yield the
full response probability table shown in the top right. In
addition, another (“bottom”) population of neurons can ex-
hibit a rhythmic activity independent of the stimulus image.
The system’s output J is a 10ms-window running average
of the neural rasters, with the neuron indices shuffled (as
a neuroscientist has no a-priori knowledge of how to order
neurons). Here we show example J’s sorted by neuron id;
we use the shuffled version in our experiments.

rhythmic activity. One can think of this activity as being
caused by internal network dynamics, extra-visual stimuli
or any other cause, as long as it is independent of the image
presented by the experimenter.

The example is made up of deliberately simple features for
ease of illustration and interpretation. Nevertheless, it hints
at what makes similar problems non-trivial to solve. The
causal features can be convoluted with salient, probabilis-
tic structure (such as the rhythmic behaviors generated in
the “bottom” neuronal population). Moreover, the data and
its features can be difficult to interpret directly “by look-
ing”: after reshuffling the neural indices, the raster plots are
hardly distinguishable by the human eye. In many domains
(e.g. in finance) the data have no special spatial structure
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in the first place, since they can consist simply of rows of
numbers.

2 MACRO-CAUSES AND -EFFECTS
Chalupka et al. (2015) provide a method to discover from
image pixels the macro-level visual cause of a pre-defined
macro-level “target behavior”. In contrast, we do not as-
sume that the macro-level effect (their “target behavior”)
is already specified. Instead, in a generalization of their
framework, we simultaneously recover the macro-level
cause C and effect E from micro-variable data. Adopting
much of their notation, we repeat and generalize their main
definitions here, and refer the reader to the original paper
for a more detailed explanation.

2.1 Multi-Level Systems: a Generative Model

Let I ⊂ Rm and J ⊂ Rn be two finite sets of possibly
huge cardinality – for example, I could be the set of all the
100×100 32-bit RGB images1. Let I and J be the random
variables ranging over those respective sets. We are inter-
ested in systems that are well described by the generative
model shown in Fig. 2, which we call a (causal) multi-level
system, or ml-system, for reasons that will become evident.
In an ml-system, the probability distribution over I is de-
termined by an independent “noise” variable εI and a (con-
founding) variable H . Both εI and H are assumed to be
discrete but can have very high cardinality. J is generated
analogously, except that it is also caused by I . The joint
probability distribution over I and J is thus given by:

P (J, I) =
∑
H

P (J | I,H)P (I | H)P (H).

The independent noise variables εI and εJ are marginalized
out and omitted in the above equation for clarity.

2.2 The Fundamental Causal Partition

An important challenge of causal analysis is to distin-
guish between dependencies invariant under intervention
and those that arise due to confounding. That is, following
Pearl (2009) we want to distinguish between the observa-
tional conditional probability of P (Y | X) for two vari-
ables X and Y and the causal probability arising from an
intervention on X , namely, P (Y | do(X)). An ml-system
is sufficiently general to represent dependencies between I
and J that remain invariant under intervention and those
that are only due to confounding (by H).

In addition, we want to distinguish between micro-
variables and the macro-variables that stand in a consti-
tutive relation to the micro-variables: An intervention on

1In this article we will adopt the common practice of referring
to such digitalized continuous data as “high-dimensional”.

I J

H ϵJϵI

Figure 2: The generative model of a causal ml-system.
Dashed nodes indicate variables that are not measured. All
variables are discrete but can be of huge cardinality. The
“input” I causes the “output” J . In addition, the two can be
confounded by a hidden variable H . Finally, I can contain
information independent of J (and vice-versa). For exam-
ple, in Fig. 1 the “lower” population of neurons is driven
by a random process, but is independent of the contents of
the visual stimulus.

the micro-variables fixes the macro-variables (for example,
the exact spiking time of every neuron determines whether
or not a pulse is present), while an intervention on the
macro-variable (e.g. the presence of a 30Hz neural rhythm)
may not uniquely fix the states of the micro-variables that
constitute the macro-variable. We follow Chalupka et al.
(2015) in first defining a micro-level manipulation, and re-
serving Pearl’s do()-operation for the interventions on a
macro-variable:

Definition 1 (Micro-level Manipulation). A micro-level
manipulation is the operation man(I = i) (we will of-
ten simply write man(i) for a specific manipulation) that
changes the micro-variables of I to i ∈ I, while not (di-
rectly) affecting any other variables (such asH or J). That
is, the manipulated probability distribution of the genera-
tive model in Eq. (1) is given by

P (J | man(I = i)) =
∑
H

P (J | I = i,H)P (H).

Our goal is to define (and then learn) the most compressed
description of an ml-system that retains all the information
about the causal effect of I on J , that is, we want the most
efficient description of the possible interventions on I and
their effects on J .

Definition 2 (Fundamental Causal Partition, Causal Class).
Let (I,J ) be a causal ml-system. The fundamental causal
partition of I, denoted by Πc(I) is the partition induced by
the equivalence relation ∼I such that

i1 ∼I i2 ⇔ ∀j∈JP (j | man(i1)) = P (j | man(i2)).

Similarly, the fundamental causal partition of J , denoted
by Πc(J ), is the partition induced by the equivalence rela-
tion ∼J such that

j1 ∼J j2 ⇔ ∀i∈I P (j1 | man(i)) = P (j2 | man(i)).

We call a cell of a causal partition a causal class of I or J .
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In words, two elements of I belong to the same causal class
if they have the same causal effect on J . Two elements ofJ
belong to the same causal class if they arise equally likely
after any micro-level manipulation of I . The causal classes
are thus good candidates for our causal macro-variables:

Definition 3 (Fundamental Cause and Effect). In a causal
ml-system (I,J ), the fundamental cause C is a random
variable whose value stands in a bijective relation to the
causal class of I . The fundamental effect E is a random
variable whose value stands in a bijective relation to the
causal class of J . We will also use C and E to denote the
functions that map each i and j, respectively, to its causal
class.2 We will thus write, for example, C(i) = c to indi-
cate that the causal cell of i is c.

When the fundamental cause and effect are non-trivial,
i.e. when their values correspond to non-singleton sets
of micro-states, then we refer to them as causal macro-
variables. Figure 1 illustrates the ground-truth fundamen-
tal cause and effect in our simulated neuroscience exper-
iment. The cause C has four states: presence of a verti-
cal bar (v-bar), presence of a horizontal bar (h-bar), pres-
ence of both and presence of neither in the image I . C
causes the effect E, which also has four states: presence
of pulse, rhythm, both or neither in the activity of a pop-
ulation of neurons in a raster plot. The precise details of
these structures (locations of the bars; exact neural spik-
ing times) are irrelevant to the causal interactions in the
system, as are the uniform noise in the stimulus images or
the strong rhythm generated by the “bottom” population of
neurons. Despite being an aggregate of micro-variables, C
is a well-defined “causal variable” as used in the standard
framework of causal graphical models. We can define, in a
principled way, an intervention on it (analogously for E):

Definition 4 (Macro-level Causal Intervention). The op-
eration do(C = c) on a macro-level cause is given by a
manipulation of the underlying micro-variable man(I = i)
to some value i such that C(i) = c.

We can now state the first part of a two-part theorem that
justifies the name fundamental causal partition. Intuitively,
knowing the fundamental causal partition of a system tells
us everything there is to know about the causal mechanism
implicit in P (J | man(I)): Any coarser partition loses
some information, any finer partition contains no further
causal information.

Theorem 5 (Sufficient Causal Description, Part 1). Let
(I,J ) be a causal ml-system and let E be its fundamental
causal effect. Let E be E applied sample-wise (for exam-
ple, E(j1, · · · , jk) = (E(j1), · · · , E(jk))). Then among
all the partitions of J , E is the minimal sufficient statistic
for P (J | man(i)) for any i ∈ I.

2In a slight abuse of terminology we will at times use the
causal macro-variables to refer to their (bijectively) correspond-
ing partitions, for example, “C̄ is a coarsening of C”.

The proof (in Supplementary Material A) is a standard ap-
plication of Fisher’s factorization theorem. Unfortunately,
the theorem does not do justice to the intuition that the
fundamental cause, too, compresses information about the
causal mechanisms of the system. However, unless we as-
sume a distribution P (man(I)) over the interventions, we
cannot apply the notion of a sufficient statistic to manipu-
lations in the I space. Following Pearl’s approach, we re-
frain from specifying intervention distributions and instead
return to this question using a different technique in Sec. 4.

3 LEARNING THE FUNDAMENTAL
CAUSAL STRUCTURE

We first show how to learn causal macro-variables from ex-
perimental data, sampled directly from P (J | man(I)).
Experimental data is generally costly to obtain, so in the
following section we prove the Fundamental Causal Coars-
ening Theorem that shows one can use observational data
sampled according to P (J | I) to minimize the number
of experiments needed to establish the fundamental causal
partitions.

3.1 Learning With Experimental Data

Consider a dataset {(i, j)} of size N generated experimen-
tally from a causal ml-system (I,J ): each i is chosen by
the experimenter arbitrarily, and each j is generated from
P (J | man(i)). Algorithm 1 takes such data as input, and
computes the fundamental cause and effect of the system.
We relegate the detailed discussion of the algorithm (as
well as the details of our implementation) to Supplemen-
tary Material B. Here, instead, we provide a step-by-step
illustration of the algorithm’s application to the simulated
neuroscience problem from Sec. 1.1.

We generated 10000 images i similar to those shown in
Fig. 1: 2500 h-bar images (with varying h-bar locations and
uniform pixel noise), 2500 v-bar images, 2500 “h-bar + v-
bar” images and 2500 uniform noise images. Of course,
this is an ideal dataset that we can only design because we
know the ground-truth causal features. In practice, the ex-
perimenter would want to choose as broad a class of stimuli
as reasonable. Next, for each image we generated a corre-
sponding time-averaged, neuron-index-shuffled raster plot
j according to P (J | man(i)). We then applied Alg. 1 to
this experimental data. The output is for each image i an
estimate of its causal class C(i), and for each raster j an
estimate of its effect class E(j), as defined in Fig. 1.

Figure 4 shows how Alg. 1 recovers the macro-variable
causal mechanism of our simulated single-unit-recording
experiment. Three remarks are in order:

1. For purposes of illustration, the macro-level causal
variables are very simple. Nevertheless, the procedure
is completely general and could be applied to detect
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Algorithm 1: Learning the Fundamental Cause and
Effect

input : Dcsl = {(i1, j1), · · · , (iN , jN )} – causal data.
jk ∼ P (J | man(ik)), 1 ≤ j ≤ N .
DensLearn – a density learning routine.
Clstr – a clustering routine.
Clsfy – a classification routine.

output: C : I → {1, · · · , SC} – the fundamental cause.
E : J → {1, · · · , SE} – the fundamental effect.

1 PJ|Î ← DensLearn(Dcsl);
2 Eftmic ← {[PJ|Î(i, j1), · · · , PJ|Î(i, jN )] | i ∈ I};
3 Csmic ← {[PJ|Î(i1, j), · · · , PJ|Î(iN , j)] | j ∈ J };
4 C ′ ← Clstr(Eftmic); // range(C ′) = {1, · · · , SC}
5 E′ ← Clstr(Csmic); // range(E′)={1, · · · , SE}
6 Eftmac ← {[P (e1|c), ..., P (eSE

|c)] | c = 1, ..., SC};
7 Csmac ← {[P (e|c1), ..., P (e|cSC

)] | e = 1, ..., SE};
8 Merge C ′ clusters with similar Eftmac values.;
9 Merge E′ clusters with similar Csmac values.;

10 C ← Clsfy((i1, C
′(i1)), · · · , (iN , C ′(iN )));

11 E ← Clsfy((j1, E
′(j1)), · · · , (jN , E′(jN )));

Figure 3: The Fundamental Causal Coarsening Theo-
rem (FCCT). Gray lines delineate the observational parti-
tions on I and J . Observational probabilities are constant
within the gray regions: for any pair i1, i2 belonging to the
same I region, and any pair j1, j2 belonging to the same J
region, P (j1 | i1) = P (j1 | i2) = P (j2 | i1) = P (j2 | i2).
Red lines delineate the causal partition: within each red re-
gion, probabilities of causation P (j | man(i)) are equal.
FCCT states that in general, the causal partition coarsens
the observational partition, as in the picture.

causal macro-variables that do not admit such a sim-
ple description. We believe the method holds promise
for applications in a broad set of scientific domains.

2. The algorithm does not simply cluster I and J . In-
stead, it clusters the probabilistic effects of points in I,
and the probabilities of causation for points in J . Its
crucial function is to ignore any structures that are not
related to the causal effect of I on J . In our example,
the raster plots contain salient structure that is causally
irrelevant: With probability 0.5, the “bottom” subpop-

ulation of neurons spikes in a synchronized rhythm.
Simply clustering J would sub-divide the true causal
classes in half. Fig. 4e shows that the algorithm finds
the correct solution.

3. There are many possible alternatives to Alg. 1, each
with different advantages and disadvantages. The par-
ticular solution we chose is a direct application of the
definitions, and works well in practice. However, it
does introduce additional assumptions — in particu-
lar, p(J | man(I)) needs to be smooth both as a func-
tion of j and i for the algorithm to work perfectly.

3.2 The Fundamental Coarsening Theorem and
Experiment Design

If only data sampled from P (J | I) is available, it is in gen-
eral impossible to determine the fundamental causal parti-
tion. The causal effect from I to J cannot always be sep-
arated from the confounding due to H (recall Fig. 1). In-
stead, we can directly apply Alg. 1 to the observational data
to obtain the observational partition of a causal ml-system:

Definition 6 (Observational Partition, Observational
Class). Let (I,J ) be a causal ml-system. The observa-
tional partition of I, denoted by Πo(I), is the partition in-
duced by the equivalence relation ∼I such that i1 ∼I i2 if
and only if P (J | I = i1) = P (J | I = i2). The obser-
vational partition of J , denoted by Πo(J ), is the partition
induced by the equivalence relation ∼J such that j1 ∼J j2
if and only if ∀i∈I P (j1 | i) = P (j2 | i). A cell of an
observational partition is called an observational class (of
I or J ).

Spurious correlates can introduce structure in Πo that is
irrelevant to Πc (see Eq. (1) and the discussion on spu-
rious correlates in Chalupka et al. (2015)). Nevertheless,
we can aim to minimize the number of experiments needed
to obtain the fundamental causal partition. The following
theorem (which generalizes the Causal Coarsening Theo-
rem of (Chalupka et al., 2015)) shows that in general, ob-
servational data can be efficiently transformed into causal
knowledge about an ml-system.

Theorem 7 (Fundamental Causal Coarsening). Among
all the generative distributions of the form shown
in Fig. 2 which induce given observational partitions
(Πo(I),Πo(J )):

1. The subset of distributions that induce a fundamen-
tal causal partition Πc(I) that is not a coarsening of
the observational partition Πo(I) is Lebesgue mea-
sure zero, and

2. The subset of distributions that induce a fundamental
causal partition Πc(J ) that is not a coarsening of the
Πo(J ) is Lebesgue measure zero.

In other words, the observational partition over I may sub-
divide come cells of the causal partition, but not vice-versa,
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and the observational partition over J may subdivide some
cells of the causal partition, but not vice-versa. Fig. 3
illustrates the Fundamental Causal Coarsening Theorem
(FCCT).

We prove the theorem in Supplementary Material C. FCCT
suggests an efficient way to learn causal features of a sys-
tem starting with observational data only: first, learn the
observational partition using Alg. 1. Next, pick (at least)
one i belonging to each observational class and estimate
P (J | man(i)). To obtain the causal partition, merge
the observational cells whose i’s induce the same distribu-
tion over J . Then, pick at least one j from each observa-
tional class and merge the cells whose j’s induce the same
P (j | man(i)) for all i ∈ I.

4 SUBSIDIARY CAUSES AND EFFECTS
The behavior of our simulated neural population is affected
by two independent causal mechanisms: the presence of a
v-bar can create a neural pulse, and the presence of an h-bar
can induce a 30Hz neural rhythm. We wrote “P (30Hz =
1 | do(v-bar = 1)) = .8 and P (pulse = 1 | do(h-bar =
1)) = .8”, and said that these two mechanisms compose to
bring about the observed effects. We now formalize under
what conditions higher-level variables, such as “30Hz” or
“v-bar”, can arise from the fundamental causal partition.

Definition 8 (Subsidiary Causal Variables). Let C and E
be the fundamental cause and effect of a causal ml-system.
Let C̄ and Ē be strict coarsenings of C and E. Denote by
c1(l), · · · , cNl

(l) the cells of C that belong to the l-th cell
of C̄. We say that C̄ and Ē are subsidiary causal variables,
and that C̄ is a subsidiary cause of the subsidiary effect Ē
if (i) ∀lP (Ē | do(C = c1(l))) = · · · = P (Ē | do(C =
cNl

(l))), and (ii) P (Ē | do(C̄ = c̄1)) 6= P (Ē | do(C̄ =
c̄2)) for any distinct c̄1 and c̄2 in the range of C̄.

According to the definition, any coarsening of C and E
that aspires to be a subsidiary cause-effect pair has to sat-
isfy two conditions. First, manipulations on the subsidiary
cause C̄ have to be well-defined. The definition guaran-
tees that any two i1, i2 for which C̄(i1) = C̄(i2) gener-
ate the same distribution over the subsidiary effect, so that
P (Ē | do(C̄ = C̄(i1))) = P (Ē | do(C̄ = C̄(i2))). In
our example, producing an image with an h-bar induces
the neural pulse with probability .8. The probability of the
pulse is indifferent to the presence/absence of a v-bar (or
any other structure) in the image (see also Fig. 5a,b). On
the other hand, we claimed that v-bars cause rhythms, not
pulses (see Fig. 5c). What shows formally that v-bars do
not cause pulses? Producing an image i with a v-bar but
no h-bar gives us P (pulse | man(i)) = 0, but if i con-
tains both h- and v-bars, we have P (pulse | man(i)) = .8.
This disagrees with our definition of what it takes to be
a causal variable: the manipulation on the macro-cause
v-bar is not well-defined with respect to the macro-effect

Algorithm 2: Finding Subsidiary Variables
input : C,E – the fundamental cause and effect (and

the corresponding partitions).
output: S = (C1, E1), · · · , (CN , EN ) – subsidiary

variables of the system.

1 S ← ∅;
2 c1, · · · , cm ← range(C);
3 e1, · · · , en ← range(E);
4 for Ē ∈ Partitions(E) do
5 for ē ∈ range(Ē) do
6 P (ē | do(C = ck))←

∑
el∈ē

P (el | do(C = ck));

7 end
8 Define effect : ck 7→ P (Ē | do(C = ck));
9 Let ci ∼C̄ cj ⇔ effect(ci) = effect(cj);

10 ΠC̄ ← partition of range(C) induced by ∼C̄ ;
11 C̄ ← random variable corresponding to ΠC̄ ;
12 S ← S ∪ (C̄, Ē);
13 end

pulse, as the effects of micro-variables belonging to the
same macro-variable causal class are not the same. We
have what Spirtes and Scheines (2004) call an “ambiguous
manipulation” of v-bar with respect to the pulse.

The second condition in the definition ensures that the val-
ues of subsidiary causes are only distinct when they have
distinct effects. A succinct answer to the question “what
causes the neural pulse?” is “the presence of a horizontal
bar” — not “two states: one corresponding to the presence
of a horizontal bar along with the presence of a vertical bar;
the other corresponding to the presence of a horizontal bar
without the presence of a vertical bar”. Two states with the
same probabilistic effect should be combined.

Together, the two conditions ensure that subsidiary causes
and effects allow for well-defined, parsimonious manip-
ulations. Equipped with the notion of subsidiary causal
variables and an understanding of what it takes to define
P (Ē | do(C̄)), we can complete our Sufficient Causal De-
scription theorem:

Theorem 9 (Sufficient Causal Description, Part 2). The
fundamental causal variables C and E losslessly recover
P (j | man(i)). No other (subsidiary) causal variables
losslessly recover P (j | man(i)). Any other partition of
(I,J ) is either finer than C and E or does not define un-
ambiguous manipulations. In this sense, the fundamental
causal partition corresponds to the coarsest partition that
losslessly recovers P (j | man(i)).

The proof is provided in Supplementary Material A. The
theorem suggests that the use of subsidiary variables is to
ignore causal information that is not of interest. For exam-
ple, having discovered the fundamental effects of images
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Figure 4: Learning the fundamental causal partition. The figure demonstrates Algorithm 1 applied to the example from
Fig. 1. (a) Given a dataset {(ik, jk)}k=1...N , the algorithm learns data density P (j | man(i)) and forms a matrix in which
the kl-th entry is the estimated P (jk | man(il)). (b) The rows and columns of the matrix are clustered. Each cluster of
columns corresponds to a cell of C ′, the proposed fundamental partition of I, and each cluster of rows corresponds to a cell
ofE′, the proposed fundamental partition of J . (c) The histograms show the ground-truth causal class of the points in each
cluster (this ground truth is unknown to the algorithm). For example, the cell E′ = 8 contains a majority of raster plots that
contain the “30Hz (top)” causal structure; it also contains some “30Hz (top) + pulse” rasters. (d) The algorithm computes
the probability table P (E′ | do(C ′)) by counting the co-occurrences of the cluster labels. (e) Finally, the columns of this
table are merged according to their similarity to form the fundamental partition ΠC , and the rows are merged to form ΠE .
For example, columns C ′ = 1 and C ′ = 3 of the table in (d) are similar—indeed, the cluster purity histograms indicate
that both rows correspond to sets of images with a vertical bar. P (E | do(C)) is very similar to the ground-truth table (see
Fig. 1), and the final C,E clusters are pure (as shown along the axes of the table).

on a brain region the neuroscientist might want to focus on
the subsidiary effects whose analogues were observed in
other brain regions, or in other animals. Alg. 2 shows a sim-
ple (yet combinatorially expensive) procedure to discover
the full set of subsidiary causes and effects in an ml-system.
The algorithm iterates over all the possible coarsenings of
E, the fundamental effect, and computes, for each, the cor-
responding coarsening (not necessarily strict) of the funda-
mental cause that adheres to Def. 8.

To complete the picture of how the fundamental and sub-
sidiary variables relate to each other, we formalize the in-
tuition that the fundamental causal partition can be a prod-
uct of its subsidiary variables. Recall that we have defined
causal macro-variables as partitions of sets of values of ran-
dom micro-variables. The composition of causal variables
is defined in terms of the product of partitions.

Definition 10 (Partition Product, Macro-Variable Compo-
sition). Let Π1 and Π2 be partitions of the same setX . The

product of the partitions, denoted Π1 ⊗Π2, is the coarsest
partition of X that is a refinement of both Π1 and Π2. The
set of partitions of X forms a commutative monoid under
⊗. The composition C of two causal macro-variables C1

and C2 is defined as the product of the corresponding par-
titions. In this case, we will use the ⊗ operator to write
C = C1 ⊗ C2.

Finally, we describe a special class of subsidiary variables
to gain additional insight into the fundamental causal struc-
ture of ml-systems.

Definition 11 (Non-Interacting Subsidiary Variables). Let
C1, C2 be subsidiary causes with respective subsidiary ef-
fects E1, E2. Denote by (e1, e2) the cell of E1 ⊗ E2 that
corresponds to the intersection of a cell e1 of E1 and cell
e2 of E2, and analogously for (c1, c2). C1 and C2 are
non-interactive if for any non-empty (c1, c2) and (e1, e2)
we have P (E1⊗E2 =(e1, e2) | do(C1⊗C2 =(c1, c2))) =
P (E1 =e1 | do(C1 =c1))× P (E2 =e2 | do(C2 =c2)).
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Among all the possible ml-systems, the fundamental causal
partition gives rise to no subsidiary causes in almost all the
cases. The presence of coarse, non-interacting subsidiary
causes (such as the h-bar and the v-bar in our example) is
a strong indicator of independent physical causal mecha-
nisms that produce symmetries in the fundamental causal
structure of the system. Our framework enables the scien-
tist to automatically detect such independent mechanisms
from data.

For example, let C1= “presence of h-bar”, C2= “pres-
ence of v-bar”, E1= “presence of pulse”, E2= “presence
of rhythm (top)”. We can discover these variables from
data using Alg. 1 followed by Alg. 2, and check that in-
deed they are non-interacting. In fact, these two subsidiary
variables compose to yield the fundamental causal partition
and its probability table – we can write C = C1 ⊗ C2 and
E = E1 ⊗ E2 (see Fig. 5d).

5 DISCUSSION AND CONCLUSION
In general it is possible that macro-variable causes and ef-
fects are barely coarser (if at all) than the corresponding
micro-variables. The hope that C and E have a “manage-
able” cardinality, such as those in Fig. 1, is similar in spirit
to standard assumptions in both supervised and unsuper-
vised learning. There, a set of continuous data is clustered
into a discrete number of subsets according to some fea-
ture of interest. Here the “feature of interest” is the causal
relationship between C and E.

Given that discussion of macro-causal relations is com-
monplace in scientific discourse, we take the scientific en-
deavors mentioned in the introduction to be predicated on
the assumption that micro-level descriptions are not all
there is to the phenomena under investigation. Whether or
not there in fact are macro-level causes that justify such an
assumption is, in light of our theoretical account, an empir-
ical question. Taking the definitions literally, macro-causes
cannot be defined arbitrarily. Finally we note an implicit
assumption we made, that the micro-variables do not lump
together atoms that belong to different “true fundamental
partition” cells. What happens when this assumption is vi-
olated is an open question.

Our approach to the automated construction of causal
macro-variables is rooted in the theory of computational
mechanics (Shalizi and Crutchfield, 2001; Shalizi, 2001;
Shalizi and Shalizi, 2004). Even though we have focused
on learning from experimental data, we cleanly account for
the interventional/observational distinction that is central to
most analyses of causation. This distinction is entirely lost
in heuristic approaches, such as that of Hoel et al. (2013).
Finally, we note that our work is orthogonal to recent ef-
forts to learn causal graphs over high-dimensional variables
(Entner and Hoyer, 2012; Parviainen and Kaski, 2015).

Altogether, we have an account of how causal variables can

Figure 5: Subsidiary Causal Variables. (a) The funda-
mental cause and effect of our neuroscience example. (b)
The subsidiary cause C1, “presence of an h-bar”. The cor-
responding coarsening of C groups together the images
which contain no h-bars (C1 = 0) and the images which
contain an h-bar (C1 = 1). Similarly, the subsidiary ef-
fect of C1 groups together raster plots with and without the
“pulse” behavior. (c) The subsidiary cause C2, “presence
of a v-bar” and its effect E2. Note that E1, for example, is
not an effect of C2. If it was, the effects of manipulations
do(C2 = 0) as well as do(C2 = 1) would be ambiguous:
P (E1 = 1 | do(C2 = 1)) could be either .8 or 0, depend-
ing on whether the manipulated micro-variable contains an
h-bar or not. (d) C1 and C2 are non-interacting subsidiary
causes. The effect of their product is the product of their
effects.

be identified that does not rely on a definition obtained from
domain experts. Given its theoretical generality, we expect
our method to be useful in many domains where micro-
level data is readily available, but where the relevant causal
macro-level factors are still poorly understood.
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Supplementary Material for ‘Multi-Level Cause-Effect Systems’

A SUFFICIENT CAUSAL DESCRIPTION
THEOREM, PARTS 1 AND 2

Theorem 1 (Sufficient Causal Description). Let (I,J ) be
a causal ml-system and let C and E be its fundamental
cause and effect. Let E be E applied sample-wise to a
sample from the system (so that e.g. E(j1, · · · , jk) =
(E(j1), · · · , E(jk))). Then:

1. Among all the partitions of J , E is the minimal suffi-
cient statistic for P (J | man(i)) for any i ∈ I, and

2. C and E losslessly recover P (j | man(i)). No other
(subsidiary) causal variable losslessly recovers P (j |
man(i)). Any other partition is either finer than C,E
or does not define unambiguous manipulations. In this
sense, the fundamental causal partition corresponds
to the coarsest partition that losslessly recovers P (j |
man(i)).

Proof. 1. We first prove that E is a sufficient statistic. Re-
call that we assumed J to be discrete, although possibly of
vast cardinality. For any jk ∈ J , write P (jk | man(i)) =
pjk for the corresponding categorical distribution parame-
ter. Let range(E) = {E1, · · · , EM} be the set of causal
classes of J . By Definition 3 there is a number of “tem-
plate” probabilities pE1 , · · · , pEM

such that pjk = pEk

if and only if E(jk) = Ek. Consider an i.i.d. sample
j = j1, · · · , jl from P (J | man(i)). Then

P (j1, · · · , jl | man(i)) = Πl
k=1pjk

= ΠM
m=1p

#(Em)
Em

,

where #(Em) , Σlk=11{E(jk) == Em} is the number
of samples with causal class Em. Since the sample density
depends on the samples only through C and E it follows
from Fisher’s factorization theorem that E is a sufficient
statistic for P (J | man(i)) for any i ∈ I.

Now, we prove the minimality ofE among all the partitions
of J . Consider first any refinement of E. One can directly
apply the reasoning above to show that the cell assignment
in such a partition is also a sufficient statistic. However,
any refinement is not the minimal sufficient statistic, as the
fundamental causal partition is its coarsening— and thus
also its function. Now, consider any partition that is not
the fundamental causal partition, and is not its refinement.
Call it E′. Assume, for contradiction, that E′ is a suffi-
cient statistic for P (J | man(i)). Then, by the factoriza-
tion theorem, P (j1, · · · , jk | man(i)) would factorize as

h(j1, · · · , jk)g(E′(j1), · · · , E′(jk)), where h does not de-
pend on the parameters pjl . Now, take some j11 , j

2
1 such that

E(j11) 6= E(j21) but E′(j11) = E′(j21) (such a pair must ex-
ists since E′ is not a refinement of E and is not equal to it).
Then

P (j11 , j2, · · · , jk | man(i))

P (j21 , j2, · · · , jk | man(i))
=
pE(j11)

pE(j21)

,

P (j11 , j2, · · · , jk | man(i))

P (j21 , j2, · · · , jk | man(i))
=

=
h(j11 , · · · , jk)g(E′(j11), · · · , E′(jk))

h(j21 , · · · , jk)g(E′(j21), · · · , E′(jk))

=
h(j11 , · · · , jk)

h(j21 , · · · , jk)

which, as already stated, does not depend on the parameters
of the distribution – a contradiction.

2. That P (J | man(i)) can be recovered from C and E
follows directly from the definition of a causal ml-system
and its fundamental causal partition. That it cannot be re-
covered losslessly from any partition that is not a refine-
ment of C and E follows again from the fact that for any
such partitions C ′ and E′ there must be is at least one
pair (i1, j1), (i2, j2) for which p(E′(j1) | do(C ′(i1))) =
p(E′(j2) | do(C ′(i2))) even though p(j1 | man(i1)) 6=
p(j2 | man(i2)).

We note that the first part of Theorem 1 indicates that E
is only a minimal sufficient statistic among all partitions of
J , i.e. among the set of possible causal variables. It is not
the minimal sufficient statistic over all possible sufficient
statistics for P (J | man(i)). In particular, a histogram is a
minimal sufficient statistic for the multinomial distribution
and is a function of E, but a histogram does not correspond
to a partition of J .

B DETAILS AND IMPLEMENTATION
OF ALGORITHM 1

First, the algorithm uses a density learning routine to esti-
mate P (J | man(I)) given the samples. We don’t spec-
ify the density learning routine, as that is highly problem-
dependent. In our experiments, dimensionality reduction
with autoencoders (Hinton and Salakhutdinov, 2006) fol-
lowed by kernel density estimation worked well. More so-
phisticated approaches are readily available, for example
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RNADE (Uria et al., 2013). Steps 2 and 3 constitute the
core of the algorithm: In Step 2, a vector of (estimated)
densities [P (j1 | man(i)), · · · , P (jN | man(i))] is calcu-
lated for each ik in the dataset (1 ≤ k ≤ N ). That is, each
ik corresponds to a vector that contains information about
the probability of each jl (1 ≤ l ≤ N ) occurring given
a manipulation man(ik) (note that in the original dataset,
ik might have only appeared as paired with one effect jk,
sampled from P (J | man(i))). Similarly, Step 3, computes
for each jl a vector of estimated densities of jl occurring
given an intervention on each ik.

Clustering these vectors (Step 4 & 5) makes it possible to
group together all the i’s with similar effects, and all the
j’s with similar causes — that is, to learn the fundamen-
tal causal partition. The number of cells of the fundamen-
tal partition is unknown in advance, but it is safe to over-
cluster the data. Our implementation uses the Dirichlet
Process Gaussian Mixture Model (Rasmussen, 1999) for
clustering with a flexible number of clusters, but again the
algorithm stays clustering-routine-agnostic.

After the initial clustering it should now be easy to merge
clusters belonging to the same true causal class, as the
probabilistic patterns of mergeable clusters are expected
to be similar. The macro-variable cause/effect probability
vectors are estimated in Steps 8 and 9. These are analogues
to the micro-variable cause/effect density vectors estimated
in Step 2. However, instead of estimating the density of the
micro-variable data, they count the normalized histograms
of conditional probabilities of the J cluster given the I
clusters. These histograms are aggregates of large numbers
of datapoints, and should smooth out errors in the original
density estimation. Thus, even if the original clustering al-
gorithm overestimates the number of cells in the fundamen-
tal partition, we can hope to be able to merge them based
on similarities in the macro-variable histogram vectors. In
our experiment, we merge the macro-variable cause/effect
probabilities by thresholding the KL-divergence between
any two vectors belonging to the same cluster. However,
since the number of datapoints to cluster is likely to be
very small, the best solution in practice is to cluster them
by hand.

By Step 8, the algorithm returns causal labels for the origi-
nal data samples. These labeled samples can be used to vi-
sualize the fundamental causes and effects using the origi-
nal data samples. To generalize the fundamental cause and
effect to the whole I and J space, the algorithm trains a
classifier using the original data and the learned causal la-
bels.

C THE FUNDAMENTAL CAUSAL
COARSENING THEOREM

Theorem 2 (Fundamental Causal Coarsening). Among all
the generative distributions of the form shown in Fig. 2
(main text) which induce given observational partition
(Πo(I),Πo(J )):

1. The subset of distributions that induce a fundamen-
tal causal partition Πc(I) that is not a coarsening of
the observational partition Πo(I) is Lebesgue mea-
sure zero, and

2. The subset of distributions that induce a fundamental
causal partition Πc(J ) that is not a coarsening of the
observational partition Πo(J ) is Lebesgue measure
zero.

Proof. (1) Let E be the fundamental effect of the system.
Then Πc(I) and E constitute precisely the “causal parti-
tion” and “target behavior” of the system and Πo(I) consti-
tutes the “observational partition” of the system, as defined
by Chalupka et al. (2015). Thus, the proof of the Causal
Coarsening Theorem by Chalupka et al. (2015) applies di-
rectly and proves (1).

(2) While we cannot directly use the proof of Chalupka
et al. (2015), we follow a very similar proof strategy. The
only difference is in details of the algebra. We first lay
out the proof strategy. Let j1, j2 ∈ J . We need to show
that if P (j1 | i) = P (j2 | i) for every i ∈ I, then also
P (j1 | man(i)) = P (j2 | man(i)) for every i (for all the
distributions compatible with given observational partition,
except for a set of measure zero). The proof is split into
two parts: (i) Express the theorem as a polynomial con-
straint on the space of all P (i, j, h) distributions. (ii) Show
that the polynomial constraint is not trivial. This, by Meek
(1995), implies that among all P (i, j, h) distributions, the
fundamental causal partition on J is a coarsening of the
fundamental observational partition. (iii) Prove that (i) and
(ii) apply to “all the distributions which induce a given
observational partition” by showing that this restriction re-
sults in a simple reparametrization of the distribution space.

(2i) Let H be the hidden variable of the system, with cardi-
nalityK; let J have cardinalityN and I cardinalityM . We
can factorize the joint on I, J,H as P (J, I,H) = P (J |
H, I)P (I | H)P (H). P (J | H, I) can be parametrized by
(N − 1)×K ×M parameters, P (I | H) by (M − 1)×K
parameters, and P (H) by K − 1 parameters, all of which
are independent.

Call the parameters, respectively,

αj,h,i , P (J = j | H = h, I = i)

βi,h , P (I = i | H = h)

γh , P (H = h)



We will denote parameter vectors as

α = (αj1,h1,i1 , · · · , αjN−1,hK ,iM ) ∈ R(N−1)×K×M

β = (βi1,h1
, · · · , βiN−1,hK

) ∈ R(M−1)×K

γ = (γh1 , · · · , γhK−1
) ∈ RK−1,

where the indices are arranged in lexicographical or-
der. This creates a one-to-one correspondence of
each possible joint distribution P (J,H, I) with a point
(α, β, γ) ∈ P [α, β, γ] ⊂ R(N−1)×K2(K−1)×M(M−1),
where P [α, β, γ] is the (N−1)×K2(K−1)×M(M−1)-
dimensional simplex of multinomial distributions.

To proceed with the proof, we pick any point in the P (J |
H, I)× P (H) space: that is, we fix the values of α and γ.
The only free parameters are now the βi,h; varying these
values creates a subset of the space of all the distributions
which we will call

P [β;α, γ] = {(α, β, γ) | β ∈ [0, 1](M−1)×K}.

P [β;α, γ] is a subset of P [α, β, γ] isometric to the
[0, 1](M−1)×K-dimensional simplex of multinomials. We
will use the term P [β;α, γ] to refer both the subset of
P [α, β, γ] and the lower-dimensional simplex it is isomet-
ric to, remembering that the latter comes equipped with the
Lebesgue measure on R(M−1)×K .

Now we are ready to show that the subset of P [β;α, γ]
which does not satisfy the Fundamental Causal Coarsen-
ing constraint on J is of measure zero with respect to the
Lebesgue measure. To see this, first note that since α and
γ are fixed, the manipulation probabilities p(j | man(i)) =∑
h αj,h,iγh are fixed for each i ∈ I, j ∈ J . The Fun-

damental Causal Coarsening constraint on J says “If for
some j1, j2 ∈ J we have p(j1 | i) = p(j2 | i) for every
i ∈ I, then also p(j1 | man(i)) = p(j2 | man(i)) for every
i.” The subset of P [β;α, γ] of all distributions that do not
satisfy the constraint consists of the P (J,H, I) for which
for some j1, j2 ∈ J it holds that

∀iP (j1 | i) = P (j2 | i) and P (j1 | man(i)) 6= P (j2 | man(i)).

We want to prove that this subset is measure zero. To
this aim, take any pair j1, j2 and an i for which p(j1 |
man(i)) 6= p(j2 | man(i)) [Assumption 1]. Note that if
such a configuration does not exist, then the Fundamental
Causal Coarsening constraint holds for all the distributions
in P [β;α, γ] and the proof is done. We can write

P (j1 | i) =
∑
h

P (j1 | h, i)P (h | i)

=
1

P (i)

∑
h

P (j1 | h, i)P (i | h)P (h).

Since the same equation applies to P (j2 | i), the constraint
P (j1 | i) = P (j2 | i) can be rewritten as

∑
h

P (j1 | h, i)P (i | h)P (h)

=
∑
h

P (j2 | h, i)P (i | h)P (h)

which we can rewrite in terms of the independent parame-
ters as

∑
h

[αj1,h,i − αj2,h,i]βh,iγh = 0, (1)

which is a polynomial constraint on P [β;α, γ]. By a
simple algebraic lemma (proven by Okamoto, 1973), if
the above constraint is not trivial (that is, if there exists
β for which the constraint does not hold), the subset of
P [β;α, γ] on which it holds is measure zero.

(2ii) To see that Eq. (1) does not hold for every distribution,
take a distribution distribution with βh∗,i = 1 (and thus
βh,i = 0 for any h 6= h∗). The equation then reduces to

(αj1,h∗,i − αj2,h∗,i)γh∗ = 0.

Thus, Eq. (1) implies that αj1,h∗,i = αj2,h∗,i or γh∗ = 0.
Since h∗ is general, αj1,h,i = αj2,h,i or γh = 0 for any
h. By definition p(j1 | man(i)) − p(j2 | man(i)) equals∑
h(αj1,h,i−αj2,h,i)γh which, in the context of the previ-

ous sentence, is 0. Thus our reasoning so far implies that
p(j1 | man(i)) = p(j2 | man(i)). This is in direct contra-
diction with Assumption 1.

We have now shown that the subset of P [β;α, γ] which
consists of distributions for which P (j1 | i) = P (j2 | i),
but p(j1 | man(i)) 6= p(j2 | man(i) for some i, is Lebesgue
measure zero. Since there are only finitely many pairs of
images j1, j2 for which the latter condition holds, the sub-
set of P [β;α, γ] of distributions which violate the Causal
Coarsening constraint is also Lebesgue measure zero (a fi-
nite sum of measure zero sets is measure zero). The re-
mainder of the proof is a direct application of Fubini’s the-
orem.

For each α, γ, call the (measure zero) subset of P [β;α, γ]
that violates the Causal Coarsening constraint z[α, γ]. Let
Z = ∪α,γz[α, γ] ⊂ P [α, β, γ] be the set of all the joint dis-
tributions which violate the Causal Coarsening constraint.
We want to prove that µ(Z) = 0, where µ is the Lebesgue
measure. To show this, we will use the indicator function

ẑ(α, β, γ) =

{
1 if β ∈ z[α, γ],
0 otherwise.
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By the basic properties of positive measures we have

µ(Z) =

∫
P [α,β,γ]

ẑ dµ.

It is a standard application of Fubini’s Theorem for the
Lebesgue integral to show that the integral in question
equals zero. For simplicity of notation, let

A = R(N−1)×K×M

B = R(M−1)×K

G = RK−1.

We have

∫
P [α,β,γ]

ẑ dµ =

∫
A×B×G

ẑ(α, β, γ) d(α, β, γ)

=

∫
A×G

∫
B
ẑ(α, β, γ) d(β) d(α, γ)

=

∫
A×G

µ(z[α, γ]) d(α, γ) (2)

=

∫
A×G

0 d(α, γ)

= 0.

Equation (2) follows as ẑ restricted to P [β;α, γ] is the in-
dicator function of z[α, γ].

This completes the proof that Z, the set of joint distribu-
tions over J,H and I that violate the Causal Coarsening
constraint, is measure zero.

(2iii) Finally, we show that (2i) and (2ii) apply if we fix
an observational partition on J a priori. Fixing the obser-
vational partition means fixing a set of observational con-
straints (OCs)

∀ip(j11 | i) = · · · = p(j1N1
| i) = p1,

...

∀ip(jL1 | i) = · · · = p(jLNL
| i) = pL,

where 1 ≤ L ≤ N is the number of observational classes
of J and Nl is the cardinality of the lth observational class
(so that N =

∑
lNl), and p1, · · · , pL are the numerical

values of the observational constraints.

Since P (J,H, I) = P (H | J, I)P (J | I)P (I), P (j | i)
is an independent parameter in the unrestricted P (J,H, I),
and the OCs reduce the number of independent parameters
of the joint byM

∑L
l=1(Nl−1), whereM is the cardinality

of I . We want to express this parameter-space reduction in

terms of the α, β and γ parameterization from (2i) and (2ii).
To do this, note first that we can write, for any jln,∑

h

p(jln, h, i) = pl
∑
h

p(h, i).

Now, pick any h∗ for which p(h∗, i) 6= 0. Then we can
write

p(jln, h
∗, i) = pl

∑
h

p(h, i)−
∑
h6=h∗

p(jln, h, i).

In terms of the α, β, γ parameterization, this equation be-
comes

αjln,h∗,iβh∗,iγh = pl
∑
h

βh,iγh −
∑
h6=h∗

αjln,h,iβh,iγh

or

αjln,h∗,i =
pl
∑
h βh,iγh −

∑
h6=h∗ αjln,h,iβh,iγh

βh∗,iγh
. (3)

The full set of the OCs is equivalent to the full set of equa-
tions of this form, one for each possible (jln, i) combination
(to the total of M × (N −L) equations as expected). Thus,
we can express the range of P (J,H, I) distributions con-
sistent with a given observational partition Πo(J ) in terms
of the full range of β, γ parameters and a restricted number
of independent α parameters.
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