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Abstract

Recent approaches to causal discovery based on
Boolean satisfiability solvers have opened new
opportunities to consider search spaces for causal
models with both feedback cycles and unmea-
sured confounders. However, the available meth-
ods have so far not been able to provide a prin-
cipled account of how to handle conflicting con-
straints that arise from statistical variability. Here
we present a new approach that preserves the ver-
satility of Boolean constraint solving and attains
a high accuracy despite the presence of statisti-
cal errors. We develop a new logical encoding
of (in)dependence constraints that is both well
suited for the domain and allows for faster solv-
ing. We represent this encoding in Answer Set
Programming (ASP), and apply a state-of-the-
art ASP solver for the optimization task. Based
on different theoretical motivations, we explore
a variety of methods to handle statistical errors.
Our approach currently scales to cyclic latent
variable models with up to seven observed vari-
ables and outperforms the available constraint-
based methods in accuracy.

1 INTRODUCTION

The search for causal relations underlies many scientific
fields. Unlike mere correlational information, causal re-
lations support predictions of how a system will behave
when it is subject to an intervention. In the causal Bayes
net framework (Spirtes et al., 1993; Pearl, 2000) the causal
structure is represented in terms of a directed graph (see
Figure 1). One of the most widely applicable approaches
to discovering the causal structure uses independence and
dependence constraints obtained from statistical tests to
narrow down the candidate graphs that may have pro-
duced the data. Such an inference relies on the now
well-understood assumptions of causal Markov and causal

faithfulness (Spirtes et al., 1993). Unlike many other ap-
proaches, these constraint-based causal discovery methods
can allow for the presence of latent confounders, feedback
cycles and the utilisation of several (partially overlapping)
observational or experimental data sets.

Even without experimentation (or additional assumptions,
such as time order), and despite the generality of the model
space, constraint-based methods can infer some causal ori-
entations on the basis of v-structures (unshielded colliders).
A v-structure in a graph is a triple of variables, such as
〈x, z, y〉 in Figure 1, where z is a common child of x and y,
but x and y are non-adjacent in the graph. V-structures can
be identified because of the specific (in)dependence rela-
tions they imply (here, x 6⊥⊥ z, z 6⊥⊥ y and x ⊥⊥ y are jointly
sufficient to identify the v-structure). The edges that are
thus oriented provide the basis for all further orientation
inferences in constraint-based algorithms such as PC and
FCI (Spirtes et al., 1993); e.g. identifying the v-structure in
Figure 1 enables the additional orientation of the zw-edge.
However, when processing sample data, the above infer-
ence is often prone to error. Establishing the further depen-
dence x 6⊥⊥ y | z would confirm the inference. If this depen-
dence does not hold, we have a case of a conflict: There is
no causal graph that satisfies all available (in)dependence
constraints (while respecting Markov and faithfulness).

The problem of conflicting constraints is exacerbated when
trying to integrate multiple observational and experimen-
tal data sets in which the sets of measured variables over-
lap only partially. Unlike the case for one passively ob-
served data set, the characterization of the class of graphs
consistent with the (in)dependence constraints is more dif-
ficult in this setting: the graphs may disagree on orien-
tations, adjacencies, and ancestral relations (Tsamardinos
et al., 2012). Triantafillou et al. (2010) and Hyttinen et al.
(2013) have started using general Boolean satisfiability
(SAT) solvers (Biere et al., 2009) to integrate the various
constraints. The basic idea of these methods is to con-
vert the (in)dependence constraints found in the data into
logical constraints on the presence and absence of certain
pathways in the underlying causal structure, and to use a
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Figure 1: Example causal graph (see text for details).

SAT-solver to find the causal structures consistent with all
constraints.

For pure SAT methods, conflicted constraints imply unsat-
isfiability. For these methods to work at all in practice,
conflict handling is paramount. We address this problem
at a variety of levels. We represent the task as a con-
straint optimization problem, and discuss in Section 3 dif-
ferent weighting schemes of the constraints and the theo-
retical motivations that support them. Then, we present in
Section 5 a new encoding that relates (in)dependence con-
straints directly to one another via the operations of inter-
vening, conditioning and marginalization. The encoding
naturally captures the central ideas of constraint integra-
tion as it more directly connects constraints that refer to the
same graphical neighborhood. We represent this encoding
in the constraint optimization paradigm of Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz, 1988; Niemelä,
1999; Simons et al., 2002). Finally, we compare the re-
liability of our proposed methods with available existing
algorithms in Section 7.

2 PRELIMINARIES

For notational simplicity, we restrict the presentation to the
setting with a single passive observational data set. How-
ever, the approach extends naturally to the general case
of multiple overlapping experimental data sets; details are
provided in the supplement.

We consider the class G of causal graphs of the form G =
(V,E), where V is the set of nodes (associated with ran-
dom variables) of G, and the edge relation E = E→ ∪E↔
is composed of a set E→ of directed edges and a set E↔
of bi-directed edges. A bi-directed edge↔ represents a la-
tent confounder, i.e. an unmeasured common cause of two
or more of the observed variables. In other words, we al-
low for the presence of feedback cycles and do not assume
causal sufficiency. We define a path as a sequence of con-
secutive edges in the graph, without any restrictions on the
types or orientations of the edges involved. A vertex ap-
pears as a collider on a path if both its adjacent edges on
the path point into the vertex.

(In)dependence constraints can be brought into correspon-
dence with structural properties of the graph using the d-
separation criterion (Pearl, 2000). A path in graph G is
d-connecting with respect to a conditioning set C if every

collider c on the path is in C and no other nodes on the path
are in C; otherwise the path is d-separated (or “blocked”).
A pair of nodes are d-connected given a conditioning set
C if there is at least one d-connecting path between them;
otherwise they are d-separated.1 Under the causal Markov
and faithfulness assumptions, two variables x and y are in-
dependent conditional on a set of variables C iff x and y
are d-separated given C in the graph G.2

Let D be an i.i.d. data set sampled from a distribution that
is Markov and faithful to an underlying “true” causal graph
Gt = (V,E). Overall, the aim of causal discovery is
to recover as many properties of Gt as possible from the
data D. There are a variety of ways to proceed. In light
of the generality of the search space we consider, we fo-
cus on the graphical constraints implied by the conditional
(in)dependencies found in the data. Our proposal is that the
causal discovery problem is addressed well by solutions to
the following abstract constrained optimization problem.

Problem Statement
INPUT: A set K of conditional independence and de-

pendence constraints over a set V of variables,
and a non-negative weight (cost) w(k) for each
k ∈ K.

TASK: Find a causal graph G∗ over the vertex set V
such that

G∗ ∈ argmin
G∈G

∑
k∈K : G 6|=k

w(k). (1)

In words, our goal is to find a single representative graph
G∗ that minimizes the sum of the weights of the given
conditional independence and dependence constraints not
implied by G∗. The idea is that the constraints can be
weighted according to their reliability, and that conflicts
among the constraints are well-resolved when the sum of
the weights of the constraints not satisfied by the output
graph are minimized. We take the set K to be the set of all
(in)dependence constraints testable in the data D.3

This formalization poses two key challenges: 1) How to
define the weighting scheme w(k) such that the solutions
(causal graphs) are “as similar as possible” to the true
graph? 2) How to actually find a representative graph G∗,
i.e., how to represent the constraints efficiently such that
one can minimize the objective function (an NP-hard opti-
mization problem) defined above? In the following, we will

1This definition is equivalent to Pearl’s standard defini-
tion (Studený, 1998; Koster, 2002).

2See Spirtes (1995), Pearl and Dechter (1996) and Neal (2000)
for discussions of d-separation in cyclic models.

3When considering experimental data sets, the weights of
(in)dependence constraints of the manipulated distributions enter
into the minimization as well; see Appendix A.



propose solutions to both of these challenges. We note that
once a representative graph G∗ has been found, the inde-
pendence oracle methods of Hyttinen et al. (2013) can be
used to understand the common properties, such as adja-
cencies and ancestral relations, of all solutions that satisfy
the same set of constraints.

3 PREVIOUS WORK

Statistical variability results in incorrect test results, but
such errors are only detectable when the test results have
conflicting implications. Conflicts can arise directly be-
tween test results or, more commonly, in combination with
search space assumptions. Whether or not conflicts are
detected depends on the tests that have been performed.
Thus, one way of “handling” conflicts is to avoid perform-
ing tests whose results can conflict, or not to draw the full
set of possible inferences from a set of test results. This
is what the standard PC-algorithm does; it basically avoids
conflicts.4 This approach proved to be unreliable for the
detection of v-structures, so a conservative extension was
added that checks additional tests to verify the inference to
the v-structures (see example in Section 1). The resulting
cPC-algorithm (Ramsey et al., 2006) marks any conflicted
v-structures and abstains from the orientation inference, i.e.
it returns a “don’t know” for this part of the graph. The FCI
and cFCI algorithms are analogous in this regard to PC and
cPC, respectively, only that the search space is enlarged to
allow for latent confounders. A more generic approach, not
focused on v-structures, reduces the occurrence of conflicts
by controlling which test results are accepted. Li and Wang
(2009) control the false discovery rate of the tests that PC
performs, while Tsamardinos et al. (2012) use different
p-value thresholds to infer independence vs. dependence
constraints. Very recently, Triantafillou and Tsamardinos
(2014) developed a scheme that uses the p-values from tests
performed by FCI to rank (a specific class of) structural
constraints on the underlying graph, and then use a SAT-
based procedure to satisfy as many constraints as possi-
ble. The selection of tests by FCI depends on the results
of earlier tests. Thus the conflict resolution (in terms of
the ranked constraints) only handles conflicts between tests
that were selected. This scales very well, but the theoretical
account of the accuracy of the output model is unclear, as
the selection of tests interacts with the conflict resolution.

Score-based algorithms take a very different approach
to inconsistencies in data (Cooper and Herskovits, 1992;
Chickering, 2002). Instead of explicitly determining the
(in)dependence constraints (and finding them to be incon-
sistent) the conflicts are implicitly resolved by a direct in-
tegration of the data points into a score that identifies the

4Some PC implementations do in some cases infer the pres-
ence of a latent confounder (violating the model space) when v-
structures are incorrectly detected.

graph (or equivalence class) that maximizes the Bayesian
posterior. Such an approach provides a clear theoretical
account in which sense the output is “closest” to the true
graph (equivalence class). Although mostly restricted to
DAGs, Claassen and Heskes (2012) have transfered some
of the advantages of the Bayesian approach to a constraint-
based search method over models with latent confounders.
Their BCCD algorithm builds on the skeleton search of PC,
and computes Bayesian-style probabilities for the (condi-
tional) independence constraints.

4 WEIGHTING SCHEMES

Given the general search space we are considering, we take
a constraint-based approach. But unlike other such meth-
ods we do not select tests to perform based on previous test
results. Instead, for a given data set, we consider all inde-
pendence tests that can be performed on the set of variables,
and apply the following weighting schemes to the resulting
constraints.

4.1 Controlling False Negatives

One of the problems for constraint based causal discovery
are false negative results, i.e. variables that are truly de-
pendent but test as independent due to low sample sizes
or several cancelling d-connecting paths between them (vi-
olations of faithfulness). Strictly speaking, classical sta-
tistical tests do not license the inference to independence
when the null-hypothesis H0 of independence fails to be
rejected. Schulte et al. (2010) have developed a search pro-
cedure for causal DAGs based on dependence constraints,
which are licensed by classical tests when H0 is rejected.
Independencies enter only as a result of a simplicity as-
sumption. Analogously, we propose to control the false
negatives with a given sufficiently low p-value threshold on
the independence tests. We enforce the detected dependen-
cies as hard constraints. Dependence constraints on their
own cannot conflict, as the complete graph will satisfy all
possible dependencies. But the principle of Occam’s Razor
recommends choosing the simplest among the models able
to produce the data. We take this here to amount to maxi-
mizing the number of independencies given the dependen-
cies (which is closely related to the dependence minimal-
ity proposed by Pearl (2000)). Thus, if we partition the
set of constraints K into the independence constraints K⊥⊥
and dependence constraints K 6⊥⊥, then the causal discov-
ery problem over the class of causal models G amounts to
solving the constrained optimization problem in (1) with a
weight function

w(k) =

{
∞ if k ∈ K6⊥⊥
1 if k ∈ K⊥⊥.

(2)



4.2 Controlling False Positives and Negatives

In a slight but common abuse of classical statistics, one can
treat the failure to reject H0 as the acceptance of indepen-
dence. Then one can simply find the graph that minimizes
the number of disagreements between the (in)dependence
constraints implied by the graph and the test results. Such
an approach would then also be able to recover from false
positive errors, i.e. true independencies that test as depen-
dencies. Such false positive errors may occur, for example,
if the true structure is a chain x→ z → y and we condition
on a measured, but noisy, version of z, and we still get that
x 6⊥⊥ y | z. The corresponding weight-function for the the
constrained optimization problem in (1) is then simply

w(k) = 1 ∀k ∈ K. (3)

4.3 Weighted Constraints

So far we have treated the test results as binary, but in many
cases one has reason to be more confident about some test
results than others, and the constraints could be weighted
accordingly. One would like to associate a probability as a
measure of confidence with each constraint, since then the
independence test could be treated as a probabilistic clas-
sifier without a hard decision between independence and
dependence. When ground truth is available the quality of
probabilistic classifiers is often compared by proper scor-
ing rules, such as the log-score. Proper scoring rules assign
costs that are minimized when the tests or classifier return
the true probability of class membership. We use such scor-
ing rules here as cost functions: we find the graph G∗ such
that if it were the ground truth, the results of the proba-
bilistic classifier would be optimal – minimizing the cost
assigned by the proper score. Given a data set D, for each
constraint k the classifier returns the probability P (k | D)
for k to hold in G∗. If in fact k holds in G∗, then the classi-
fier should only suffer the cost − logP (k | D), otherwise
the cost is − log[1 − P (k | D)]. As the minimum of these
costs will always be suffered, it is sufficient to let

w(k) = logP (k | D)− log[1− P (k | D)], (4)

which is positive, since only the constraint with higher
probability is included in K.5

It is not straightforward, neither in terms of theoretical
foundation nor actual implementation, to turn p-values
from classical tests into probability estimates, as the dis-
tribution of p-values under H0 is uniform and only known
to be decreasing under H1.6 Instead, Margaritis and
Bromberg (2009) use a Bayesian paradigm to assign proba-

5In Appendix B we show how the log-weights can be inter-
preted probabilistically.

6Some proposals in this direction appear in a recent unpub-
lished paper by Triantafillou and Tsamardinos (2014).

bilities to the (in)dependence statements.7 Following them,
for each independence statement x ⊥⊥ y | C, we consider
two models M⊥⊥ and M 6⊥⊥, where M⊥⊥ : P (x, y | C) =
P (x | C)P (y | C) postulates independence, while M 6⊥⊥ :
P (x, y | C) = P (x | C)P (y | x,C) postulates depen-
dence. Given data D and a prior P (M⊥⊥) = α the prob-
ability associated with k = x ⊥⊥ y | C simplifies to

P (k | D) =
P (y | C)α

P (y | C)α+ P (y | x,C)(1− α) .

The marginal likelihoods P (y | C) and P (y | x,C) corre-
spond to local scores in the score-based learning framework
and have a closed form for categorical variables using a
Dirichlet prior (Cooper and Herskovits, 1992) or for con-
tinuous variables with linear relations and Gaussian distur-
bances using an inverse Wishart Gaussian prior (Geiger and
Heckerman, 1994).

5 A RECURSIVE VIEW TO CAUSAL
GRAPHS

Given a set of (in)dependence constraints, finding an op-
timal graph G∗ (in the sense of the problem statement’s
objective function Eq. 1) requires a formulation of the d-
connection property that is suitable for constraint solvers.
Hyttinen et al. (2013) provided such a formulation in terms
of propositional logic, but that proves to be inefficient for
the computationally more demanding case with conflicted
constraints (see Section 7).

Our new formulation is based on the two central graph
operations that relate the underlying causal graph to the
(in)dependence constraints obtained from an observational
data set: conditioning and marginalization. (Intervening
is treated in the supplementary material.) We define these
operations over objects that we call d-connection graphs
rather than MAGs/PAGs (Richardson and Spirtes, 2002),
as we want allow for the complete generality of the model
space.

A d-connection graph H = (V,E)C is defined relative
to a set C such that: (i) V is the set of variables in the
graph, (ii) the edge relation E = E→ ∪ E↔ ∪ E− is com-
posed of directed, bidirected and undirected edges among
V, and (iii) the set C denotes the set of conditioned vari-
ables with the restriction that V ∩C = ∅. The disjoint sets
V and C are used to keep track of which variables have
been subject to the two operations. Given a causal graph
G = (V,E) (Section 2), the corresponding d-connection
graph H has the same sets V, E→ and E↔, but in addition
the set E− = ∅ (no undirected edges) and C = ∅ (no con-
ditioning). The d-connection graph of the causal graph in

7Claassen and Heskes (2012) also describe a way of obtain-
ing Bayesian probabilities for independence statements, which
is particularly accurate for finding minimal independencies in an
acyclic domain.
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V = {x, y, z, w}, C = ∅, V = {x, y, z}, C = {w},
E = {x→ z, y → z, z → w} E = {x→ z, y → z, z − z}
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(d)

V = {x, y, w}, C = ∅ V = {x, y}, C = {w},
E = {x→ w, y → w,w ↔ w} E = {x− y, x− x, y − y}

Figure 2: Graph operations on d-connection graphs: (a)
original graph, (b) after conditioning on w, (c) after
marginalizing z, (d) after conditioning on w and marginal-
izing z in either order. The xy-edge in (d) shows that x and
y are dependent when conditioning on z and marginalizing
w.

Figure 1 is shown in Figure 2a; the edges correspond ex-
actly. In general, an edge xa− by in a d-connection graph
H = (V′,E′)C′ denotes the existence of a path p with the
given edge ends a and b at x and y in the underlying causal
graph G, such that p is d-connecting with respect to C′ and
does not go through other variables in V′. Consequently,
the d-connection property (as defined in Section 2) can be
directly applied to any d-connection graph.

Given a d-connection graph H = (V,E)C, the condition-
ing operation c(H,w) on a variable w ∈ V results in a
d-connection graph H ′ = (V \w,E′)C∪w, where E′ is re-
lated to E by (i) including in E′ any edges in E not involv-
ing w; (ii) adding to E′ an edge xa− by if there are edges
xa→w and w← by in E, and (iii) not permitting any other
edges in E′ (x and y can be equal above).

The graphs in the right column of Figure 2 are formed by
applying the operation c(·, w) to the graphs in the left col-
umn of Figure 2. The conditioning operation is a little un-
usual because the conditioned variable is removed from the
graph and undirected edges and undirected self-cycles are
introduced. As is well-known, conditioning on a collider or
a child of a collider results in a d-connection between the
collider’s parents. For example, if w is conditioned on in
x → w ← y, we have a d-connecting path between x and
y with a tail at either end. Since the encoding also removes
the conditioned variable from the graph, we just have an
undirected edge x − y, the parents are “moralized”. The
undirected self-loop represents the same idea, just in case
of the child of a collider: each parent of a conditioned vari-
able receives an undirected self-loop to indicate that it can
provide a d-connection between two incoming paths. In
Figure 2a-b this is illustrated for variable z whenw is added

to the conditioning set (and removed from the graph). The
graph in (b) indicates that there is a tail to tail d-connection
at z, which implies that x and y are now d-connected when
w, the child of collider z, is in the conditioning set. The
(perhaps unintuitive) removal of the conditioning variable
from the graph achieves two goals: it reduces the size of the
graph to be encoded, but more importantly, it incrementally
represents the effect of conditioning on the d-connections
among the other variables.

Given a d-connection graph H = (V,E)C, the marginal-
ization operation m(H, z) for variable z ∈ V results in a
d-connection graphH ′ = (V\z,E′)C, where E′ is related
to E by (i) including in E′ any edges in E not involving z;
(ii) adding to E′ an edge xa− by if there are edges xa−z and
zc− by in E; (iii) adding to E′ an xa− by if there are edges
xa→z, z−z and z← by in E, and (iv) not permitting any other
edges in E′ (x and y can be equal above). Marginalization
follows the standard graphical procedures used elsewhere,
except that a little more book-keeping is required to track
the d-connections resulting from self-loops and undirected
edges (see Figure 2 top to bottom).

The following theorem shows that the operations pre-
serve the d-connection properties among the variables still
present in the graph after the operation (proof in Ap-
pendix D).

Theorem 1 Let H ′ = (V′,E′)C′ be the d-connection
graph obtained from a d-connection graph H = (V,E)C
by applying the conditioning operation on w, i.e. H ′ =
c(H,w) (or by applying the marginalization operation on
z, thus H ′ = m(H, z)). Then there is a path of type xa · · · by
that is d-connecting given C′′ ⊇ C′ in H ′ if and only if
there is a path of type xa · · · by that is d-connecting given C′′

in H .

Consequently, a dependence x 6⊥⊥ y | C in (the true causal
graph) G = (V,E) is equivalent to having an edge of
some type in the d-connection graph H = (V′,E′)C when
V′ = {x, y}. This d-connection graph H can be obtained
by consecutively applying the conditioning operation to all
variables in C, and the marginalization operation to the
rest in V \ (C ∪ {x, y}). For example, in Figure 2d the
undirected edge between x and y represents the fact that
x 6⊥⊥ y | w in the underlying causal graph (Figure 1).

Given a causal graph G, we can calculate all of its implied
(in)dependence relations by applying the operations in any
order. However, we need not apply all operations for each
(in)dependence relation, since we can exploit the compact
intermediary representations of the d-connections in the d-
connection graphs obtained earlier. Figure 3 shows the “en-
coding DAG” for one set of applied operations by which
we obtain all (in)dependence relations of the four variable
graph in Figure 1. The true causal graph corresponds to
the node in the middle, and we use the operations to move
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Figure 3: An “encoding DAG”: a tree connecting the causal graph (represented by the middle node) to (in)dependence
constraints (leaves). The conditioning/marginalization operations are marked on the arrows. The circular nodes represent
the sets V | C of the corresponding d-connection graphs and the square nodes show the implied independencies for the
true causal graph shown in Figure 1.

outward until we reach the implied (in)dependencies at the
leaves.

For causal discovery we want to perform the backward
inference. We know the (in)dependence relations at the
leaves (Figure 3) and our aim is to find a causal graph in
the middle node. Again we exploit the same tree structure.
But this time we will have at each node several different
graphs that satisfy the constraints, which are downstream
from it. Moving towards the center, nodes can be com-
bined to find the options that satisfy all constraints down-
stream from the node. For example, in the node ‘x, y, z’
all the tests relevant to identifying the v-structure xa→z← by
are available locally. In the general case of weighted and
possibly conflicting (in)dependence constraints, the infer-
ence becomes hard. We use off-the-shelf solvers for this
job. Nevertheless, as shown by the simulations, the recur-
sive structure allows the backwards inference to work faster
than for the logical formulations of d-connection in Hytti-
nen et al. (2013).

6 CAUSAL DISCOVERY VIA ASP

Building on Section 5, we describe here an ASP-based
constraint optimization approach to optimally solving the
causal structure discovery task defined in (1).

Answer set programming (ASP) is a rule-based declarative
constraint satisfaction paradigm that is well-suited for rep-
resenting and solving various computationally hard prob-
lems (Gelfond and Lifschitz, 1988; Niemelä, 1999; Simons
et al., 2002). ASP offers an expressive declarative mod-
elling language in terms of first-order logical rules, allow-
ing for intuitive and compact representations of NP-hard
optimization tasks. When using ASP, the first task is to
model the problem in terms of ASP rules (constraints) so

that the set of solutions implicitly represented by the ASP
rules corresponds to the solutions of the original problem.
One or multiple solutions of the original problem can then
be obtained by invoking an off-the-shelf ASP solver on the
constraint declaration.

6.1 An ASP Encoding of Causal Discovery

As a self-contained explanation of ASP syntax and seman-
tics would exceed the page limit, we only aim to give an
intuitive reading of our ASP encoding. The ASP encod-
ing, outlined in Figure 4, is based on exactly representing
the conditioning and marginalization operations (defined in
Section 5) in ASP.

Answer set programming can be viewed as a data-centric
constraint satisfaction paradigm, in which the input data,
represented as “facts” that are true via input predicates, ex-
press the instance of the original problem at hand. In our
case, the problem instance consists of a set of independence
and dependence constraints and their associated weights,
represented via the predicates indep and dep, and the “en-
coding DAG”, describing which d-connection graphs can
be mapped from one to the other via the conditioning
and marginalization operations (predicates cond and marg).
Concretely, the input predicates indep(x, y, {x, y},C,W )
and dep(x, y, {x, y},C,W ) represent as facts that the in-
put contains an independence (resp., dependence) con-
straint with weight W over the variables x and y given the
conditioning set C.8 The input predicates cond(V,C, z)
and marg(V,C, z) enable the conditioning and marginal-
izing of a variable z, respectively, in a d-connection graph
that has exactly the variables V and conditioning set C. Es-

8In practice, the ASP language requires integer-valued
weights. For sufficient precision, in our experiments we multi-
ply the weights by 1000, and then truncate to integers.



sentially, cond and marg represent edges in the encoding
DAG (recall Figure 3).

The other predicates tt(x, y,V,C), th(x, y,V,C), and
hh(x, y,V,C) present the existence of different types
of edges (tt: tail-tail, th: tail-head, hh: head-head) in

Conditioning on a variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C ∪ z) :- th(x, y,V,C), cond(V,C, z).
th(x, y,V \ z,C ∪ z) :- th(x, z,V,C), hh(z, y,V,C),

cond(V,C, z).

hh(x, y,V \ z,C ∪ z) :- hh(x, y,V,C), cond(V,C, z).
hh(x, y,V \ z,C ∪ z) :- hh(x, z,V,C), hh(z, y,V,C),

cond(V,C, z).

tt(x, y,V \ z,C ∪ z) :- tt(x, y,V,C), cond(V,C, z).
tt(x, y,V \ z,C ∪ z) :- th(x, z,V,C), th(y, z,V,C),

cond(V,C, z).

Marginalizing a variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C) :- th(x, y,V,C),marg(V,C, z).
th(x, y,V \ z,C) :- tt(x, z,V,C), th(z, y,V,C),

marg(V,C, z).
th(x, y,V \ z,C) :- th(x, z,V,C), th(z, y,V,C),

marg(V,C, z).
th(x, y,V \ z,C) :- tt(x, z,V,C), hh(z, y,V,C),

marg(V,C, z).
th(x, y,V \ z,C) :- th(x, z,V,C), tt(z, z,V,C),

hh(z, y,V,C),marg(V,C, z).

hh(x, y,V \ z,C) :- hh(x, y,V,C),marg(V,C, z).
hh(x, y,V \ z,C) :- th(z, x,V,C), th(z, y,V,C),

marg(V,C, z).
hh(x, y,V \ z,C) :- hh(x, z,V,C), th(z, y,V,C),

marg(V,C, z).
hh(x, y,V \ z,C) :- th(z, x,V,C), hh(z, y,V,C),

marg(V,C, z).
hh(x, y,V \ z,C) :- hh(x, z,V,C), tt(z, z,V,C),

hh(z, y,V,C),marg(V,C, z).

tt(x, y,V \ z,C) :- tt(x, y,V,C),marg(V,C, z).
tt(x, y,V \ z,C) :- tt(x, z,V,C), tt(z, y,V,C),

marg(V,C, z).
tt(x, y,V \ z,C) :- th(x, z,V,C), tt(z, y,V,C),

marg(V,C, z).
tt(x, y,V \ z,C) :- tt(x, z,V,C), th(y, z,V,C),

marg(V,C, z).
tt(x, y,V \ z,C) :- th(x, z,V,C), tt(z, z,V,C),

th(y, z,V,C),marg(V,C, z).

Inferring failures to sat. (in)dep. ∀x∀y>x,∀C,V={x, y}:
fail(x, y,V,C,W ) :- tt(x, y,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- th(x, y,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- th(y, x,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- hh(x, y,V,C), indep(x, y,V,C,W ).
fail(x, y,V,C,W ) :- not th(x, y,V,C), not th(y, x,V,C),

not hh(x, y,V,C), not tt(x, y,V,C),
dep(x, y,V,C,W ).

Weak constraints ∀x∀y > x,∀C,V = {x, y}:
:∼fail(x, y,V,C,W ). [W ]

Figure 4: The ASP encoding.

the d-connection graph with variable set V and condi-
tioning set C. The rules associated with the condition-
ing and marginalization operations encode how the dif-
ferent edges in the d-connection graphs are derived from
edges in other d-connection graphs through the condition-
ing and marginalization operations. The restrictions that
the (in)dependence constraints put on the set of solutions
(causal graphs) follow from these rules. As an example,
the first marginalization rule

th(x, y,V \ z,C) :- th(x, y,V,C), marg(V,C, z).

allows to derive, for any choice of C, V, z ∈ V, and x, y ∈
V\z, that th(x, y,V\z,C) is true (i.e., that there is an edge
x→ y in the d-connection graph over V \ z relative to C)
given that (i) th(x, y,V,C) is true (there is an edge x→ y
in the d-connection graph over V relative to C), and (ii) the
input contains the fact marg(V,C, z), i.e., marginalizing
z in the d-connection graph over V relative to C is allowed
by the encoding DAG. Note that the set of derivation rules
for tt(x, y,V,C), th(x, y,V,C), and hh(x, y,V,C) are
very similar to each other.

Finally, the objective function under minimization (Equa-
tion 1) is expressed using the so-called weak constraints
offered by the ASP language. First, the predicate fail is de-
rived whenever the candidate solution disagrees with the
input. The first four rules for fail denote cases where
the constraints tested from the data suggest independence
but an edge tt/th/hh is derived. The fifth rule derives
fail whenever the input constraints suggest dependence but
there are no d-connecting paths. The last rule of the en-
coding denotes the fact that whenever the fail predicate
is derived, then the cost W is incurred. This implies that
any solution produced by an ASP solver on the encoding
is guaranteed to present an optimal solution to the causal
discovery task, as stated by the following theorem.

Theorem 2 Given a set K of conditional independence
and dependence constraints over a set V of variables, and
a non-negative weight w(k) for each k ∈ K, for any en-
coding DAG connecting the (in)dependence constraints, it
holds that any optimal solution (minimizing the sum of the
unsatisfied weak constraints) to the ASP encoding corre-
sponds to a causal graph that minimizes the objective func-
tion Equation 1.

To find optimal solutions to the encoded problem, the in-
put facts together with the derivation rules and weak con-
straints are given as input to an ASP solver. The actual
complete search for solutions is then performed over a
propositional instantiation of the first-order rules; this pro-
cess is automatized within the ASP solver and does not
require involvement of the user. The search procedure
implemented within state-of-the-art ASP solvers, such as
Clingo (Gebser et al., 2011) used in this paper, is then
based on the successful and highly-efficient Boolean satis-
fiability solver technology (Biere et al., 2009).
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Figure 5: ROC given causally sufficient acyclic models (left), causally insufficient acyclic models (middle) and causally
insufficient cyclic models (right).

7 SIMULATIONS

We first test the accuracy of our method against several
competing algorithms under the restricting assumption of
acyclicity (and causal sufficiency), since no other algo-
rithms are presently available for the most general model
space that we can handle. In the tests for accuracy we
draw 200 linear Gaussian models over 6 variables, where
the edge coefficients are drawn uniformly from±[0.2, 0.8].
The directed edges were drawn randomly such that the av-
erage degree of each node was 2 for the causally suffi-
cient models. For models with latent confounders the av-
erage degree of the nodes for directed edges was 1, and
the covariance matrix of the disturbances corresponded to
the passively observed covariance matrix of another simi-
lar causally sufficient linear Gaussian model. For all meth-
ods we use a correlation based t-test, or the corresponding
Bayesian test. Although our methods straightforwardly al-
low for experimental data sets, we only used 500 samples
of passively observed data here to adhere to the restrictions
of the competing methods.

Different methods represent the uncertainty in their out-
put differently: cPC and cFCI return parts of the graphs
as unknown, while score-based methods, as well as the ap-
proaches in this paper, may be used to return several high
scoring graphs. We compared the methods regarding only
the single ‘highest scoring’ graph (or Markov equivalence
class). To account for the fact that each method returns an
equivalence class based on its model space assumptions,
we evaluate the d-separation and d-connection relations of
the learned result against those of the true data generating
graph. This includes all possible d-connection/separation
relations in the passively observed setting. Each of the
methods takes a parameter (such as a p-value-threshold)
that adjusts the sparsity of the output. To avoid effects of a
specific parameter choice, we plot the accuracy of the dif-
ferent methods run with different parameters in the ROC
space.

Figure 5 (left) shows the accuracy of the methods for
acyclic and causally sufficient data generating models. The

blue line shows the performance of the tests alone (classic
t-tests almost exactly equal the Bayesian tests in the ROC
space). The plain PC algorithm (implemented by Kalisch
et al. (2012)) does not exceed the performance of these
tests and cannot achieve high true positive rates for ac-
ceptable false positive rates. cPC returns an equivalence
class of graphs without unknown parts in only 58/200
cases for the optimal p-value threshold of 0.1 (only out-
puts from these runs are considered in the plot for cPC).
Its performance on these ‘easy instances’ is quite good.
The score-based approach achieves much better accuracy
(BIC score; the MAP DAG is found using exact meth-
ods). All our approaches were run by restricting the model
space to acyclic and causally sufficient graphs. The sur-
prising finding here is that the constraint-based approach
using ‘log-weights’, introduced in Section 4.3, seems to be
able to roughly match the performance of the score-based
method. This suggests that the constraint-optimization re-
solves many conflicts that arise from erroneous tests, and
so it is an accurate approach for causal discovery. Also, the
other suggested approaches, ‘hard deps’ (Section 4.1) and
‘constant weights’ (Section 4.2), seem to be able to per-
form quite well. Clearly, their results are not restricted to
that of the test performance. The conflict resolution is able
to correct many erroneous test results.

Figure 5 (middle) shows the accuracy of the methods in the
ROC-space assuming acyclicity but not causal sufficiency.
Our approaches (now only restricted by acyclicity), espe-
cially the ‘log-weights’, achieve higher true positive rates
than the competing methods. Again cFCI does better than
FCI but only returns a fully determined result for 61/200 of
the cases for the optimal p-value threshold of 0.1. For these
‘easier instances’ (again only results without unknowns are
plotted for cFCI) its performance is quite good.9 Figure 5
(right) shows the accuracy of the proposed methods in the

9The BCCD algorithm (Claassen and Heskes, 2012) and the
(still unpublished) approach of Triantafillou and Tsamardinos
(2014) would provide the most suitable comparison in this set-
ting. We hope to perform the comparison when implementations
of the methods are made available.
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Figure 6: Solving times for (possibly) cyclic causally in-
sufficient models (right).

most general model space allowing for cycles and latent
confounders. There currently do not exist other methods
that apply to such a general model space.

Figure 6 shows the solving times of Clingo on a 2.4-GHz
Intel Core i5 processor for 100 instances of constraints ob-
tained from 500 samples of passively observed data gen-
erated by different possibly cyclic and causally insufficient
models over six variables. The solving times are sorted
for each algorithm individually. The plot shows nicely the
rather large variance of the solving times. Easy problems
(left on the plot) are solved almost instantly, while harder
problems may take considerably longer. This is a general
feature of exact algorithms solving very complex problems:
in the worst case the NP-complexity of the problem kicks
in, but still a large number of instances are relatively easy to
solve. In the figure we also compare the present encoding
against a straightforward ASP-implementation of the en-
coding of Hyttinen et al. (2013). For all weighting schemes,
and especially for the harder instances, the encoding pre-
sented in this paper seems to allow for much faster solving.
Different weighting schemes also clearly affect the solving
time. ‘log-weights’ and ‘hard deps’ are considerably faster
than ‘constant weights’. For graphs with seven observed
variable the solving times take up to half an hour (see sup-
plement), for graphs with eight variables many instances
take several hours to solve.

Finally we analyzed what actually happens in the conflict
resolution. We generated data from 100 random parameter-
izations of the graph in Figure 1, and ran the inference with
log-weights for different sample sizes (Figure 7). The red-
ness of the background color denotes how many times the
specific independence tests most prone to error (listed on
the right axis) produced an incorrect result. The blue line
counts the number of incorrect tests obtained from the data,
which serve as input to our method. The black line shows
the number of (in)dependence relations that were incorrect
in the output graph of our method. The tests produce errors
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Figure 7: Conflict resolution for the graph in Figure 1.

throughout different sample sizes, but we are able to offer
an output with significantly fewer errors.

8 CONCLUSION

We presented a method for causal discovery that works in a
completely general search space that includes models with
feedback and latent confounders. It accepts as input possi-
bly inconsistent (in)dependence constraints obtained from
overlapping experimental or observational data sets. It re-
turns an exact output, in the sense that it finds the graph that
minimizes a well-defined objective function, which charac-
terizes how conflicted constraints should be resolved. We
have considered a variety of theoretical motivations for dif-
ferent conflict resolution schemes, and tested them suc-
cessfully against several extant algorithms.10 Although not
shown explicitly in this article, the direct encoding of the
d-connection properties ensures that in the infinite sample
limit, our algorithm retains the completeness properties of
Hyttinen et al. (2013).

The scalability of the present procedure is still quite lim-
ited, but it is similar to that of the exact graph struc-
ture discovery methods exploiting ASP of Corander et al.
(2013), who search for (undirected) Markov networks. We
have emphasized the exactness of our method, which pro-
vides theoretical guarantees and a very high accuracy. All
other methods we are aware of that consider similar search
spaces take a greedy approach in one way or another. Our
results suggest that the resulting scalability may come at
the price of accuracy for realistic sample sizes on anything
but very sparse causal structures. We hope to use our ap-
proach as basis to explore the trade-off between scalability
and accuracy in the future.
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A EXTENSION TO MULTIPLE
OVERLAPPING DATA SETS

A set of data sets is said to be overlapping if the sets of mea-
sured variables share some, but not all the same variables.
Tillman et al. (2009), Tillman and Spirtes (2011) and Tri-
antafillou et al. (2010) have explored causal discovery al-
gorithms in this setting under the assumption that the data
is passive observational in each data set and that the under-
lying causal model is acyclic. In particular, the approach in
Tillman and Spirtes (2011) uses R.A. Fisher’s technique of
pooling p-values to integrate test results from multiple tests
on the same set of variables. Hyttinen et al. (2013) extend
these approaches to include experimental data sets where a
subset of the variables has been subject to an intervention.
They also allow for feedback cycles in the generating mod-
els. However, their algorithm could not handle conflicting
constraints that arise from statistical data.

Our present procedure extends naturally to the completely
general setting of multiple overlapping experimental or ob-
servational data sets, and handles conflicted constraints. In
this setting the set of constraints K that enters into the con-
straint optimization is expanded to (in the general case)
include all possible constraints that can be obtained from
each of the individual data sets. Consider a constraint
k ∈ K obtained from an (experimental) data set D where
the (possibly empty) set of variables J ⊂ V was subject
to an intervention. The weight w(k) now enters into the
sum of weights for a graph G if the graph GJ 6|= k, where
GJ is the same as G except that all edges incident on any
variable in J are removed, i.e. GJ is the manipulated ver-
sion of G. The basic idea is that one simply has to keep
track of the experimental setting that the constraint was ob-
tained from, and use that as the basis for the minimization.
Consequently, the graph that our method returns is optimal
(in the sense of the problem statement) across the available
data sets.

Variables that are measured in one of the overlapping data
sets, but not in another, are treated as marginalized vari-
ables in the d-connection graphs for the latter data set. Be-

low, in Appendices C and F, we specify how to add an inter-
vention operation to the ASP-encoding while ensuring that
the d-connection properties are appropriately preserved for
the d-connection graphs that specify the test results for ex-
perimental data sets.

B PROBABILISTIC INTERPRETATION
OF THE LOG-WEIGHTS

Often the log-score can be interpreted in a probabilistic
way. Here we investigate the log-scores and their relation to
the problem formulation in Section 2 with this aim. Given
a set of constraints K, we set out to find G∗ such that

G∗ ∈ argmin
G∈G

∑
k∈K : G 6|=k

w(k)

w(k) = logP (k | D)− log[1− P (k | D)]

Now, let vector q be a binary vector indicating whether a
constraint is satisfied by a graph G with qi = 1 if the i:th
constraint is satisfied and qi = 0 if it is not, i.e. vector q
describes the equivalence class of graphs with respect to the
constraints K. Let vector p be the probability estimates of
constraints calculated from the data, i.e. pi = P (ki | D).
The optimization problem can now be re-described as

argmin
q

∑
i : qi=0

log pi − log(1− pi),

where we still (implicitly) require that vector q has to corre-
spond to some graph in the considered model space that sat-
isfies causal Markov and faithfulness. This formulation can
now be converted into an equivalent maximization problem



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

predicted probability of ind. (binned)

pr
op

or
tio

n 
of

 tr
ue

 in
d.

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

300 samples
500 samples
700 samples
900 samples
theoretical optimum

Figure 1: Calibration of probabilities. See text for details.

(adding constants does not change the optimal answer):

argmin
q

∑
i : qi=0

log pi − log(1− pi)

⇔ argmax
q

∑
i : qi=0

− log pi + log(1− pi)

⇔ argmax
q

∑
i : qi=0

[− log pi + log(1− pi)] +
∑
i

log pi

⇔ argmax
q

∑
i : qi=1

log pi +
∑

i : qi=0

log(1− pi)

⇔ argmax
q

∏
i

pqii (1− pi)1−qi

Thus, we are finding the vector q (representing an equiva-
lence class of graphs) that maximizes the probability dis-
tribution P (q | p), with the approximation that the ele-
ments qi are distributed mutually independently, with the
corresponding probabilities in the vector p. In fact, some
(in)dependence relations imply others, especially under the
assumption of Markov and faithfulness. But independently
run independence tests are not able to share this informa-
tion with each other. Instead, this is exactly the task of
conflict resolution: One has to find a q that corresponds to
at least on graph in the model space (and respects all the
implications between (in)dependences).

Suppose we further assume that the vector p exhausts all
information on q available in D, so that it forms a ‘suffi-
cient statistic’, that is (i) D ⊥⊥ q | p and (ii) p is a deter-
ministic function of D. In that case we have

P (q|D) = P (q | p).

So in our minimization we are essentially – modulo the as-
sumptions and approximations just specified – finding the
equivalence class of graphs that maximizes the posterior
probability.

instances (sorted for each line)

so
lv

in
g 

tim
e 

pe
r 

in
st

an
ce

 (
s)

●
●

●●●

●●
●●●

●●●
●

●●
●●●●●●●●

●●●
●●

●●
●

●●●
●

●●●●
●

●●●●●●
●

●
●●

●●
●

●●●
●●

●●
●

●●
●●

●

●
●●

●
●●

●●
●

●
●●●●●●●

●●
●●

●

●
●

●

●●●●
●●●

●
●

●●●●
●●

●●
●

●●●●
●

●●●
●●

●●

●●
●●

●
●●

●●●●
●●●●●●

●

●●

●
●

●●●●●●●

●●
●●●●

●●
●

●
●●●

●●
●●●●●

●●●

●

●

log−weights (new enc.) max cset = 3
log−weights (new enc.) max cset = 5

0 20 40 60 80 100

1
10

10
0

10
00

Figure 2: Solving times for the log-weighting scheme.

C INTERVENTION

Given a d-connection graph H = (V,E)C, the interven-
tion operation i(H, t) for variable t ∈ V results in d-
connection graph H ′ = (V,E′)C, where E′ is related to
E by (i) including in E′ any edges in E not involving t;
(ii) including in E′ any edge xa−t if there is an edge xa−t
in E; and (iii) not permitting any other edges in E′. Thus,
as is standard in the representation of interventions, edges
incident on the intervened variable are omitted (they are
not copied to E′). Note that the intervention operation can-
not be applied to a variable previously conditioned on or
marginalized, however these operation can still be applied
to a variable after intervention. In the case of conditioning,
the purpose of allowing an intervention before conditioning
is obvious: One wants to be able to express (in)dependence
constraints that condition on an intervened variable. In
the case of marginalization the possibility of intervening
is necessary in this representation of d-connection graphs
in order to reach (in)dependence constraints between non-
intervened variables in a data set where some variables
have been subject to intervention. Thus, with regard to
the “encoding DAG” in Figure 3, there are still multiple
options of where the intervention operations could be in-
cluded, since the order of intervention before marginaliza-
tion and conditioning only applies to each variable indi-
vidually. A variety of considerations may make one ar-
rangement of operations in the encoding DAG more use-
ful than another: One may prefer to integrate constraints
within one data set first, or one may want to integrate simi-
lar constraints across data sets first.

D PROOF OF THEOREM 1

Proof: Assume there is a path p of type xa · · · by that is d-
connecting given C′′ ⊇ C′ in H . Since p is d-connecting,
every collider on p is in C′′ and every non-collider is not
in C′′. In the conditioning operation all edges not adja-
cent to w are preserved. So the only parts of p that may
be broken in H ′ are due to edges connected to the newly
conditioned variable w. Since w ∈ C′′ and the path p is



d-connecting given C′′, it follows that w must be a collider
on p, which means it can only appear in components of the
type sa→w[↔w]∗← bt on the path p, where s 6= w, t 6= w and
the part in the brackets may appear zero or more times. Let
p′ be the path between x and y where all such components
are replaced by sa− bt. This replacement edge is in H ′ due
to rule (ii) in the definition of the conditioning operation.
Furthermore, since there is no other way to break a path,
p′ as a whole is present in H ′, and p′ is still d-connecting
given C′′. The path p′ will have the same end points as
path p, and thus a path of type xa · · · by is present in H ′ that
is d-connecting given C′′.

Assume there is a path p′ of type xa · · · by that is d-connecting
given C′′ ⊇ C′ in H ′. As all other edges in H ′ are just
copies of edges in H , for the path p′ not to exist in H there
must be edges sa− bt on the path p′ that are added by rule
(ii) in the definition of the conditioning operation. But then
for each such edge there has to be a triple sa→w← bt in H ,
as otherwise rule (ii) would not have added sa− bt to H ′.
Such a triple cannot be blocked since w ∈ C′′. Replacing
all edges not present in H by such triples similarly results
in a path p in H that is d-connecting given C′′ and still of
the type xa · · · by. �

The proof for the marginalization and intervention opera-
tions follow the exact same idea.

E FURTHER SIMULATIONS

Figure 1 shows the probability calibration plot for the esti-
mates of the probability of independence determined by the
model comparison described in Section 4.3. The estimates
are based on 300 causally insufficient and possibly cyclic
models under passive observation. The predictions were
divided into 10 bins with equal width, denoted by the black
lines in the plot. We then calculated how many times the
true result was in fact an independence. The filled circles
mark these true proportions against the predicted probabil-
ity for different sample sizes. The probabilities seem to
be roughly calibrated for the different sample sizes when
the prior is set to α = 0.5 (and the equivalent sample size
prior for the local-score is set to 20). The unfilled circles
show the proportions of predictions in each bin. Note that
for these sample sizes, the test does not yet predict a prob-
ability over 0.9 for an independence. This seems natural
since it is very hard to be sure of an independence, it might
just be a very weak dependence. Otherwise the high and
low probabilities are predicted more often when the sam-
ple size grows, while the probabilities in the middle bins
are predicted somewhat more often for lower sample sizes.

Figure 2 further explores the scalability of the method using
log-weights for 7-variable graphs. The running times are in
log-scale, and again the instances are sorted according to
their solving times. Limiting the maximimum conditioning
set size to 3, which already allows most inferences to be

made, cuts down the number of constraints and allows for
faster solving.

F FULL ASP ENCODING

Finally, we give the full ASP-encoding with the inter-
vention, conditioning and marginalization operations, pre-
sented in Figure 3. In the full encoding, an additional
set J is introduced that represents the intervention set. In
analogy with cond(V,C,J, z) and marg(V,C,J, z), the
input predicate intervene(V,C,J, z) enables intervening
on a variable z in a d-connection graph that has exactly the
variables V and conditioning set C.
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Conditioning on variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C ∪ z,J) :- th(x, y,V,C,J), cond(V,C,J, z).
th(x, y,V \ z,C ∪ z,J) :- th(x, z,V,C,J), hh(z, y,V,C,J),

cond(V,C,J, z).

hh(x, y,V \ z,C ∪ z,J) :- hh(x, y,V,C,J), cond(V,C,J, z).
hh(x, y,V \ z,C ∪ z,J) :- hh(x, z,V,C,J), hh(z, y,V,C,J),

cond(V,C,J, z).

tt(x, y,V \ z,C ∪ z,J) :- tt(x, y,V,C,J), cond(V,C,J, z).
tt(x, y,V \ z,C ∪ z,J) :- th(x, z,V,C,J), th(y, z,V,C,J),

cond(V,C,J, z).

Marginalizing a variable z ∈ V, ∀x, y ∈ V \ z:
th(x, y,V \ z,C,J) :- th(x, y,V,C,J),marg(V,C,J, z).
th(x, y,V \ z,C,J) :- tt(x, z,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
th(x, y,V \ z,C,J) :- th(x, z,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
th(x, y,V \ z,C,J) :- tt(x, z,V,C,J), hh(z, y,V,C,J),

marg(V,C,J, z).
th(x, y,V \ z,C,J) :- th(x, z,V,C,J), tt(z, z,V,C,J),

hh(z, y,V,C,J),marg(V,C,J, z).

hh(x, y,V \ z,C,J) :- hh(x, y,V,C,J),marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- th(z, x,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- hh(x, z,V,C,J), th(z, y,V,C,J),

marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- th(z, x,V,C,J), hh(z, y,V,C,J),

marg(V,C,J, z).
hh(x, y,V \ z,C,J) :- hh(x, z,V,C,J), tt(z, z,V,C,J),

hh(z, y,V,C,J),marg(V,C,J, z).

tt(x, y,V \ z,C,J) :- tt(x, y,V,C,J),marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- tt(x, z,V,C,J), tt(z, y,V,C,J),

marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- th(x, z,V,C,J), tt(z, y,V,C,J),

marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- tt(x, z,V,C,J), th(y, z,V,C,J),

marg(V,C,J, z).
tt(x, y,V \ z,C,J) :- th(x, z,V,C,J), tt(z, z,V,C,J),

th(y, z,V,C,J),marg(V,C,J, z).

Intervening on a variable z ∈ V, ∀x, y ∈ V:
th(x, y,V,C,J ∪ z) :- th(x, y,V,C,J), z 6= y,

intervene(V,C,J, z).
hh(x, y,V,C,J ∪ z) :- hh(x, y,V,C,J), x 6= z, y 6= z,

intervene(V,C,J, z).
tt(x, y,V,C,J ∪ z) :- tt(x, y,V,C,J), intervene(V,C,J, z).

Inferring failures to satisfy (in)dependencies ∀x∀y > x,∀C,V = {x, y}:
fail(x, y,V,C,J,W ) :- tt(x, y,V,C,J), indep(x, y,V,C,J,W ).
fail(x, y,V,C,J,W ) :- th(x, y,V,C,J), indep(x, y,V,C,J,W ).
fail(x, y,V,C,J,W ) :- th(y, x,V,C,J), indep(x, y,V,C,J,W ).
fail(x, y,V,C,J,W ) :- hh(x, y,V,C,J), indep(x, y,V,C,J,W ).
fail(x, y,V,C,J,W ) :- not th(x, y,V,C,J), not th(y, x,V,C,J),

not hh(x, y,V,C,J), not tt(x, y,V,C,J),
dep(x, y,V,C,J,W ).

Weak constraints ∀x∀y > x,∀C,J,V = {x, y}:
:∼fail(x, y,V,C,J,W ). [W ]

Figure 3: The ASP encoding, including the encoding of the
intervention operation.
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