
On the Number of Experiments Sufficient and in the Worst Case
Necessary to Identify All Causal Relations Among N Variables

Frederick Eberhardt, Clark Glymour and Richard Scheines

Department of Philosophy
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We show that if any number of variables are
allowed to be simultaneously and indepen-
dently randomized in any one experiment,
log2(N) + 1 experiments are sufficient and
in the worst case necessary to determine the
causal relations among N ≥ 2 variables when
no latent variables, no sample selection bias
and no feedback cycles are present. For all
K, 0 < K < 1

2N we provide an upper
bound on the number experiments required
to determine causal structure when each ex-
periment simultaneously randomizes K vari-
ables. For large N , these bounds are signifi-
cantly lower than the N − 1 bound required
when each experiment randomizes at most
one variable. For kmax < N

2 , we show that

( N
kmax

−1)+ N
2kmax

log2(kmax) experiments are
sufficient and in the worst case necessary. We
offer a conjecture as to the minimal number
of experiments that are in the worst case suf-
ficient to identify all causal relations among
N observed variables that are a subset of the
vertices of a DAG.

1 THE PROBLEM

Some scientific problems concern large numbers of
variables that can be individually or collectively ma-
nipulated experimentally. The idea of randomization
of a particular variable goes back to Fisher who in
the 1930s suggested that determining the value of the
treatment variable by sampling from a known prob-
ability distribution independent of any of the other
variables, removes confounding by eliminating the in-
fluence of all other causes on the treatment variable.
In the case described here we are considering a large
number of variables and we are trying to discover the
causal relations among these variables. There is no

uniquely defined (set of) treatment variables. Con-
sequently we are faced with an optimization problem
over a sequence of experiments: How do we choose our
interventions to minimize the number of experiments
required to discover all the causal relations? There
has been a vast amount of work on the optimization of
experiments in the literature on experimental design.
However, it has focused on the optimization of the as-
signment of values to the (set of) treatment variables
in order to most efficiently discover the causal struc-
ture. In our case we consider the choice of the (set
of) treatment variables as part of the experiment and
hence as part of the optimization over the sequence of
experiments.

For example, in studies of gene regulation, the expres-
sion of one or more genes can be simultaneously sup-
pressed. Although gene suppression is not randomiza-
tion of expression, such possibilities suggest questions
of independent theoretical interest: If at most K of
N > K variables can be simultaneously and indepen-
dently randomized in a single experiment, what is the
minimal number of experiments sufficient, and in the
worst case necessary, to determine the causal relations
among the N variables? What is the optimal value
of K? We assume there are no unmeasured common
causes of the N variables, that the system is free of
feedback, and that the independence relations true of
the population are available in each experiment.

Murphy (2001) and, independently, Tong and Koller
(2001), place a related question in the framework of
Causal Bayes Net representations of causal dependen-
cies (Spirtes, et al., 2000), and ask, given a probabil-
ity distribution over directed acyclic graphs (DAGs),
which intervention on a single variable would be ex-
pected to be most informative. They assume, as will
we, that there are no latent variables, no sample se-
lection bias, no feedback, and that the conditional in-
dependence relations in the data perfectly model the
d-separation relations (Pearl, 1988) of a DAG whose
directed edges X → Y , represent the proposition that



for some values of all other N −2 variables, Y covaries
with X when X is randomized.

An ideal intervention, as by randomization, on a vari-
able V in a causal system removes the influence of
other variables in the system on V . The intervention
forces a distribution on V , and thereby changes the
joint distribution of all variables in the system that de-
pend directly or indirectly on V but does not change
the conditional distribution of other variables given
values of V . After the randomization, the associations
of the remaining variables with V provide information
about which variables V influences, but the interven-
tion hides information about which variables influence
V .

Under the same assumptions we make, various point-
wise consistent algorithms (Spirtes, et al., 2000; Meek,
1996; Chickering, 2002) are known for obtaining the
Markov equivalence class of a DAG from conditional
independence relations among a set of passively ob-
served variables. Informally, our problem is to deter-
mine how best to combine the information from pas-
sive observations with the information from interven-
tions.

More formally, our problem is as follows. Let D(N)
be the set of all DAGs on N vertices. Let a K-
intervention on vertices V1, . . . , Vk , in a graph G deter-
mine the subgraph G \ {V1, . . . , Vk} in which all edges
directed into V1, . . . , Vk are removed. Then we say
that an experiment consists in a choice of K and a K-
intervention. Let O be an oracle that returns for any G
and for any K-intervention experiment on V1, . . . , Vk

(including the null intervention experiment in which
all variables in V are passively observed), the inde-
pendence relations implied by G\{V1, . . . , Vk}. For all
N ≥ 2, what is the minimal number of experiments
that suffice to uniquely identify any G in D(N)?

2 THE K = 1, N = 3 CASE

Our general strategy can be illustrated with the sim-
plest case, K = 1, N = 3. There are 25 possible DAGs
on three vertices, V1, V2 and V3. There are two ways
in which the direction of particular edge between Vi

and Vj can be discovered. The first is a randomization
of Vi. If Vi and Vj covary for all possible conditioning
sets, then Vi is a direct cause of Vj . The other case
occurs when there is a third variable, Vk such that Vj

is a common effect of Vi and Vk and Vi and Vk are not
adjacent in the true graph. In this case we say that
Vj is an unshielded collider. Unshielded colliders are
easily discovered since conditioning on the unshielded
collider makes two previously independent variables
dependent. This provides a strategy to direct edges
into an unshielded collider.

Let G (in Figure 1) be the true graph. Arbitrarily,
begin with an experiment in which V1 is randomized.

Figure 1: The true graph G shown on the left, the
equivalence class of graphs after a randomization of
V1 shown in the middle and the equivalence class of
graphs after a randomization of V2 on the right.

The resulting graph, G \ {V1}, implies only one inde-
pendence: V1 ⊥ V2. The Markov equivalence class for
this independence under passive observation has only
one member: V1 → V3 ← V2. In the case when V1 is
randomized, however, the equivalence class (middle of
Figure 1) for this independence is more complicated.
First, V1 → V3, second, V2 → V3 since V3 is an un-
shielded collider in the post manipulation graph, and
third, either V2 → V1 or V2 and V1 are not adjacent
(indicated by V2 → V1 with an ”X” through it). In
general, in an experiment in which V1 is randomized,
V1 will be associated with Vj conditional on any subset
iff V1 → Vj in G, and V1 will be independent of Vj iff
either Vj → V1 in G or V1 and Vj are not adjacent in
G. Unless we have unshielded colliders it will not in
general be possible to direct edges that do not involve
at least one variable that is intervened upon.

Next, arbitrarily, consider a different experiment in
which V2 is randomized. In this case the resulting
graph G \ {V2} entails no independencies, and the
equivalence class under the V2 intervention is shown
on the right of Figure 1. Notice, however, that we
may now combine the results from both experiments.
For the pair V2−V1, the V1 randomization experiment
told us only that either V2 → V1 or that V1 and V2 are
not adjacent, but the V2 randomization experiment
determined that V2 → V1. Similarly for the other two
pairs, one of the experiments determined the nature
of the connection between them uniquely. An effec-
tive sequential strategy of experiments in fact lever-
ages the results of previous experiments to maximally
reduce the size of the intersection of all the equivalence
classes found so far. In this case, N − 1 experiments
sufficed. The general result for single variable inter-
ventions follows from a more general theorem we will
prove later.

Proposition: For K = 1, N > 2, N − 1 experiments



suffice to identify any DAG on N vertices. Moreover,
this is a best worst case lower bound that adaptive
strategies cannot improve (Eberhardt, et al., 2004).

3 THE MINIMAL NUMBER OF

EXPERIMENTS FOR

ARBITRARY DAGs

We now consider the problem when we are free to
randomize simultaneously as many variables as we
please. The set of independence relations entailed by
G \ {V1, . . . , Vk} determines all of the adjacencies in
G among the variables in V \ {V1, . . . , Vk} (Spirtes,
et al., 2000) and all of the adjacencies and directions
of edges from members of {V1, . . . , Vk} to members of
V \ {V1, . . . , Vk} (Eberhardt, et al., 2004). In many
cases, the Markov equivalence class of G\{V1, . . . , Vk}
will also specify directions for some edges, but in the
worst case, when G is a complete graph, the Markov
equivalence classes contain no such information, and
so we assume no such information in seeking a worst
case bound.

We say an experiment is a directional test for Vj , Vk, if
exactly one of Vj , Vk is randomized, an adjacency test

for Vj , Vk if neither is randomized, and a zero infor-

mation test for Vj , Vk if both are randomized. Two
directional tests for Vj , Vk, are opposing if Vj but not
Vk is randomized in one test, and Vk but not Vj is ran-
domized in the other test. In order to determine all
the relationships in a causal DAG of N variables, each
pair of variables Vi and Vj needs to be tested twice:
either by two opposing directional experiments or by
one directional and one adjacency experiment. Naively
then, the problem of identifying the underlying causal
structure is a matter of running two tests on each pair
of variables.

Lemma 3.1 Let G = (V;E) be a graph on N ver-

tices and let X be an experiment on G consisting of

a simultaneous intervention on K ≤ N variables. Let

I ⊂ V be the set of randomized variables, i.e. |I| = K,

and U = V \ I. Then

1. X is a directional test for K(N−K) pairs of vari-

ables, namely all pairs Vi, Vj where Vi ∈ I and

Vj ∈ U.

2. X is an adjacency test for
(

(N−K)
2

)

pairs of vari-

ables, namely all pairs Vi, Vj ∈ U

3. X is a zero-information test for
(

K

2

)

pairs of vari-

ables, namely all pairs Vi, Vj ∈ I.

Note that the number of pairs for which X is a direc-

tional test is maximized at k = N
2 .

Lemma 3.2 log2(N) experiments are sufficient to

subject all pairs in a causal graph among N variables

to a directional test.

Proof: Suppose that N = 2m for some positive in-
teger m. Let m = 1, i.e. N = 2. Clearly one ex-
periment, an intervention on one of the two variables,
will subject this pair of variables and hence all the
pairs in this graph to a directional test. Now sup-
pose that the theorem holds for all m ≤ r. Then
let m = r + 1, i.e. N = 2r+1. Let the first experi-
ment E1 consist of an intervention on K = N

2 = 2r

variables. It follows from Lemma 3.1, that E1 is a

directional experiment for the N2

4 pairs of variables
with one variable in I and the other in U. Now, note

that |I| = |U| = K = N
2 = 2r+1

2 = 2m−1. By the
induction hypothesis we know that for N ′ = 2m−1,
log2(N

′) experiments are sufficient to subject all pairs
in a causal graph among N ′ variables to a directional
test. Hence, within r experiments, all pairs of vari-
ables in I and U have been subject to a directional
test. Consequently, within r + 1 = log2(N) experi-
ments, all pairs of variables in G have been subject to
a directional experiment.

The bound also applies to the case where N 6= 2m.
The proof is more complex, but the intuition is the
same: In order to accommodate all the directional
tests, the aim is to split the original set of variables
into equal sized subproblems that can be solved con-
currently. That is, whenever the number N of variables
in a problem is odd, the next intervention should oc-
cur on N−1

2 variables, resulting in subproblems of size
N−1

2 and N+1
2 . As a result it should be obvious that

the number of recursive splits to accommodate all the
directional tests for any N is the same as for the clos-
est N∗, where N∗ = 2m and m is the smallest integer
such that N ≤ N∗.

Theorem 3.3 log2(N) + 1 experiments are sufficient

to determine the causal graph among N variables.

Proof: From Lemma 3.2 it follows that log2(N) exper-
iments are sufficient to subject all pairs of variables in
an N -variable graph to a directional experiment. Let
the last experiment be a null experiment, i.e. no in-
terventions. This will subject each pair of variables in
G to an adjacency test. Hence each pair of variables
in G has been subject to at least one directional and
one adjacency experiment. Hence, together with the
null-experiment, it follows that the causal graph can
be completely determined in log2(N)+1 experiments.
Again, in the case where N 6= 2m, we are dealing with
the ceiling of this quantity.

The worst case always occurs when we have a complete



graph among the N variables and we happen - due to
bad luck - to intervene upon the vertices in the order of
decreasing in-degree, i.e. each randomized vertex is a
sink for all vertices not randomized so far. If the graph
were not complete, missing edges would be found rel-
atively quickly and this additional information could
be exploited. Intervention on a vertex implies that
all incoming edges are broken, hence a large in-degree
implies that very little information is obtained, since
there may be no edge or there may be an incoming
edge. However, an outgoing edge would be immedi-
ately identifiable due to the dependency between the
variables in all possible conditioning sets.

Lemma 3.4 dlog2(N)e experiments are necessary in

the worst case to subject all pairs in a causal graph

among N variables to a directional test.

Proof: It can easily be shown that N = 2, 3, 4 the
number of experiments necessary to determine the
causal structure is 1, 2 and 2 respectively, i.e. sat-
isfying the above bound.

Suppose the theorem holds for all N ≤ r. Then let
N = r + 1. Consider all possibilities for the first
experiment E1. It can consist of an intervention on
K variables, where 0 ≤ K < N = r + 1. This im-
plies that E1 must subject K(N − K) pairs of vari-
ables to a directional experiment. If the underlying
true graph is complete, E1 results in a complete undi-
rected graph among the (N −K) variables that were
not subject to an intervention and is a zero informa-
tion experiment for all

(

K

2

)

pairs of variables in the
intervened set I. Note that |I| = K < N = r + 1
and |U| = N −K < N = r + 1. Hence, we know by
the inductive hypothesis that log2(max(K, N−K)) ex-
periments are necessary to resolve the remaining sub-
graphs among variables in U and among variables in
V . So, counting E1, it follows that the total num-
ber of experiments necessary to subject all pairs in a
causal graph among N variables to a directional test
is given by: xtotal = 1 + dlog2(max(K, N − K))e =
1 + dlog2(N/2)e = 1 + dlog2(N)e − 1 = dlog2(N)e.
If N is odd, we intervene on K = N−1

2 , since this
maximizes the number of directional tests and also
subjects

(

(N−K)
2

)

pairs to adjacency tests, but the
above result still holds, since if N is odd, dlog2(N)e =
dlog2(N + 1)e.

Theorem 3.5 log2(N) + 1 experiments are in the

worst case necessary to determine the causal graph

among N variables.

Proof: Outline: From Lemma 3.4 it follows that
log2(N) experiments are necessary to subject each pair

of variables to a directional test. The additional ex-
periment results from the fact that not all adjacency
tests can be accommodated in log2(N) experiments if
N is a power of 2. The argument requires some com-
binatorics, but it should be obvious that for N = 2,
log2(2)+1 = 2 experiments are necessary in the worst
case. Lemma 3.4 indicates that in order to achieve all
the directional tests within log2(N) experiments, one
has to intervene on half of the previous intervention set
and half of the last passively observed set. The prob-
lem for N = 2m is that this procedure entails that one
has to intervene on one variable, say W , in every one of
the log2(N) experiments in the sequence to subject all
pairs to one directional experiment. Consequently all
pairs of variables (W, V ), for some variable V 6= W , are
only subject to a directional experiment (namely when
V is not in the intervention set) and to a zero informa-
tion experiment (when W and V are in the interven-
tion set). However, this combination of experiments
is in the worst case insufficient to determine the edge
between the variables (one cannot distinguish between
V →W and no edge). This problem arises only in the
case when N is a power of 2, and in these cases one
more (passive observational) experiment is required in
addition to the log2(N) experiments. When N 6= 2m

the bound on the number of experiments is dlog2(N)e.
The last passive observational experiment is not nec-
essary. For any N 6= 2m, given log2(N) experiments
it is possible to subject all pairs to a directional test
and still ensure that there is no variable that is inter-
vened upon in every experiment (see figure 2). This,
together with some combinatorics implies the second
test for each pair (adjacency or opposing directional)
is already accounted for within the initial dlog2(N)e
number of experiments.

Combining the above results then, we have that
blog2(N)c + 1 is a tight bound on the number of ex-
periments for any N ≥ 2. 1

Lemma 3.6 In order to determine a causal graph of

N variables where the number of simultaneous experi-

ments in any one experiment is limited by kmax < N
2 ,

( N
kmax

− 1) + N
2kmax

log2(kmax) are sufficient.

Proof: (Outline) Suppose for the sake of argument
that kmax divides N by some integer p where p is an
even number. 2 Divide the N variables into p disjoint
subsets of kmax variables. Let the first p − 1 exper-
iments each be a kmax-interventions on one of the p
sets of variables. These p − 1 experiments will result

1Since blog
2
(N)c + 1 = dlog

2
(N)e

2If not, then we do not have integer values for the
bound, however the results still hold for the ceiling of the
resulting value.



Figure 2: The intervention sets required to subject all
pairs of variables to a directional test within log2(N) =
3 experiments for 8 and 7 variables respectively. While
in the case of N = 8, there is one variable that is
subject to an intervention in every experiment (shown
in black), this can be avoided for N = 7

in directional tests for all pairs of variables that go be-
tween the p sets and in adjacency tests for all pairs of
variables in the graph. So after p−1 experiments every
pair of variables has been subject to one adjacency test
and only the pairs of variables within each of the p sets
have not yet been subjected to a directional test. From
Lemma 3.2 it follows that log2(kmax) experiments are
sufficient to subject all pairs in a causal graph among
kmax variables to a directional test. 3 Since the maxi-
mum size of the intervention set used in Lemma 3.2 is
(in our case here) kmax

2 and since we are restricted in
this case by kmax as the maximum size of the interven-
tion set, it follows that we can perform interventions
on two of the p sets concurrently in one experiment.
Consequently, p

2 = N
2kmax

sequences of log2(kmax) ex-
periments each are sufficient to subject all the pairs of
variables in the p sets to a directional test. Once all
these experiments have been performed, every pair of
variables in the N -graph has been subject to an ad-
jacency and a directional test, which is sufficient to
determine the causal graph.

Theorem 3.7 In order to determine a causal graph of

N variables where the number of simultaneous experi-

ments in any one experiment is limited by kmax < N
2 ,

( N
kmax

−1)+ N
2kmax

log2(kmax) are sufficient and in the

worst case necessary.

Proof: Outline: It follows from Lemma 3.6 that the
specified number of experiments is sufficient. Now con-
sider a worst case graph: a complete graph among
the N variables where kmax divides N by some in-

3Note that Lemma 3.2 has no restriction preventing it
from applying to a subgraph.

teger p and p is an even number. Since kmax < N
2

the main concern is to accommodate all the
(

N
2

)

directional tests in as few experiments as possible.
Clearly, if the N variables are split into p arbitrary
disjoint subsets, then the first p− 1 experiments, each
a kmax-intervention on a different one of the p sets
will subject the maximum number of pairs of vari-
ables to directional tests, namely for each experiment,
kmax(N − kmax) pairs while no pair is repeated in
these p−1 experiments. Firstly, note that in the worst
case we assume that by lack of luck the interventions
occur on the variables in the order of decreasing in-
degree, i.e. every intervention is on the common ef-
fect of all so far not intervened upon variables, i.e.
on the sink. Consequently it is necessary to subject
each pair of variables to two tests: one adjacency and
one directional test or two opposing directional tests.
Further note that while this sequence of p− 1 experi-
ments subjected the - for this number of experiments
- maximum number of pairs of variables to a direc-
tional test and thereby subjected all pairs between the
p sets to directional tests, it also subjected all pairs
of variables in the graph to an adjacency test for free.
Hence we are at this point in the worst case scenario
only left with complete undirected subgraphs among
the kmax variables in each of the p subsets we divided
the graph into. It should now be clear that it fol-
lows from Lemma 3.4 that log2(kmax) experiments are
in the worst case necessary to subject all the pairs of
variables in a graph of size kmax to a directional test.
4 So an additional log2(kmax) experiments are neces-
sary to subject all the remaining pairs to directional
tests. However, we cannot run the directional tests
on all the p subsets simultaneously since that would
require an intervention set of size N

2 . Hence, we can
only consider two subgraphs concurrently, totaling an
intervention set size of kmax. Hence p

2 = N
2kmax

such
sequences of experiments are necessary, since we will
deal with two of the subgraphs at a time. Hence, in
total we require p − 1 + p

2 log2(kmax) experiments to
determine the causal graph, giving the above result.

4 DISCUSSION

Our results have a variety of limitations. They do not
apply when there is prior knowledge restricting the
class of possible DAGs. Depending on the prior knowl-
edge, lower bounds are possible. Our results are ideal-
ized in the sense that we assume the data perfectly re-
flect the conditional independence relations implied by
the Markov properties of a DAG describing the causal
relations. This means the bounds do not apply in con-

4Note that Lemma 3.4 has no restriction preventing it
from applying to a subgraph.



texts where, for example, the sample, no matter how
large, presents a mixture of systems represented by
two or more distinct DAGs. That is equivalent to a
latent variable problem, discussed below, in which the
latent variable values code for different DAGs or prob-
ability distributions. Further, the bounds we find are
combinatorial rather than statistical, and statistical is-
sues are critical in practice. There are trade-offs that
are difficult to assess in any particular context, no-
tably the increased probability of accurate inferences
to Markov properties with increasing sample size ver-
sus the cost of increasing sample sizes. There are also
trade-offs that are difficult to assess in general, such
as the relative costs of more experiments with fewer
simultaneous randomizations as against fewer exper-
iments with more simultaneous randomizations. Our
results are therefore properly understood as the lowest
of worst case bounds, against which the efficiency of
heuristic procedures or practical strategies might be
measured.

As with Murphy and with Tong and Koller, our re-
sults do not extend to cases with latent variables,
sample selection bias, or feedback. The detailed rea-
sons vary, but the general problem is the same: in
such cases, existing search procedures for features of
the Markov equivalence class of directed graphs do
not in general determine adjacency relations. For
systems whose conditional independence relations are
represented by the d-separation properties of a cyclic
graph, graphs with distinct adjacencies may belong to
the same d-separation equivalence class (Richardson,
1996). Pointwise consistent search procedures when
latent variables and/or sample selection bias may be
present, e.g., the FCI algorithm (Spirtes, et al., 1993;
Spirtes, Meek and Richardson, 1999) exploit only con-
ditional independence relations among observed vari-
ables, and determine only a partial ancestral graph
(Spirtes, Meek and Richardson 1999) or a mixed an-
cestral graph (Richardson and Spirtes, 2002). So, for
example, the partial ancestral graph of the DAG on
the left in figure 3, with V1, V2 and V3 observed, U
unobserved, is given on the right in figure 3.

Figure 3: The true graph with V1, V2 and V3 observed
and U unobserved on the left, and its partial ancestral
graph on the right.

These complexities do not imply that no characteriza-

tion of lowest worst case bounds is possible for such
problems. For example, suppose a first experiment for
data from figure 3 (left) randomizes V1, yielding the
result that V1 causes V2 and V3, and V2 and V3 are
adjacent, but does not determine whether there is a
directed edge from V1 to V2 or from V1 to V3, or both.
Then randomizing V2 determines the V2 → V3 edge di-
rection, and, because V1 and V3 are independent when
V2 is randomized, determines that there is no V1 → V3

edge. If, however, in the second experiment, V3 had
been randomized instead of V2, only the direction of
the V2 → V3 edge would be determined, and a third
experiment, randomizing V2, would be required. We
conjecture that N single experiments always suffice to
determine the causal relations among observed vari-
ables that are a subset of the vertices of a DAG, and
2 log2(N) multi-intervention experiments suffice.
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