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1 INTRODUCTION

Any attempt to characterize Reichenbach’s approach to inductive reasoning must
take into account some of the core influences that set his work apart from more
traditional or standard approaches to inductive reasoning. In the case of Reichen-
bach, these influences are particularly important as otherwise Reichenbach’s views
may be confused with others that are closely related but different in important
ways. The particular influences on Reichenbach also shift the strengths and weak-
nesses of his views to areas different from the strengths and weaknesses of other
approaches, and from the point of some other approaches Reichenbach’s views
would seem quite unintelligible if not for the particular perspective he has.

Reichenbach’s account of inductive reasoning is fiercely empirical. More than
perhaps any other account it takes its lessons from the empirical sciences. In
Reichenbach’s view, an inductive logic cannot be built up entirely from logical
principles independent of experience, but must develop out of the reasoning prac-
ticed and useful to the natural sciences. This might already seem like turning the
whole project of an inductive logic on its head: We want an inductive inference
system built on some solid principles (whatever they may be) to guide our scientific
methodology. How could an inference procedure that draws on the methodologies
of science supply in any way a normative foundation for an epistemology in the
sciences?

For Reichenbach there are two reasons for this “inverse” approach. We will
briefly sketch them here, but return with more detail later in the text: First,
Reichenbach was deeply influenced by Werner Heisenberg’s results, including the
uncertainty principle, that called into question whether there is a fact to the matter
– and consequently whether there can be certain knowledge about – the truth of
propositions specifying a particular location and velocity for an object in space and
time. If there necessarily always remains residual uncertainty for such propositions
(which prior to Heisenberg seemed completely innocuous or at worst subject to
epistemic limitations), then – according to Reichenbach – this is reason for more
general caution about the goals of induction. Maybe the conclusions any inductive
logic can aim for when applied to the sciences are significantly limited. Requiring
soundness of an inference – preservation of truth with certainty – may not only
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be unattainable, but impossible, if truth is not a viable concept for empirical
propositions. Once uncertainty is built into the inference, deductive standards are
inappropriate for inductive inference not only because the inference is ampliative
(which is the standard view), but also because binary truth values no longer apply.

Second, the evidence supporting Albert Einstein’s theory of relativity, and its
impact on the understanding of the nature of space and time revealed to Reichen-
bach the power of empirical evidence to overthrow truths that were taken to be
(even by Reichenbach himself in his early years) necessarily true. The fact that
Euclidean space had been discovered not only to be not necessary, but quite pos-
sibly not true — despite Immanuel Kant’s transcendental proofs for its synthetic
a priori status — called the state of a priori truths into question more generally.
The foundations of any inference system could no longer be taken to be a priori,
but had to be established independently as true of the world. Reichenbach refers
to this confirmation of the correspondence between formal structures and the real
world as “coordination” (although “alignment” might have been the more intuitive
description of what he meant).

Einstein’s and Heisenberg’s findings had their greatest impact on Reichenbach’s
views on causality. Influenced by the Kantian tradition, Reichenbach took causal
knowledge to be so profound that in his doctoral thesis in 1915 he regarded it
as synthetic a priori knowledge [Reichenbach, 1915]. But with the collapse (in
Reichenbach’s view) of a synthetic a priori view of space, due to Einstein, Reichen-
bach also abandoned the synthetic a priori foundation of causality. Consequently,
Reichenbach believed that causal knowledge had to be established empirically, and
so an inductive procedure was needed to give an account of how causal knowledge
is acquired and taken for granted to such an extent that it is mistaken for a priori
knowledge. But empirical knowledge, in Reichenbach’s view, is fraught with un-
certainty (due to e.g. measurement error, illusions etc.), and so this uncertainty
had to be taken into account in an inductive logic that formalizes inferences from
singular (uncertain) empirical propositions to general (and reasonably certain)
empirical claims. Heisenberg’s results implied further problems for any general ac-
count of causal knowledge: While the results indicated that the uncertainty found
in the micro-processes of quantum physics is there to stay, macro-physics clearly
uses stable causal relations. The question was how this gap could be bridged.
It is therefore unsurprising that throughout Reichenbach’s life, causal knowledge
formed the paradigm example for considerations with regard to inductive reason-
ing, and that probability was placed at its foundation.

The crumbling support for such central notions as space, time and causality,
also led Reichenbach to change his view on the foundations of deductive inference.
Though he does not discuss the foundations of logic and mathematics in any detail,
there are several points in Reichenbach’s work in which he indicates a switch away
from an a prioristic view. The a prioristic view takes logic to represent necessary
truths of the world, truths that are in some sense ontologic. Reichenbach rejects
this view by saying that there is no truth “inherent in things”, that necessity is
a result of syntactic rules in a language and that reality need not conform to the
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syntactic rules of a language [Reichenbach, 1948]. Instead, Reichenbach endorsed
a formalist view of logic in the tradition of David Hilbert. Inference systems
should be represented axiomatically. Theorems of the inference system are the
conclusions of valid deductions from the axioms. Whether the theorems are true
of the world, depends on how well the axioms can be “coordinated” with the real
world. This coordination is an empirical process. Thus, the underlying view holds
that the axioms of deductive logic can only be regarded as true (of the world) and
the inference principles truth preserving, if the coordination is successful – and
that means in Reichenbach’s case, empirically successful, or useful. In the light
of quantum theory, Reichenbach rejected classical logic altogether [Reichenbach,
1944].

Instead of an a priori foundation of inductive logic, Reichenbach’s approach to
induction is axiomatic. His approach, exemplified schematically for the case of
causal induction works something like this: We have causal knowledge. In many
cases we do not doubt the existence of a causal relation. In order to give an account
of such knowledge we must look at how this knowledge is acquired, and so we have
to look closely at the methodologies used in the natural sciences. According to
Reichenbach, unless we deny the significance of the inductive gap David Hume
dug (in the hole created by Plato and Sextus Empiricus), the only way we will be
able to make any progress towards an inductive logic is to look at those areas of
empirical knowledge where we feel reasonably confident that we have made some
progress in bridging that gap, and then try to make explicit (in form of axioms) the
underlying assumptions and their justification (or stories) that we tell ourselves,
why such assumptions are reliable.

There are, of course, several other influences that left their marks on Reichen-
bach’s views. Perhaps, most importantly (in this second tier), are the positivists.
Their influence is particularly tricky, since Reichenbach was closely associated with
many members of the Vienna Circle, but his views are in many important ways
distinctly “negativist”: Reichenbach denies that there can be any certainty even
about primitive perception, but he does believe — contrary to Karl Popper — that
once uncertainty is taken into account, we can make progress towards a positive
probability for a scientific hypothesis. We return to the debate with Popper below.

Second, it is probably fair to say that Richard von Mises, Reichenbach’s col-
league during his time in Berlin and Istanbul, was the largest influence with regard
to the concept of probability. Since probabilistic inferences play such a crucial role
in scientific induction, Reichenbach attempted to develop a non-circular foundation
and a precise account of the meaning and assertability conditions of probability
claims. Reichenbach’s account of probability in terms of the limits of relative fre-
quency, and his inductive rule, the so-called “straight rule”, for the assertability
of probability claims — both to be discussed in detail below — are perhaps his
best known and most controversial legacy with regard to inductive inferences.

As with any attempt to describe a framework developed over a lifetime, we
would inevitably run into some difficulty of piecing together what exactly Reichen-
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bach meant even if he had at all times written with crystal clarity and piercing
precision — which he did not. On certain aspects, Reichenbach changed or re-
vised his view, and it did not always become more intelligible. However, areas
of change in Reichenbach’s account are also of particular interest, since they give
us a glimpse into those aspects that Reichenbach presumably deemed the most
difficult to pin down. They will give us an idea of which features he considered
particularly important, and which ones still needed work. As someone, who in
many senses sat between the thrones of high church philosophy of his time and
(therefore?) anticipated many later and current ideas, Reichenbach’s views are of
particular interest.

2 PROBABILITY LOGIC: THE BASIC SET-UP

Reichenbach distinguishes deductive and mathematical logic from inductive logic:
the former deals with the relations between tautologies, whereas the latter deals
with truth in the sense of truth in reality. Deductive and mathematical logic are
built on an axiomatic system. Whether the axioms are true of the world is open
to question, and only of secondary interest in the deduction of mathematical theo-
rems. Reichenbach admits that we appear unable to think other than by adhering
to certain logical inferences, but that does not make deductive logic necessarily
true of the world. We similarly appear quite unable to think of real space in terms
of anything but Euclidean space, even though we know since Einstein (and the
results of various crucial experiments) that real space is not Euclidean.

In contrast to the formal relations that are of interest in deductive logic, induc-
tive logic is concerned with the determination of whether various relations between
quantities are true in the world; the aim is to represent, or, as Reichenbach says,
“coordinate” the real world with mathematical relations. A scientific law states
a mathematical relation about certain quantities in the world. The task of in-
ductive logic is to establish whether the mathematical relations described by the
law, correspond to the relations between the real features in the world represented
by symbols in the mathematical law. While the semantics of deductive logic are
formal, and can be adjusted to fit syntactic constraints, we do not have such defi-
nitional freedom of interpretation when describing the real world. Thus, inductive
logic must not only satisfy a formal semantics but enable a mapping between the
syntactic representation (the mathematical law) and its interpretation (the real
world quantities).

Reichenbach is a realist about the external world. But the access we are granted
to the external world is indirect. He compares our experience about the external
world to standing in a cloth cube, and drawing inferences about the objects out-
side the cube based on the shadows we see from the inside on the cube’s surface
[Reichenbach, 1938a]. The information we obtain about the external world is not
only indirect but also inexact. No empirical procedure supplies perfectly “clean”
data. The data is “unclean” for two reasons: First, in measuring a particular
parameter, there is always an infinity of other small influences that make the mea-
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surement noisy. Second, if Heisenberg’s uncertainty principle is not only epistemic,
but indicates a true metaphysical uncertainty (and Reichenbach appeared to take
this view despite being close friends and an admirer of Einstein), then there is
no exact measurement to be had in the first place. Consequently, all scientific
laws are established by probabilistic inferences from empirical samples. If the
epistemological support for scientific laws is only probabilistic, then an inductive
logic cannot be two valued, but must, like probability, be continuously valued.
So Reichenbach’s inductive logic is continuously valued between 0 and 1, where
the “truth value” corresponds to the probabilistic support. Reichenbach terms his
system “probability logic” and so shall we in what follows.

To define probabilistic support, Reichenbach again turns to the methodology
used in science: Scientific laws are universal claims based on a finite sequence of
observations. The uncertainty in the truth of the scientific law derives (at least
in part) from the fact that at any point in the sequence of observations we do
not know whether future observations will follow the pattern we have seen so far.
Consequently, the probability value describing the support we have for a scientific
claim must be a property of the sequence of observations we see. For Reichenbach
the probability of an event is the limit of the relative frequency of events of the
same type — what that means becomes one of Reichenbach’s main problems — in
an infinite sequence of events. (There are a few further constraints on the sequence,
but we will leave them aside here.) This is what is referred to as Reichenbach’s
limiting frequency interpretation of probability.

But a logic, even a probability logic, is not about events, a logic is about infer-
ences on propositions describing events. Consequently, Reichenbach must provide
an account of how a probability that is defined as a limiting frequency in a se-
quence of events is represented in a probability logic. Reichenbach claims that the
structure of events is mapped directly onto propositions in his probability logic
that are “coordinated” with the events. That is, for each event in a sequence
there is a proposition describing that event and the resulting sequence of propo-
sitions reflects isomorphically the structure of the sequences of events. Since the
structures are isomorphic, probability values can be used interchangeably for the
events and the propositions describing the events. The probability associated with
a proposition in his probability logic is the limiting frequency of that proposition
in a sequence of propositions describing a sequence of coordinated events in the ex-
ternal world. For example, if a ball is rolled down an inclined plane several times,
and the time for its descent is measured on each trial, then there is a sequence of
events on the inclined plane, each of which is associated with a proposition, e.g.
proposition 1 might state: “The ball took 4.2 seconds (±δ).” The probability of
proposition 1 is the limiting frequency (of occurrence) of this proposition in the
sequence of propositions describing the trials. (Since measurements of continuous
quantities can only be stated within intervals — due to measurement errors —
the limiting frequency of a proposition is non-zero. But, admittedly, Reichenbach
fudges the details on this point.) The approach is very intuitive given scientific
practice. It is basically a formal representation of the construction of histograms.



362 Frederick Eberhardt and Clark Glymour

But the implication for a probability logic is significant: The probability logic
must be a logic of sequences.

So probability values are limits of the relative frequency of propositions in the
sequences. We still need an account of how these values are to be estimated, es-
pecially since empirical event sequences are necessarily finite, thereby leaving the
limit of the infinite sequence undetermined. And whatever the method of estima-
tion, we require a justification for its application in place of any other procedure.

Reichenbach’s procedure for estimating the probability of event types is simple:
One should use the frequencies in the available finite initial segment as if they were
from the limiting distribution. As more of the sequence becomes available, the em-
pirical distribution, and with it the probabilities, should be adjusted accordingly.
This inductive inference rule is now known as the straight rule.

The justification of the straight rule has three parts: First, Reichenbach argues
that we have recourse to higher order probabilities (supposedly based on more
general abstract knowledge), that provide reason to believe in the approximate ac-
curacy of the empirical distribution. Second, he claims that a hierarchy of higher
order probabilities, in which no higher order claim is certain, need not lead to
an infinite regress of probabilities (which we would be unable to determine). The
regress can be truncated by blind posits – wagers — that can be substituted instead
of probability values. Third, the straight rule estimate converges to the limiting
frequency as accurately as one wants, and with a finite amount of data. Reichen-
bach recognizes that other inference rules have the same convergence guarantee,
but claims that the straight rule is “simpler.”

If one buys the claims, then one (supposedly) has a logic based on probabilistic
inference. Unlike standard logical calculi it does not relate individual propositions,
but sequences of propositions. It assigns to sequences of propositions a continuous
value that is given by the limit of the relative frequencies in the sequences. For
empirical claims, the value of this limit is estimated by the available scientific
evidence and the straight rule, while the results of standard two-valued logic can
be derived as a limiting case.

Reichenbach considers this to be the best we can do in light of the limitations
posed by Hume’s inductive gap. Certainty is no longer an achievable aim for induc-
tion, we can only speak of high probability. The continuous values of probability
reflect a graded notion of truth (in the external world) of the conclusions reached
by inductive inference. Reichenbach also sees his account as a vindication of the
rationality of procedures of scientific inference. It provides a justification for an
increased confidence in the truth of some scientific claims rather than others, as
a function of sample size, or as a result of other similar findings in closely related
fields. The calculus of probability, as part of this probability logic, provides the in-
ference machinery to transfer probabilistic support between scientific claims. Any
hope for a more sturdy bridge across the inductive gap is wishful thinking.

Needless to say, not everyone took this approach to be as successful as Reichen-
bach considered it to be, and we will review some of the criticisms below. But
before, we will flesh out the various aspects of this probability logic in more detail.
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3 PROBABILITIES AS LIMITING FREQUENCIES

For Reichenbach, probability, as it is used in science, is an objective quantity, not
a subjective degree of belief. The main difficulty for such an account is to state
precisely what such an objective probability is supposed to be, while providing
justified grounds for making probability judgments. In fact, throughout his life
Reichenbach worked on the foundations of probability, and his views changed.

In his doctoral thesis in 1915, Reichenbach argues that the probability of an
event is the relative frequency of the event in an infinite sequence of causally
independent and causally identical trials [Reichenbach, 1915]. Influenced by the
neo-Kantians of his time (Ernst Cassirer, Paul Natorp etc.) Reichenbach took
causality to be a primitive concept, more fundamental than probability. On this
view, causal knowledge is synthetic a priori knowledge, and the proof for this
status was supposedly given by Kant’s transcendental deduction of the principle
of causality. That is, according to (Reichenbach’s reading of) Kant we have causal
knowledge for individual events that enable us to determine causal independence
and identical causal circumstances, and so, according to Reichenbach, we have
a non-trivial, non-circular and objective basis on which to build the concept of
probability. In particular, if one can show that causally independent and identical
trials imply probabilistically independent and identically distributed trials, then
the law of large numbers implies that the empirical distribution converges to the
true distribution in probability.1 Reichenbach was aware of the (weak) law of large
numbers (although it is not discussed in any detail in his thesis), but he considered
convergence in probability too weak. Relying on convergence in probability would
imply that the notion of probability features in the definiens of the definition of
probability, which would render the definition of the concept of probability circular.
Reichenbach wanted to establish convergence with certainty.

To resolve this dilemma, Reichenbach (in 1915) again reached into the Kantian
toolbox and provided a transcendental argument that there is a synthetic a priori
principle — the principle of lawful distribution – that guarantees with certainty
that every empirical distribution converges. The essence of the transcendental
argument is as follows: If there were no such principle, scientific knowledge as it
is represented in the laws of nature would be impossible. But obviously science is
replete with knowledge about lawful causal relations. Scientific laws state general
causal regularities but Kantian causal knowledge only supplies causal knowledge
with regard to single events. Something is needed to aggregate the individual
causal knowledge tokens into general causal laws. Hence, there must be such a
principle. Given the principle, convergence is guaranteed with certainty, and even
if we do not know when convergence will occur or at what rate, we are on the right
track if we use the empirical distribution, since it must converge at some point.
That was, in short, the argument of his doctoral thesis.

1The law of large numbers states that in a sequence of independent identical trials, for every
ε > 0 the probability that the frequency of success in the sequence differs from the true probability
of success by more than ε, converges to zero as the number of trials n goes to infinity.
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The argument is not very satisfying even if the gaps were filled in (e.g. from
causally independent trials to probabilistically independent trials): Granted the
nowadays implausible view that causal knowledge of token events is synthetic a
priori, it is simply false to claim that there is a synthetic a priori guarantee of
convergence of sequences to a limiting distribution — we know many sequences
whose limiting frequencies do not converge.

Reichenbach must have at some point (if not all along) felt similarly uncom-
fortable with his account, since his argument changed significantly between his
doctoral thesis in 1915 and the publication of the English edition of The Theory
of Probability in 1949 [Reichenbach, 1949c].2

In 1927 Reichenbach indicated in notes3 (and referred to earlier discussions with
Paul Hertz) that convergence with certainty is untenable, and that one can only
guarantee convergence in probability. This is a transitional thought of Reichen-
bach’s. It is an observation on the law of large numbers, essentially, which posits
a probability distribution from which initial segments of sequences are obtained
by i.i.d sampling. The limiting frequency interpretation, by contrast, affords the
certainty of convergence to the probability by the straight rule, provided there
exists a limit value at all. In addition, he changed his mind on the order of the
primitives: Once Einstein had shaken the synthetic a priori status of space and
time, Reichenbach similarly reviewed the synthetic a priori status of causality and
concluded that it was not causality, but rather probability that was the more fun-
damental notion, i.e. that causality is a relation that can only be inferred on the
basis of probabilistic relations (plus some additional assumptions). Claims about
single event causation – what now is referred to as actual causation — were con-
sidered elliptic, either implicitly referring to a sequence of events or fictitiously
transferring the causal claim from the type level to the token level.

However, if causal relations are no longer fundamental, and probabilities are
not to be taken as primitive, then Reichenbach had to find a new foundation for
the concept of probability. This effort coincided with similar concerns by Richard
von Mises. Von Mises was trying to establish a foundation of probability in terms
of random events [von Mises, 1919]. While randomness was well understood pre-
theoretically, all attempts to characterize it formally turned out to have undesired
consequences. The aim that both Reichenbach and von Mises shared was a re-
duction of the concept of probability to a property of infinite sequences of events,
thereby avoiding any kind of circularity in the foundation.

Given scientific practice it seemed intuitive and appealing to think of objective
probabilities in terms of the relative frequency in an infinite sequence of events
— one only had to appropriately characterize the types of sequences that would
be considered admissible as providing the foundation of probability. For example,
one would not consider a sequence admissible, if it simply alternated back and

2For more details of the changes see the introduction to the translation of Reichenbach’s thesis
[Reichenbach, 2008].

3See reference HR 044-06-21 in [Reichenbach, 1891-1953], also discussed in the introduction
in [Reichenbach, 2008].
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forth between 1 and 0. While the limiting relative frequency of 1s is 1/2, one
knows the next number with certainty given any initial segment long enough to
exhibit the pattern. Von Mises therefore wanted to restrict his considerations to
sequences of random events, since the notion of randomness captured the idea
that one would not be able to make any money by betting on the next item in
the sequence given the previous items. More formally, the lack of after-effect and
the invariance to subsequence selection were considered necessary conditions for
random sequences. The lack of after-effect captures the idea of being unable to
make any money by betting on the next item of a sequence, given the previous
items. In particular, the probability of any outcome should be the same, no matter
what the previous outcomes were. Invariance under subsequence selection requires
that the probability of an event is the same under any subsequence selection rule
that depends only on the indices of the items. How these notions are spelled out
formally differs among authors.

Reichenbach rejected the idea of random sequences because he saw no hope
of being able to adequately capture randomness formally.4 There were known
theoretical difficulties in showing that all the conditions for randomness could be
satisfied, and Reichenbach had pointed out some of them [Reichenbach, 1932a].
Reichenbach did not give up on the idea completely, but instead settled for a
somewhat weaker constraint on sequences: normal sequences. Normal sequences
form a strict superset of random sequences. A sequence of events is normal if the
sequence is free of after-effect and the probabilities of event types is invariant under
regular divisions. Reichenbach’s definition of after-effect is not entirely clear, but
roughly, in a sequence with after-effect an event E at index i implies for events at
indices subsequent to i probabilities that differ from the limiting relative frequency
of those events. Regular divisions are subsequence selection rules that pick out
every k-th element of the original sequence for some fixed k. (In fact, the conditions
are a little more intricate, but we leave that aside here.) The probability of event
E then is the limiting relative frequency of E in a normal sequence of events.

This works as an abstract definition of probability, but it is not adequate to
determine scientific probabilities. In empirical science the sequences of measure-
ments are finite. The finite initial segment of a sequence gives us no information
about the limiting distribution. Nevertheless, Reichenbach claims that we should
treat the empirical distribution given by the finite initial segment of measurements
as if it were (roughly) the same as the limiting distribution. He believes we have re-
course to a higher order probability that specifies the probability that the limiting
relative frequency of the event (its true probability) is within some (narrow) band
of width δ around the empirical frequency. This higher order probability is also
based on empirical data, but indirectly: it derives from a sequence of probability
values of the first order, i.e. from a sequence of sequences of events. The idea is
that it integrates data from sequences of different inductive inferences. Reichen-
bach gives one type of example in different forms that provides some idea of how

4Ernest Nagel agreed with this latter point, but believed that von Mises’s weaker version of
randomness could nevertheless be formalized [Nagel, 1936].
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this is supposed to work (e.g. see [Reichenbach, 1949c, pp. 438-440]): Suppose we
have a finite sequence of measurements,

M1,M2,M3,M4,M5, . . . , Mn

and we classify them as 1 or 0 depending on whether they fall into some pre-
specified narrow range around a fixed value. For example, suppose we have mea-
surements of the gravitational constant and we classify the data points as 1 if they
fall within the band γ ± δ for some small value of δ, and 0 otherwise. So we can
define a variable X = I(|M − γ| ≤ δ), where I(.) is the indicator function, and
obtain a sequence of values of X consisting of 1s and 0s, depending on the original
measurements:

1, 1, 0, 1, 0, . . . 0.

Suppose further, that if we had infinite data, there would be a limiting distri-
bution to the frequencies of 0s and 1s in the sequence, with P (X = 1) = p, and
P (X = 0) = 1−p. The actual empirical distribution — determined by the relative
frequency of 1s and 0s among the available measurements is P̂ (X = 1) = p̂ and
P̂ (X = 0) = 1 − p̂. Reichenbach claims that there is a higher-order probability
q that states that P (|p̂ − p| < ε) = q for small ε, i.e. the true distribution falls
with probability q within ε distance of the empirical distribution. According to
Reichenbach we have an estimate of such a higher-order probability q by consider-
ing several sequences of measurements, each with their own empirical distribution.
So suppose we had three sequences of measurements (say, from different experi-
ments of the gravitational constant on (a) the moon, on (b) some planet and (c)
using the Cavendish balance):

a : 1, 1, 1, 0, 0, . . . , 1

b : 0, 1, 1, 1, 1, . . . , 0

c : 0, 0, 1, 0, 0, . . . , 1

Each will have a certain empirical distribution, say P̂a, P̂b and P̂c. These three
empirical distributions form their own sequence of values of p̂, namely,

p̂a, p̂b, p̂c

each specifying the relative frequency of 1s in the individual sequences. p̂a, p̂b, p̂c

again determine an empirical distribution, but now of higher-order probabilities.
Suppose it is the case from the three initial distributions that p̂a = 0.8, p̂b = 0.7
and p̂c = 0.79. Again we can classify these values according to some approximation
bound, e.g. 0.8 ± ε, where ε = 0.05. In that case the (empirical estimate of the)
higher-order probability q is q̂ = 2/3. The relative frequency of 1s in a single row
indicates the probability of truth of the statement about the gravitational constant
for the particular test object, e.g. the planet. The second-order probability q across
the different sequences indicates the probability that the first order probability
claim is true. It is this kind of mutual validation of convergence across different
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measurement sequences that supplies, according to Reichenbach, a probability of
convergence of any empirical distribution.

In another analogous example involving measurements of the melting point of
different metals, Reichenbach argues that the fact that many metals have a melting
point gives us reason to believe that a metal which we have so far not seen melt,
will nevertheless probably have a melting point. Despite the fact that for this
apparently “solid” metal the empirical distribution of measurements appears to
indicate that the probability of having a melting point is zero, the second order
probability that determines how indicative the empirical distribution is of the limit,
will be very low, because the second order probability integrates the findings from
the other metals. Reichenbach refers to these “cross-inductions” as providing a
“network of inductions”.

Another way of thinking about Reichenbach’s approach is to consider a hierar-
chical Bayesian procedure: Measurement data is used to estimate certain distribu-
tional parameters of a quantity of interest. But one may describe these parameters
by a higher order distribution with its own hyper-parameters. In that case several
measurement sequences could be used to gain estimates of the hyper-parameters.
Once these are estimated, one can then re-compute the lower level parameters given
the estimated hyper-parameters. This enables a flow of information between dif-
ferent sequences of measurements via the hyper-parameters and therefore provides
a broad integration of data from different sources. As in Reichenbach’s account,
one can continue this approach to higher orders with hyper-hyper-parameters.
At some point the question will arise whether one has enough data to estimate
the high-order parameters. Reichenbach claims that at some higher order, blind
posits replace the probability estimates to avoid an infinite regress of higher-order
probabilities.

Hierarchical Bayesian methods work well theoretically, but they hinge on being
able to determine whether and in what sense events are similar such that they can
be included in the same sample (that is then used to determine the probabilities).
On Reichenbach’s account the corresponding question regards the determination
of reference classes.

Reference classes are tricky territory for Reichenbach, since he goes as far as to
claim that we can determine the probability of a scientific theory. For example,
to determine the probability that Newton’s law of gravitation holds universally
(rather than just for a particular test-object, as in the example above) Reichenbach
claims that all available measurements of the gravitational constant must be placed
in one sequence, and that

“...we must construct a reference class by filling out the other rows [se-
quences of measurements] with observations pertaining to other phys-
ical laws. For instance, for the second row we can use the law of
conservation of energy; for the third, the law of entropy; and so on.”
[Reichenbach, 1949c, p. 439f]
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It seems obvious that the selection of the reference class is arbitrary here, but
Reichenbach argues further that

“...the reference class employed corresponds to the way in which a
scientific theory is actually judged, since confidence in an individual
law of physics is undoubtedly increased by the fact, that other laws,
too, have proved reliable. Conversely, negative experiences with some
physical laws are regarded as a reason for restricting the validity of
other laws, that so far have not been invalidated. For instance, the
fact that Maxwell’s equations do not apply to Bohr’s atom is regarded
as a reason to question the applicability of Newton’s or Einstein’s law
of gravitation to the quantum domain.” [Reichenbach, 1949c, p. 440]

Just why the incompatibility of a set of equations, Maxwell’s, with a model of
the atom, should tend to invalidate another set of equations, Newton’s, that are
themselves incompatible with Maxwell’s, we have no idea. We have no idea what
the reference class here may be for such a probability transfer, nor what else the
underlying reference class in this case might contain. ’indexcross-induction

It remains unclear what criteria Reichenbach had in mind to determine a refer-
ence class generally. Of course, the general idea is that events should somehow be
of the same type, but not so similar that the variability of interest is precluded.
Reichenbach claims that one should choose the narrowest reference class for which
there are stable statistics (relative frequencies), and that the stability of statistics
is determined at the level of advanced knowledge, i.e. at a high level of data-
integration.5 But this is obviously not an acceptable suggestion — it begs the
question: The whole aim is to determine the limits of relative frequencies; requir-
ing stable statistics in the first place is unhelpful. Trivially stable statistics are
always available at the narrowest of all non-empty classes, the class containing a
single event. Obviously, this could not have been Reichenbach’s intention either.
Reichenbach’s recourse to advanced knowledge for these determinations of refer-
ence classes for lower level frequencies may be understood as pointing to blind
posits — that the best one can offer is an educated guess, or just a guess. But
then why not just guess at the lower level frequencies? Reichenbach discusses the
determination of reference classes at length, but it is far from a precise account.
Maybe there is ultimately some intuitive reference class, even when broad cross-
inductions are made in science, but doubts remain whether there is any hope of
spelling out such inferences in a formal probabilistic framework, and whether the
result would then provide the basis for objective probabilities.

We summarize Reichenbach’s account of the foundations of probability as fol-
lows: Probability is defined as a property of infinite normal sequences of events.

5Using the example of measurements of the gravitational constant Reichenbach points out
that the sequence of measurements for the planet Mercury converges to a different limit than
those of the other planets, which should therefore lead to a reconsideration of the reference class
of planets into reference classes of planets near the sun, and those further away [Reichenbach,
1949c, p. 439].
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Normal sequences capture many of the features of random sequences. Since we
have no knowledge of the limit of infinite sequences of events, we build our in-
ferences on finite initial segments of such sequences. We are sure to be on the
right track as long as the higher order probabilities look promising. Higher order
probabilities look promising when inductions from a broad variety of different mea-
surement sequences provide similar results. Probabilities, including higher order
probabilities, are therefore objective features of the world, since they are relative
frequecies in sequences of events.

Tidy as this sounds, it seems to founder on the issue of choice of reference class.
Reichenbach’s doctoral thesis would have provided a seemingly simple answer to
these difficulties: There, the reference class of events was easily determined by the
class of causally independent and causally identical trials, and synthetic a priori
knowledge. Having abandoned the a priori shore, Reichenbach found himself at
sea.

4 PROBABILITY LOGIC

Once the binary truth values of traditional logic are replaced with continuously val-
ued probabilities, then, according to Reichenbach, all forms of uncertainty present
in the inferences of empirical science can be represented in a formal inference
framework. By providing an axiomatization, Reichenbach places his probability
logic within the formalist tradition of Hilbert and avoids recourse to an a prioristic
foundation. He argues that the formalist requirements are achieved by showing
that his probability logic requires no more than the axioms of standard proposi-
tional logic together with an interpretation of probabilities as a property of infinite
sequences. Inductive reasoning is thereby reduced to deductive reasoning plus in-
duction by enumeration of the appropriate sequences. Tautologies of traditional
two-valued logic follow supposedly as a special case of this continuously valued
logic. The sequences relevant to deductive logic are constant, and therefore their
properties and the resulting inferences can be determined with certainty.6 For
empirical truths, on the other hand, the properties of the sequences cannot be
determined with certainty — the sequences are only given extensionally — and
therefore only weaker truth values (between 0 and 1, excluding the boundaries)
are assigned. The probability logic provides a calculus for inferences given such
weakly supported propositions. The inferences follow those of standard probabil-
ity calculus, and so the intended model of reasoning in the empirical sciences is
achieved. The justification for application of the probability logic is given by a
convergence argument. We will discuss the details of the logic in three parts —
the logical syntax and semantics, the interpretation, and the justification.

6Nevertheless, it remains unclear what Reichenbach would have thought about mathematical
statements whose truth or falsity we do not (yet) know. What probability, if any, would he have
assigned to the Goldbach conjecture?
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4.1 Logical Syntax and Logical Semantics

Reichenbach’s probability logic starts with the usual syntax of propositional logic:
letters representing propositions are connected by the usual connectives of “and”,
“or”, “negation”, “implication” and “equivalence” (bi-conditional). However, un-
like propositional logic, probability logic does not assign truth or falsehood to a
proposition but a degree of probability p. In principle there are innumerable ways
to interpret this new form of truth value, since it is introduced simply as part of
a formal system. But since the aim is to capture standard probabilistic reasoning
in the logic, the probability associated with a propostion should reflect the use of
probabilities in science, which Reichenbach takes to be — as we saw above — the
limit of relative frequencies.

Unlike propositional logic, probability logic cannot be compositional.7 While in
propositional logic, the truth values of individual propositions determine the truth
value of any complex proposition, this is not the case for probability logic. Given
the probability of proposition A and the probability of proposition B, the proba-
bility of the proposition A∨B is underdetermined. This is an obvious consequence
from the undetermination in the mathematical calculus of probability, in which
the set of marginals does not determine the joint distribution. Consequently, the
specification of “truth”-tables in probability logic depends on the specification of
a third quantity fixing the joint probability of the two (or more) propositions, and
thereby determining the probability value of composite formulas. Reichenbach
uses the conditional probability of B given A, since it can easily be formulated as
a subsequence selection procedure. Given the marginals and the conditional, the
probability value of any composite formula involving the standard binary opera-
tors is defined by the standard rules of the mathematical calculus of probability,
e.g.

P (A ∨ B) = P (A) + P (B) − P (A)(B|A)

P (A ≡ B) = 1 − P (A) − P (B) + 2P (A)P (B|A).

The standard set of axioms for propositional logic are augmented by a set of axioms
that Reichenbach had developed as the foundation of mathematical probability
calculus [Reichenbach, 1949c, pp. 53-65].

UNIVOCALITY:

(p %= q) ⊃ [(A ⊃−−
p

B).(A ⊃−−
q

B) ≡ (Ā)]

7In criticism of Reichenbach’s probability logic (see below) Russell, Tarski and Nagel refer to
a logic with the feature of compositionality — that the truth (or probability-) value of a complex
proposition is a function only of the truth (or probability-) values of its component propositions
— as the logic being “extensional”. In contrast, in an “intensional” logic the truth value depends
also on the content of the individual propositions. Their terminology is misleading, because it
overloads the term “extensional” also used for sequences that can only be defined by enumeration.
Furthermore, as Reichenbach notes in response (and we discuss below), his probability logic does
not fit this dichotomy.
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NORMALIZATION:

(A ⊃ B) ⊃ (∃p)(A ⊃−−
p

B).(p = 1)

(Ā).(A ⊃−−
p

B) ⊃ (p ≥ 0)

ADDITION:

(A ⊃−−
p

B).(A ⊃−−
q

C).(A.B ⊃ C̄) ⊃ (∃r)(A ⊃−−
r

B ∨ C).(r = p + q)

MULTIPLICATION

(A ⊃−−
p

B).(A.B ⊃−−
u

C) ⊃ (∃w)(A ⊃−−
w

B.C).(w = p · u)

While the notation is cumbersome, the axioms are intended to express three sim-
ple notions: The first axiom ensures that the value of a probability is unique, the
second axiom ensures that any probability with a non-empty conditioning set has
values between 0 and 1, inclusive. Axiom 3 is supposed to ensure that the proba-
bility of mutually exclusive events is the sum of the event probabilities, and axiom
4 is the chain rule: P (C,B|A) = P (C|B,A)P (B|A). The first three axioms are
similar to Andrey Kolmogorov’s axiomatization of probability, however the third
axiom only ensures finite additivity [Kolmogorov, 1933]. In Kolmogorov’s case, the
chain rule follows from the previous three axioms, but Reichenbach requires the
additional fourth axiom to switch between logical conjunction and mathematical
multiplication.

Unfortunately, these axioms are not sufficient to provide an axiomatization of
probability, since they do not ensure that the space the probabilities are applied
to is closed under complementation and countable union, i.e. that it forms a
sigma-field. In fact, as van Fraassen shows, limiting relative frequencies in infinite
sequences do not actually satisfy these constraints [van Fraassen, 1979].

The set of axioms of probability are extended by one additional rule — the rule
of induction, or the so-called “straight rule” [Reichenbach, 1949c, p. 446]:

“Rule of Induction: If an initial section of n elements of a sequence
xi is given, resulting in the frequency fn, and if, furthermore, nothing
is known about the probability of the second level for the occurrence of
a certain limit p, we posit that the frequency f i(i > n) will approach
a limit p within fn ± δ when the sequence is continued.”

Reichenbach considers this rule8 to be the only necessary addition to the otherwise
entirely formal logic to get inductive inferences off the ground: All inductive in-
ferences on complex claims can be reduced by application of the earlier axioms to

8Reichenbach took this rule to instantiate C.S. Peirce’s self-correcting method. See footnote
on same page as citation.
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this simple induction by enumeration. The rule is part of the meta-language, and
cannot, like other rules of deductive inference, be reduced to the object language.
It therefore does not follow the logical form of the previous axioms.

Leaving the details aside, if the axioms did form a logic that built up from
sequences of propositions and performed the inferences of the mathematical prob-
ability calculus as sub-sequence selection operations on infinite sequences, then
Reichenbach would have constructed a purely syntactic inductive calculus that
includes probabilistic and deductive inferences based entirely on the enumeration
of sequences.

But the situation is not quite so clear: Despite the appearance of a standard syn-
tax on the surface, the proposed set of axioms together with the rule of induction
contain a mixture of notations which is never fully spelled out: The probability
axioms use mathematical relations and existential quantification over variables
representing real numbers. This suggests that arithmetic must form part of the
language. But neither the mathematical machinery nor even its first order compo-
nent is extended to the variables representing sequences. These are open formulas,
presumably universally quantified, following a propositional language extended by
the probability implication. Reichenbach leaves the task of an explicit account of
the syntax covering these two systems to the reader.

The formal semantics is thoroughly non-standard: a continuous truth value is
determined by the limit of the relative frequency in the sequence associated with
each proposition, or — for a complex formula – as a function (using standard
probabilistic inference) of the relative frequencies in each of the sequences corre-
sponding to the individual propositions, and the subsequence corresponding to the
conditional probability. But this only hints at a formal semantics and it is by no
means clear whether the gaps can actually be filled in, especially since the account
depends on the accepted syntax: A formula with iterated probability conditionals,
such as (A ⊃−−

p
B) ⊃−−

q
C, must either be disallowed by the formal semantics, or it

must be interpretable in terms of subsequence selection rules. The former seems
unlikely given Reichenbach’s desire to cover all types of probabilistic inferences.
In the latter case a formal semantics in terms of subsequence selection rules is
ill-defined for iterated probabilistic conditionals, because the antecendent of the
second probability implication, i.e. (A ⊃−−

p
B), is not the type of object that lends

itself to a sequence interpretation in any obvious way.

4.2 Interpretation

In the first few decades of the 20th century, when Reichenbach developed his
probability logic, there were several other proposals to generalizing two-valued
logic to multi-valued and continuously valued logics to formalize modal reasoning.
Reichenbach considered these attempts to be largely misguided, since they ended
up as formal constructs with little or no relation to the use of modality in natural
language [Reichenbach, 1934].
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In contrast, with the inclusion of standard probabilistic reasoning, Reichenbach
saw the crucial advantage of his probability logic in being able to model — in
the sense of a rational reconstruction – scientific reasoning. That is, Reichenbach
considered the formal semantics of his logic to be well “coordinated” with real
scientific inference, because he had provided a procedure to go from experimen-
tal evidence to complex propositions, and back. As far as he was concerned, all
the “coordination” work had already been done in developing the foundation of
probability. Scientific evidence comes in the form of a sequence of events, the
data. Scientific probabilities correspond to the relative frequencies of events in
such a sequence of events. The evidence is described by propositions; each propo-
sition simply describes an event, one datum. As a result, we obtain a sequence
of propositions whose structure is isomorphic to the sequence of events, and con-
sequently the probabilities can be used interchangably for the sequence of events
and the sequence of propositons. The scientific situation is matched in the logic
and therefore the interpretation and application of the logic to science is obvious
— essentially inbuilt.

Almost. First, probability logic is a calculus of infinite sequences, but in science
data is always finite. Second, in natural language we often assign probabilities
to singular propositions for which there is no obvious corresponding sequence. It
appears at least possible, that there are similar situations in science.

We start with the second: probabilities of singular propositions. Reichenbach
claims that probabilities associated with single propositions are posits, or wagers
(but not in any strict sense of Bruno DeFinetti). These posits can be either blind
or appraised. Posits are blind when no data is available to inform the probability.
Reichenbach does not give any explicit constraints on the form of a blind posit,
but implicitly it is quite obvious that they should resemble a flat prior assigning
equal probabilities to every possibility. A posit becomes appraised as soon as evi-
dence becomes available, and should then correspond to the relative frequency of
the relevant event in the data. For example (Reichenbach’s example [Reichenbach,
1949c, p. 366f]), consider the proposition that Caesar was in Britain at a particu-
lar time. This proposition can be associated with a probability p, which would be
a guess (blind posit) if no relevant evidence is known. But one relevant sequence
of data, Reichenbach suggests, is the sequence of reports by historians about Cae-
sar’s activities. The probability of Caesar’s visit to Britain is then the relative
frequency that Caesar’s presence in Britain at the time in question is reported
in these historical records, and the initial blind posit p then becomes appraised.9

The suggestion is that probabilities of single propositions are ultimately fictive or
elliptic, referring to implicit sequences of relevant events.

Such a rendition seems unsatisfying. Perhaps Reichenbach’s own example is
not an ideal illustration. The transfer of probabilities from sequences to single

9We do not know how Reichenbach would distinguish the complete lack of mention of Caesar’s
whereabouts at a particular time, from the explicit mention of the absence or presence. It is
possible that the selection of the appropriate reference class of events is supposed to address this
problem, but there is no explicit procedure.
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propositions seems more plausible for more scientific cases. For example, the claim
that the probability that a particular individual atom will decay after time interval
t may perhaps more reasonably be thought of as meaning that the probability refers
to the relative frequency of decay after time t in a set of atoms. The reference to
a larger population (even if perhaps not a sequence) seems more convincing here.

Even if we are able to make sense of single event probabilities as elliptic refer-
ences to some larger reference class, such a reference class will always be finite in
the empirical sciences. This then leads us back into the first concern. Reichenbach
argues that his rule of induction solves the problem: Given a finite sequence, we
have a determinate relative frequency for the event of interest. We posit this fre-
quency as the limit of the relative frequency. This is a blind posit, since there is
no reason to believe that the empirical distribution is indicative of the limit. But
this posit can become appraised if we have several sequences of similar type. Con-
sequently, the initial blind posit of the limit in an individual sequence is revised
to the appraised posit.

Reichenbach’s basic idea is that in the sciences, as in his logic, one pretends as
if : The empirical distribution in the finite initial segment of a sequence should be
treated as if it were infinite and therefore indicative of the properties of the infi-
nite sequence. The properties of the infinite sequence should be posited (blindly)
based on the initial segment. By aggregating the data in different ways into dif-
ferent sequences, these blind posits are supposed to become appraised, as if many
blind eyes make vision. Reichenbach argues that under the assumption of a flat
prior, his rule of induction corresponds to a Bayesian update (at least for the first
update), and that appraised posits simply correspond to informative priors.10 His
hierarchy of higher order probabilities therefore reflects exactly the structure used
in hierarchical Bayesian methods (though these were still unknown at his time).

How exactly a posit becomes appraised, and why its appraised value is unique,
remains unclear. If sequences of measurements can be arranged in different ways
that change which events are regarded as first order events11, then the simple
rule of induction reflecting the empirical frequencies will conflict for higher order
claims with the results of a Bayesian update (even if the prior at the lowest level
is flat). It appears that the rule of induction should only be applied at the most
fundamental data level, thereby (presumably) also preserving the objectivity of
probability statements. Higher order claims about convergence, or the integration
of information from different domains (so-called “advanced knowledge”), however,
is supposed to occur by a Bayesian update. Reichenbach does not discuss the
mixture of these updating techniques and the implications anywhere.

10See [Reichenbach, 1949c, p. 326-333 and p. 441].
11Reichenbach’s example with the measurements of the gravitational constant, discussed in the

section on probability above, appeared to involve exactly such different forms of representation
of the data.
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4.3 Justification

Assuming the method of application of the probability logic is now clear, the
remaining task is to explain why it is the right method to use.

Reichenbach’s justification of the inductive rule, a convergence argument, is pre-
sumably his most disputed legacy. It goes like this: If we indeed use the empirical
distribution to determine our probabilities as if it were the limiting distribution,
then, as long as we adjust the empirical distribution whenever more data comes in,
our probability judgments will converge to the true probabilities, if the empirical
distribution has a limit.12 The last condition is crucial. Of course, convergence can
only occur if there is something to converge to, but not every infinite sequence has
a convergence limit for the distribution of relative frequencies of its items. If there
is a limit, then there is for every ε some N such that the empirical distribution is
at most ε different from the limiting distribution. The catch is at what point the
quantification over all distributions enters into the convergence statement. Since
Reichenbach only assumes the existence of a limit (and even that only condition-
ally), he is only guaranteed pointwise convergence, i.e. that for every ε, and every
limiting frequency, there is an N that ensures that the empirical frequency is within
ε of the limit. This is to be distinguished from uniform convergence, where for
each ε there is an N such that the divergence is bounded for all distributions. For
uniform convergence, one can specify confidence intervals and convergence rates,
for pointwise convergence one cannot. Consequently, Reichenbach’s convergence
argument — he calls it the principle of finite attainability [Reichenbach, 1949c, p.
447] — is extremely weak: the existence of a limit alone provides little assurance
that the empirical distribution is representative, no matter how large the sample
size: Although for every positive ε, for some finite sequence the straight rule will
be within ε of the limit ever after, the length of that sequence is unknown: at no
point does one know whether one is in the vicinity of the true distribution.

Reichenbach bolsters his justification with reference to his network of inductions:
He argues that the network of higher order inductions ensures that convergence
to the true distribution is faster than it would be just based on inductions on
individual sequences. Reichenbach does not give a formal definition of the speed
of convergence, but intuitively he thinks that convergence is faster because all
the cross-inductions inform any inductive inference in a particular domain (via
higher order inductions) by integrating findings from other domains. Given his
use of higher order probability statements for the convergence statements, he even
seems to suggest that uniform convergence may be obtained. Reichenbach gives
no proof of such a result, it is not true without further assumptions, and if uniform
convergence is not the appropriate characterization of faster convergence, then it
remains unclear what the benefit of faster pointwise convergence is.

These concerns only apply if there is a limit in the first place. Reichenbach

12Incidentally, this might be the reason why Reichenbach did not consider it important to
distinguish when the rule of induction and when a Bayesian update is appropriate: Since they
both converge to the same limit, the concern is irrelevant. Of course, one may worry what
happens before convergence.
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argues that if there is no limit, then all bets are off anyway, i.e. then there is
no alternative procedure that could generate inductive knowledge. Reichenbach
compares his procedure to a clairvoyant, who claims to know the limiting distri-
bution of the sequence [Reichenbach, 1949c, p, 476]. One cannot check — other
than by induction — whether the person is in fact clairvoyant. The advantage of
the proposed procedure is, according to Reichenbach, that it at least guarantees
pointwise convergence, whereas the person claiming to be a clairvoyant could sim-
ply be wrong. None of his arguments are compelling; at the crucial junctures he
is hand-waving.

An alternative way of looking at the question of justification is not to ask
whether the proposed procedure succeeds in what it claims to do, but rather
ask whether it is unique in what it claims to be doing. The answer is No, and
Reichenbach discusses this.13 There are many other procedures that exhibit point-
wise convergence if there is a limit. In particular, the set of procedures that work
like the straight rule, but which have an arbitrary function added that also con-
verges pointwise, or procedures that make any arbitrary guesses up to a point in
a sequence and use the straight rule thereafter, or procedures that add a function
to the straight rule that converges to 0 as the sequence length increases. Reichen-
bach’s response is somewhat confusing: On the one hand he acknowledges that
such manipulated distributions might even lead to faster convergence under some
circumstances, and that therefore these procedures are similarly legitimate; on the
other hand he argues that his straight rule is in some not further specified sense
unbiased and functionally simplest. Neither argument survives more careful anal-
ysis. Thus we are left with an extremely weak justification. Reichenbach thinks
this is the best we can hope for without fooling ourselves with regard to the width
of the inductive gap.

At various points, Reichenbach’s justifications have a much less formal and ob-
jective character and appear more pragmatic in nature (e.g. [Reichenbach, 1949c,
p. 481]). Reichenbach regarded probability as providing a guide for action, and
so to a certain extent — since he denied that there can be any certain empirical
knowledge — he regarded his theory as a reasonably workable procedure for pro-
viding a good guess as to which scientific theories might turn out to be useful.
In particular, he claimed that knowledge of the existence of the actual limit of a
data sequence would not make any difference to the practice of science. However,
if this is his view, it is not clear why he did not simply focus on probabilities in
finite sequences. At one point, in a reply to Russell (see below) he does just that,
suggesting that all real probabilities are finite frequencies, and the discussion of
limiting convergence is a fiction to justify our inductive procedures.

Last, let us return to the initial intention of representing inductive reasoning
in science. Do we find evidence in scientific practice of the type of justification
Reichenbach gives? In many cases pointwise convergence is not considered ad-
equate. Instead, many scientists often work with much stronger assumptions —
such as Gaussianity or some other parametric assumptions about the distributions

13See [Reichenbach, 1949c, p. 447 and section 88].
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of events — which then allow them to derive rates of convergence and confidence
intervals. Reichenbach may reply that such scientists are simply in denial about
the limits of their knowledge, and that his inductive logic tells them why.

Some of the more recent developments in statistics and computer science us-
ing non-parametric approaches work with weaker assumptions. The assumptions
are stronger than those underlying Reichenbach’s probability logic, but the as-
sumptions are still so weak that they only support asymptotic normality, i.e. that
confidence intervals can only be given for the limiting distribution. If convergence
rates are not known such methods are subject to similar concerns of what infer-
ences one can draw given finite empirical data. In some sense, large simulations
that are nowadays used to get an idea of the convergence rates for these procedures
can be seen as providing the basis for “appraised posits” regarding the convergence
rate. Maybe Reichenbach would feel vindicated.

5 CRITICS: POPPER, NAGEL AND RUSSELL

Reichenbach’s proposal(s) for an inductive logic were widely read by the “scientific
philosophers” of his time, and criticism came from all sides, most prominently from
Karl Popper, Ernest Nagel and Bertrand Russell. Perhaps the most detailed and
concise summary of points of criticisms was given shortly after the publication of
the German edition of The Theory of Probability [Reichenbach, 1935c] in a review
by Nagel in Mind [Nagel, 1936] (but see also [Nagel, 1938]). Some of the issues
Nagel points to were not new, but had already been made by Popper, Tarski,
Hertz and others. Some of the criticisms can be found again in Russell’s Human
Knowledge, its Scope and Limits [Russell, 1948]. Apportioning particular aspects
of criticism to particular authors would therefore be misleading. Instead we focus
primarily on Popper’s criticism with regard to Reichenbach’s assessment of prob-
abilities for scientific theories, Nagel’s criticism of the straight rule, and Russell’s
criticism of the logical foundation of the probability logic, full-well acknowledging
that in each regard other authors (also beyond these three) have contributed to
the relevant points.

In The Logic of Scientific Discovery [Popper, 1934] Karl Popper strongly rejects
Reichenbach’s probability logic, even before its most comprehensive exposition in
The Theory of Probability is published in German in 1935. Popper had read many
of Reichenbach’s papers outlining his approach in Erkenntnis. He reiterates his
views in a review of Reichenbach’s Theory of Probability in Erkenntnis in 1935
[Popper, 1935]. He shares Reichenbach’s view that we cannot determine scientific
theories to be true, but he further thinks that one cannot even assign a positive
probability to them. He sees no way that Reichenbach can get around either an
a prioristic foundation of probability or an infinite regress of higher order prob-
abilities, the first of which Reichenbach himself would deny, and the second of
which Popper regards as inadequate to determine numerical values. Reichenbach
had pointed to two alternatives to determine numerical probabilities of scientific
theories. The first is to determine a sequence of singular statements that are
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experimentally testable consequences of the theory. The relative frequency of
confirmed consequences in that sequence then determine the probability of the
theory. The second alternative is to place the theory itself in a sequence of the-
ories from the same reference class, and consider the relative frequency of true
theories in that reference class to be indicative of the probability of the theory in
question.‘indexRussell, B.

Popper dismisses the second alternative as ludicrous. First, there is no unique
reference class of theories (even if there were a sufficient number of theories) that
would determine the relative frequency, and second, even if there were, then the
fact that theories in that sequence can be determined to be true or false (in order
to determine the relative frequency) makes the determination of a probability of
a theory redundant in the first place. Popper, of course, doubts that individual
scientific theories can be determined to be true at all. To say that Newton’s law
of gravity is true, is just not the same as saying that the coin came up heads. If
the theories themselves are only determined probabilistically, then that leads to
an infinite regress of higher order probabilities. Since each of the probabilities in
the infinite regress is smaller than 1, the probability of the statement at the first
level must necessarily be zero. This point was pressed upon Reichenbach from
many sides, including Russell, who saw it as an indication that two-valued logic
is more fundamental than probability logic. C.I. Lewis debated the same point
with Reichenbach in regard to the foundations of epistemology in an exchange of
papers in the 1950s [Lewis, 1946; Lewis, 1952]. Reichenbach’s response on this
matter in a letter to Russell is opaque, but the idea seems to be that the higher
order theories are not independent in probability, and so their joint probability is
not their product, and hence does not go to 0:

“Combining the probabilities of different levels into one probability
is permissible only if special conditions are satisfied; but even then
this combination cannot be done by mere multiplication. Let a be
the statement: ‘the probability of the event is 3/4’, and let b be the
statement ‘the probability of a is 1/2’. In order now to find out what is
the probability of the event, you have to know what is the probability
of the event if a is false. This probability might be greater than 3/4.
These values do not go to 0 (see Wahrscheinlichkeitslehre [German
edition of The Theory of Probability], pp. 316-317). The product
which you calculate is the probability, not of the event, but of the total
conjunction of the infinite number of propositions on all levels, which
of course = 0.” [Reichenbach, 1978]

Popper (and Nagel) regard the first alternative as similarly hopeless, because they
doubt that a scientific theory can be represented as an infinite conjunction of
singular statements that can be tested individually. Furthermore, — an argument
made by Popper, Nagel and several others — Reichenbach’s view would imply
that a theory that was disconfirmed by 10% of its predictions would be considered
true with probability 0.9. More likely though, the critics suggest, it would be
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considered false.
Reichenbach’s response (to Nagel’s version of this criticism) in [Reichenbach,

1939a] and [Reichenbach, 1949c, p 436], does not address the points. He evades
the criticism by claiming that his account provides a consistent interpretation of
what scientists might mean by assigning a probability to hypotheses, and in the
English addition of The Theory of Probability he claims:

“...if the limits of exactness are narrowly drawn, there will always be
exceptions to scientific all-statements; [...] it is true that for wide limits
of exactness, [...] a case of one exception is regarded as incompatible
with the all-statement [...] This attitude can be explained in two ways.
First, the degrees of probability for such all-statements are usually
so high that one exception, in fact, must be regarded as a noticeable
diminution of the degree of probability. Second, one exception proves
that an all-statement is false, and we dislike using an all-statement as a
schematization if it is known that the all-statement is false.” [Reichen-
bach, 1949c, p. 436]

It is a puzzling claim for someone to make who takes all empirical claims to be
probabilistic. In the case of a highly confirmed theory a purported counterexam-
ple would be a black sheep among many positive instances. Given that in Nagel’s
example the probability of the theory is determined by the relative frequency of
positive instances (rather than by a Bayesian update), the impact of the coun-
terexample on the probability of the theory shoul be relatively minor. Hence, we
do not claim to understand how this statement improves Reichenbach’s situation
in light of the criticism.

For Popper, any third procedure to determine the probability of scientific hy-
potheses — such as using posits — is subjective.

Nagel [1936] commends Reichenbach’s efforts to give a precise presentation of
the frequency interpretation of probability, but he does not share Reichenbach’s
conviction that such an interpretation together with the proposed formal machin-
ery in form of a probability logic is sufficient to represent and justify formally
inductive inferences, nor does he believe that it is an adequate description of in-
ductive inferences in the sciences.

The whole problem, as Nagel sees it, is that probability statements are not ver-
ifiable, because they are based on sequences whose limit we do not know. We do
not even know if the sequence has a limit at all. Nagel is unconvinced by Reichen-
bach’s proposal of “inductive verifiability”. He points out the lack of mathematical
proof that a sequence of higher-order probabilities or a network of cross-inductions
lead to faster convergence. And even if they did, Nagel does not see any value in
a convergence guarantee if the point of convergence is not known. In a response
to a similar point made by Hertz [1936], Reichenbach only reiterates his view that
his inductive procedure is the best one can hope for and that no other procedure
will do better [Reichenbach, 1936].
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Much later a detailed analysis of the possibility of proofs for the claims underly-
ing Reichenbach’s justification of induction and his use of higher order inductions
is given in [Creary, 1969]. Creary concludes his assessment with the remarks (ch.
5, p. 129):

“...we have argued that:

1. MC [method of correction, using cross-inductions] provides no
rationale for the choice of a lattice [e.g. as in the earlier example,
generated from the sequences of measurements of the gravitational
constant from different planets] into which to incorporate a given
sequence.

2. Mere superiority of MC to RRI’ [Reichenbach’s Rule of Induction,
i.e. the straight rule; see above14] is not sufficient to justify the
choice of MC over simpler lattice-convergent alternatives other
than RRI’.

3. The superiority (indeed, even the parity) of MC vis-a-vis RRI’
does not follow from theorems (1)-(4) (Reichenbach’s theorems of
convergence underlying his justification, [Reichenbach, 1949c, pp.
466-467]; or [Creary, 1969, p. 119]).

4. The theorems (1)-(4) themselves depend upon assumptions which
would prevent any results established with their help from having
the sort of justificatory import intended by Reichenbach.”

The assessment is negative in every respect and vindicates Nagel’s concern. More
generally, Nagel does not think that Reichenbach’s probability logic provides an ad-
equate description of scientific practice. According to Nagel, scientific statements
are considered probable not on the basis of some formal account of probability,
but instead because there are no alternative plausible candidate theories, the the-
ory has a certain aesthetic appeal, or because it is (largely) consistent with the
available evidence. Nagel emphasizes throughout his review that he believes that
there are several more or less formal notions of probability, and that several other
human aspects enter into the judgment of the probability of truth of a scientific
theory.

Nagel also picks up on a point of criticism pressed upon Reichenbach by Tarski
[Tarski, 1935]. The concern is whether the probabilities (which are supposed to
replace truth values) in the probability logic, constitute a syntactic relationship
between statements only, or a semantic relation between statements and what
is described by the statements. Nagel argues that Reichenbach’s probability im-
plication appears to involve both a “semantic and syntactic characterization” of
relations between statements. It is not entirely clear, what Nagel means, but
one source of contention appears to be that the assignment of probability values
to composite statements in Reichenbach’s probability logic involves not only the

14Creary includes some slight modification on p. 115 of [Creary, 1969].
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probabilities of the individual statements, but a third (conditional) probability,
specifying the amount of “coupling” between the statements. This third probabil-
ity, since it is based on a subsequence selection procedure, appears to introduce an
undesired further syntactic constraint into the semantic relation of the statements
and what the statements refer to. Nagel (and Tarski) refer to this problem as the
probability logic not being “extensional”.

Reichenbach accepts that his probability logic does not conform to such strict
constraints of “extensionality”,15 but that the probability logic is also far from
being the opposite, namely “intensional”, i.e. that the probability values of state-
ments depend on the content of what they describe. Reichenbach considers his
introduction of the conditional probability to be a natural extension of the tra-
ditional dichotomy that is necessary when considering continuous valued logics
[Reichenbach, 1939b]. It is doubtful whether this would have satisfied Nagel or
Tarski, but it is also somewhat unclear in this discussion what the standards are,
and how they can be applied to probabilistic logics.

Russell [1948] shares the concern about the status of Reichenbach’s probability
logic, but for a different reason. He uses a very intuitive mathematical example of
the probability that an integer chosen at random will be a prime [Russell, 1948,
pp. 366-368] to illustrate his point. He shows that depending on the order in which
integers are arranged, Reichenbach’s definition of the probability, can be made to
return any value between 0 and 1. This leads to the uncomfortable conclusion that
Reichenbach’s definition of probability depends on the order within sequences. In
fact, Reichenbach, in his response to Russell [Reichenbach, 1978] agrees with this
conclusion, and emphasizes that this aspect is one of the important contributions of
his theory over theories of probability based on classes, such as Maynard Keynes’.
Russell, in contrast, takes this constraint to indicate that Reichenbach’s foundation
of probability cannot be stated in abstract logical terms, because the order of
events seems to introduce a contingent, non-logical aspect.

Russell has little hope that the probability logic could be shown to be funda-
mental. He thinks that

“...there is a great difficulty in combining a statistical view of probabil-
ity with the view, which Reichenbach also holds, that all propositions
are only probable in varying degrees that fall short of certainty. [...]
Statistical probability can only be estimated on a basis of certainty,
actual or postulated.” [Russell, 1948, p. 368f];

and he points to the fact that even in Reichenbach’s rendition, two-valued notions
of truth still play the most fundamental role, which suggests that Reichenbach did
not even achieve the goal he set himself.

Russell’s view of Reichenbach’s theory can be summarized as follows: If the
probability values of statements depend on the limit of an extensionally given

15We used the term “compositionality” above.
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sequence, they are for ever unattainable. If they depend on a hierarchy of higher-
order probabilities, those higher-order probabilities cannot all be determined. If
they are given by posits, then those posits are sensitive to the order of events.
Russell did not share Reichenbach’s indifference with regard to the truth value
of posits, and it is doubtful whether he accepted Reichenbach’s response that
“blind posits are justified as a means to an end, and that no kind of belief in
their truth is required” [Reichenbach, 1978, p. 407]. For Russell, infinite regresses
and hypothetical posits or infinite (extensionally given) sequences cannot form the
foundation of a logical calculus.

Instead, Russell suggests that Reichenbach should build his probability logic
on finite sequences. Probabilities, as they are used in the sciences only refer to
reasonably large, but not infinite, populations anyway. The finite aspect would
then also ensure that probability values can be precisely estimated, and proba-
bilistic statements can be determined to be true or false, thereby returning to a
two-valued logic as a foundation.

To a certain extent, Russell’s criticism repeats Nagel’s, who regarded Reichen-
bach’s rule of induction not as progress across the inductive gap, but just as a
restatement of the original problem. Nagel had argued that since Reichenbach’s
definition of probability is given in terms of two-valued logic, the entire proba-
bility logic should be re-statable in two-valued logic (since Reichenbach places no
constraints on the complexity of statements). If such a translation is possible,
then what use is the probability logic? If such a translation is not possible, then
in what sense does the purported solution to the inductive problem in probability
logic provide a solution to the traditional problem of induction in two-valued logic?

Reichenbach responds by distinguishing the formal probability logic, which he
says can indeed be reduced to two-valued logic, and the applied probability logic,
to which two-valued logic can at best be an approximation [Reichenbach, 1935d].
He compares the situation to a representation of non-Euclidean space in Euclidean
space, but at least for us, the analogy does not make things clearer.

6 REICHENBACH ON THE ATTEMPTS OF OTHERS AND ON
STANDARD PROBLEMS

Unsurprisingly, Popper’s falsificationist account of theory testing was most unpop-
ular with Reichenbach. Reichenbach considered Popper to be in denial about sci-
entific practice and the implications of Popper’s own theory [Reichenbach, 1935b].
Reichenbach thought one has a choice: Either one can take into account the actual
non-definitive nature of scientific results, in which case a probabilistic account is
necessary, or one can schematize the procedures and instead of probabilities, just
use 0 and 1 as a discrete representation. If one does the latter, then one has to
accept that scientific theories can both be verified and falsified. If one does the
former, then it is impossible to verify or falsify with certainty. In either case, the
asymmetry Popper tries to place between verification and falsification does not
exist.
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Furthermore, Reichenbach considered Popper’s measure of corroboration and
severity of testing to be a probability in disguise, only that Popper’s account lacks
the precision to actually make it a metric. Reichenbach was not genteel about the
matter: He compares Popper to a fruit vendor, who stacks all the good fruit at
the front of the display, but only fills the bags from the back, and then denies that
his method has anything to do with the differential quality of the fruit. Popper
uses a method to differentiate unfalsified theories, but presents no justification of
why, what he is doing is reliable. Instead, he derides any attempts at justification
of the methods as “metaphysical beliefs” (which neither Popper nor Reichenbach
want their work to be accused of).

Against the “deductive” approaches to probability logic, such as those of Rudolf
Carnap and Carl Hempel ([Reichenbach, 1949c, p. 456-461], see also [Reichen-
bach, 1935a]), Reichenbach argues that they do not provide an adequate space to
define a probability metric. In retrospect this criticism is ironic, since Reichenbach
himself did not specify a space that satisfies the conditions of a sigma field. Car-
nap introduces probabilities on an a priori foundation, which leads Reichenbach to
claim that it is therefore difficult to distinguish the resulting theory from “a pri-
oristic methods like the principle of indifference” [Reichenbach, 1949c, p. 456]. It
is difficult to know what Reichenbach might have meant here. His usual criticism
against the principle of indifference concerns its subjective component, whereas his
criticism of a priori methods usually concerns the justification for such knowledge.
Whatever the specific concern, the basis for determination of the probability met-
ric is at issue. Against Hempel (and Helmer and Oppenheim), Reichenbach argues
that they acknowledge that there are no a prioristic grounds to select a probability
metric, but that their efforts to use some initial data and a maximum likelihood
assumption to determine the probability space depends on the assumption that
the data are independent [Reichenbach, 1949c, p. 456]. In contrast, his network
of inductions that integrates information from many sequences of measurements
in “advanced knowledge” does not make such an assumption, but tests it. He
appears to regard the fact that assumptions are not set in stone as an important
advantage of his system (see e.g. [Reichenbach, 1949c, p. 464]).

Approaches based entirely on maximum likelihood Reichenbach sees as answer-
ing the wrong question, and therefore as inappropriate tools for science. In a
criticism of Fisherian statistics [Reichenbach, 1949c, p. 454f] Reichenbach points
out that the likelihood of a hypothesis is not of interest, but rather the inverse
probability, i.e. the probability of the hypothesis given the data. Maximization of
the likelihood is therefore misleading, since a consideration of prior probabilities
may still reverse the ordering of the hypotheses based on the likelihood. Once the
inverse probability is known, likelihoods can be disregarded. Reichenbach believed
that his account of induction by enumeration would provide the prior probabilities
that are required.

More generally, Reichenbach thought that once the probabilistic aspect of in-
ductive inference had been taken into account in form of his probability logic all
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the so-called inductive paradoxes of his time also disappeared. He does not go
into much detail, but it is obvious that he did not see reason for much debate.
For example, he considered Hempel’s ravens paradox to be based simply on a mis-
application of converse reasoning to probabilistic inference [Reichenbach, 1949c,
p. 434f]: “If something is a raven, then it is black.” can be highly probable, but
that does not imply that “If something is non-black then it is a non-raven.” is
highly probable as well. It depends, as can easily be seen from a simple application
of Bayes rule, on the base-line probability of ravens and black things. There is,
according to Reichenbach, no paradox to be had in the first place, he simply takes
a Bayesian view of probabilistic confirmation relations, and the problem is solved.

Reichenbach’s discussion of Goodman’s new riddle of induction is similarly brief
[Reichenbach, 1949c, p. 448f]. He argues that the “grue”-predicate does not form
a good basis for induction because it violates the principle that one should use the
narrowest reference class. Reichenbach admits that the rule of induction does not
ensure against false posits in the short run. That is, if grue is defined to mean green
until time t and then blue, and we have a sequence of elements that are in fact
all green, then “All emeralds are grue.” would be confirmed (and therefore source
of erroneous posits) up to time t, but then disconfirmed. As such, Reichenbach
sees no problem with such an inference, since in the long run, one converges to the
truth. But he argues that

“...in advanced knowledge the inference can be shown to be inferior
because it violates the rule, ‘Use the narrowest common reference class
available.’ The property C [grue], by its definition, is identical with
‘not B’ [not green] from the n+1st element [time t]; since the reference
class ‘not B’ [not green] is narrower than C [grue] it should be used as
a basis for the inference (in other words, the property with respect to
which the first n elements should be counted is ‘not B’ [not green]).”

This argument makes no sense: Up to sequence item n grue and green have exactly
the same statistics. How is one supposed to know in advance which one to choose?
It appears that contrary to claims elsewhere, the “narrowness” of reference classes
has nothing to do with stable statistics, but instead with other independent un-
specified criteria of determining events.

As we argued earlier, Reichenbach’s account of reference classes was never pre-
cise, but this response appears to misunderstand Goodman’s concern altogether.
Goodman’s riddle points to the entire question of what should constitute a ref-
erence class (using Reichenbach’s terminology), i.e. which elements should be
included in a sequence that is used as a basis for a probability judgment. As far
as we can tell, Reichenbach’s response simply misses the point.

7 COMMENTARY

Reichenbach’s inductive logic is a strange mix of mathematical precision and dodg-
ing the details. The aim is quite clear: Reichenbach intends to provide a prob-



Hans Reichenbach’s Probability Logic 385

ability logic that (a) is objective — hence the frequency interpretation; (b) not
a prioristic — hence the empirical focus; (c) provides a rational justification of
inductive reasoning in science — hence the straight rule; and (d) is sensitive to
the uncertainties present in science — hence the many levels of probabilities.

The problem is that beyond the formalization of probability in terms of limits
of relative frequencies, there is no real need for all the logical machinery of his
account. If anything, it makes the account more cumbersome and confusing. The
main lacuna of the inductive logic, as pointed out by several others, is the justifica-
tion in terms of the straight rule. Reichenbach does not provide any mathematical
proofs for his justification of faster convergence in terms of higher order probabili-
ties, and it is doubtful whether they can be supplemented without adding further
substantial assumptions at some level.

But even with regard to representing the uncertainty present in scientific infer-
ences, it is not clear whether Reichenbach’s probability logic really captures what
is going on. The problem is that in science there are many different forms of uncer-
tainty that Reichenbach represents in terms of just one type of probability: First,
there is uncertainty because data is noisy, because measurements are subject to
many residual influences, even in a well controlled experiment. This is the kind
of uncertainty the theory of error deals with. Second, even if the data were not
noisy, a finite number of measurements always underdetermines the law-like rela-
tionship which exists between the physical quantities. Third, there may be true
uncertainty in the physical quantity. Interpreting Heisenberg’s uncertainty prin-
ciple as implying metaphysical uncertainty would yield uncertainty of this third
type. Reichenbach at different points considers all three types of uncertainty.

While the first two sources of uncertainty can be regarded as epistemic, the last
one is metaphysical. That is, if we had direct access to the truths of the real world,
only the third type of uncertainty would remain. We do not have direct access to
the truths of the world, so the scientific task is to reduce, as far as possible, the
uncertainties of the first two types. Traditional accounts of inductive logic only
attempted to account for the uncertainty of the second type, i.e. the uncertainty
of which hypothesis is true given the data. Reichenbach considered these views to
be wishful thinking, since they assumed that our scientific data was certain. Due
to errors, scientific measurements are never certain, and so Reichenbach held the
more general view that no empirical knowledge can be certain. The problem is
that his probability logic does not separate the contribution of uncertainty from
the different sources.

Consider the following example. Suppose for the moment, that we have a finite
set of noise-free data for quantities (x, y) that are known to not be subject to
any metaphysical uncertainty, i.e. we only have uncertainty of type two. Suppose
further, that these data points all happen to lie on a straight line described by
the formula ax + b for some real numbers a and b. Given that the data are noise-
free, whatever the true functional form of the law, it must pass through each data
point. But obviously that does not uniquely define the function, since anything



386 Frederick Eberhardt and Clark Glymour

could happen in those parts of the space, for which no data points are available.
So, the evidence does not imply the true law, and the question for Reichenbach is
which functional form, if any, is better confirmed, more likely to be true or best
justified — and in what sense?

Reichenbach does not resort to a naive answer that the data implies or that
it is uniquely rational to believe that the simplest function (on some measure of
simplicity) must be the true or best confirmed function. Instead he argues that
we know for each function f that passes through the data points an (objective)
probability pf that f is the true function. This probability pf is derived from
several other, say, k data sets. If in k · pf of those datasets the same function f
describes the data, then pf is considered to be the probability of function f being
true.16

So far this is not some naive Bayesian (or other) bias based on the original data
set that prefers simpler theories. But Reichenbach cannot (and does not seem to
think he can) avoid the simplicity bias entirely, since of course there are still several
functions that are confirmed by all the data-sets, but which differ from one another
in parts of the space where none of the k data-sets contains a data-point. Here
Reichenbach then does resort to a Bayesian account that prefers simpler theories
— and no more detailed argument is given.

Even if this were an acceptable account for this second type of uncertainty, we
still have to integrate the two other types: noise, and metaphysical uncertainty.
One may, given the appropriate data sets, be able to use the differential likeli-
hood to distinguish hypotheses that constrain parameters representing metaphys-
ical uncertainty, from those hypotheses that do not. However, the moment that
uncertainty due to noise is considered, the problem of identifying and allocating
the uncertainty is in principle massively underdetermined. The hope of every sci-
entist is that one finds circumstances in which the different sources of uncertainty
can be teased apart. But Reichenbach makes no attempt in this direction with
his formalism, although he certainly was aware of the problem: He was familiar
with Heisenberg’s results, which he took to imply metaphysical uncertainty, and
he was well-versed in the field of error statistics.

The clean way to account for different sources of uncertainty is to represent
them in the inference explicitly and separately, as is done in (for example) Jeffrey
conditionalization [Jeffrey, 1983]. Jeffrey conditionalization explicitly represents
the noise in the data as separate from the uncertainty with regard to functional
form. It makes the confounding of these two types of uncertainty explicit, but also
indicates how different assumptions can be used to tease them apart. Reichenbach,
of course, never knew Jeffrey conditionalization, but we can guess that he would
object to the proliferation of different probability distributions, which he would
want to regard as objective probabilities, but for which an objective foundation
seems far-fetched.

16There is an issue of whether the data sets are independent samples, but we leave that aside
here.
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Our rendition of Reichenbach’s probability logic will surely not have done justice
to every aspect of Reichenbach’s attempts to provide an account of inductive
reasoning. We have our doubts whether a clean account of the probability of
scientific theories can be given in terms of Reichenbach’s probability logic, or —
for that matter — in terms of any purely formal system at all. We have also
been critical of Reichenbach’s justification of the straight rule. However, we do
think that Reichenbach’s approach to inductive inference that started by looking
at actual scientific reasoning, is valuable. It presents a “proper” opposition to
Popper’s falsificationist accounts and avoids getting stuck in the philosophical
quagmire of logical confirmation theory. Most of Reichenbach’s probability logic
is now mainly of historical interest, but some of his ideas regarding the search for
objective probabilities in a Bayesian framework are still present in philosophical
circles, and some ideas similar to his mathematical theory have been developed
together with the appropriate precise mathematical formalism in modern statistics.

Notes on Sources: Our reconstruction of Reichenbach’s probability logic is based

primarily on his account in The Theory of Probability [Reichenbach, 1935c; Reichen-

bach, 1949c] and the various papers in Erkenntnis and elsewhere before [Reichenbach,

1931b; Reichenbach, 1932b; Reichenbach, 1934; Reichenbach, 1935e]. The development

of Reichenbach’s foundations of probability can be found in publications throughout his

life, but especially in the following: [Reichenbach, 1915; Reichenbach, 1920; Reichen-

bach, 1925; Reichenbach, 1929; Reichenbach, 1932a; Reichenbach, 1933]. For further

reference see also [Reichenbach, 1930; Reichenbach, 1931a]. Experience and Predic-

tion [Reichenbach, 1938a] helps to piece together the big picture, and his many com-

ments and responses to criticism in various journals, primarily [Reichenbach, 1935d;

Reichenbach, 1936; Reichenbach, 1939b; Reichenbach, 1940; Reichenbach, 1949a], but see

also [Reichenbach, 1938b; Reichenbach, 1939a; Reichenbach, 1941; Reichenbach, 1948],

fill in some of the issues that remain unclear in the more thorough presentations of his

view. Needless to say, on certain aspects we remained at loss with regard to what exactly

Reichenbach had in mind.
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[Reichenbach, 1935b] H. Reichenbach. Über Induktion und Wahrscheinlichkeit. Bemerkungen
zu Karl Poppers Logik der Forschung. Erkenntnis, 5, no. 4:267–284, 1935. Engl. transl.
‘Induction and Probability: Remarks on Karl Popper’s The Logic of Scientific Discovery’, in
[Reichenbach and Cohen, 1978], vol. II.


