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Abstract—Similarity joins have attracted significant interest,
with applications in Geographical Information Systems, astron-
omy, marketing analyzes, and anomaly detection. However, all
the past algorithms, although highly fine-tuned, suffer an output
explosion if the query range is even moderately large relative to
the local data density. Under such circumstances, the response
time and the search effort are both almost quadratic in the
database size, which is often prohibitive. We solve this problem
by providing two algorithms that find a compact representation of
the similarity join result, while retaining all the information in the
standard join. Our algorithms have the following characteristics:
(a) they are at least as fast as the standard similarity join algo-
rithm, and typically much faster, (b) they generate significantly
smaller output, (c) they provably lose no information, (d) they
scale well to large data sets, and (e) they can be applied to any
of the standard tree data structures. Experiments on real and
realistic point-sets show that our algorithms are up to several
orders of magnitude faster.

I. INTRODUCTION

In numerous applications, such as Geographical Information
Systems, office management systems, anomaly detection and
astrophysical analyzes, one is often interested in pairs of
records that are similar to each other. Such queries can be
formulated as similarity joins: queries that ask for pairs of
records from a data set that fall within a specified range based
on some metric. Checking each pair of entries individually
requires O(n2) work, where n is the size of the database.
Numerous algorithms and data structures have been developed
to reduce the computational effort of similarity joins. Most of
these strategies use distance information to eliminate those
tuples that cannot satisfy the query.

Current algorithms are only concerned with the search for
pairs of points satisfying the range query and largely disregard
whether the produced output is useful. However, when the
local data density is large compared to the query range, the
output of a similarity join becomes unwieldy. A group of k
data points in a locally dense region likely results in O(k2)
pairs satisfying a specified range query. We refer to this
situation as an output explosion, since the output becomes
quadratic rather than linear in the number of data points.
We present two similarity join algorithms that control this
output explosion while retaining all the information by using
a compact representation of the join output.

The literature contains two general approaches to similarity
joins. The first assumes the data is stored in a tree structure
[1]. The second makes no assumptions about the presence of
an index (e.g. the ε-grid-order [2]). Our idea of compressing
the output can be applied to both cases. Here we focus on the
former case, where an index is given. Our approach typically
reduces both the I/O and computation time. At worst, the
algorithm takes the same amount of time as a standard efficient
similarity join algorithm.

The compact representation lends itself to two important
tasks: storage savings of results and mining of outliers. First
note that the compact output of join queries can be stored
efficiently, allowing fast further processing later, a common
desire. For example, when an astronomer submits a query
to the National Virtual Observatory (NVO), the request is
forwarded to several services. The results from these services
are returned through and combined by NVO servers. Since the
different services return asynchronously, the NVO server will
need to store the results until the entire query is answered and
retrieved by the astronomer. As this process may take several
days, it is important for the results to be as small as possible
in order to ensure that all users may be served in an efficient
manner.

Secondly, a compact representation will highlight unusual
pairs. As we explain later, our algorithms produce groups
of pairs so that any two members of the group satisfy the
query range. Small-size groups could correspond to outliers,
drawing further attention upon them. Applications for this sort
of analysis exist in areas such as financial analysis (correlating
stock trades to detect fraud) as well as astrophysics, (where
an unusual pair of galaxies might be of particular interest to
further study [3]).

A. The Problem
We propose a solution to the following problem: Given a

set of n data objects in a metric space, stored in a set of
metric index tree structures, produce a compact representation
of the output of a similarity or spatial join query. In particular,
we desire a solution that requires minimal (and ideally no)
changes to the index structure, and avoids the output explosion
problem by not explicitly enumerating all qualifying pairs in
the output. For ease of exposition we will focus on when the



metric space can be written as a vector space, although we
will mention necessary changes for general metric spaces. We
call a pair of data points that falls within the query range
ε a “link” and a set of data points that mutually satisfy the
query range a “group”. Given the nature of the problem and
the computational limitations there are several desiderata for
our algorithm:
Speed

The algorithm should be no slower than a standard
similarity join.

Correctness
The generated compact representation should be
provably equivalent to the traditional representation:
it should have no missing links, and no extra links.

Scalability
The algorithm should scale well with the number of
records.

Index-Independence
The algorithm must be able to run on standard data
structures, with minor or no changes.

We now discuss different similarity join and clustering
approaches in the literature and show why they are insufficient
for our problem.

II. RELATED WORK

While there has not been any work that specifically ad-
dresses the output explosion problem, one can imagine solving
it by first computing the similarity join and subsequently
compressing the result. This approach is appealing as there
has been a great deal of work on both efficiently processing
similarity join queries and clustering data. However, there are
a number of difficulties in combining these techniques, which
we shall now discuss.

A. Similarity Joins
There is an extensive literature on efficiently performing

similarity joins using a variety of data structures and data
assumptions. These methods partition the parameter space
into smaller (possibly overlapping) sub-regions in the d-
dimensional parameter space.

The most popular of these methods use tree based structures
to bound the distances of each branch to the target, allowing
for pruning. Typical tree structures include R-trees [4], R∗-
trees [5], M-trees [6] and Filter trees [7], [8], which primarily
differ on how they store large objects. Additional speed-ups
are obtained by optimally ordering the access of children in
branch nodes and the objects in leaf nodes [1]. Other opti-
mizations have been suggested by [9], [10]; [11], [12] present
improvements specifically designed for high dimensional data.

Alternatively, methods such as Spatial Hash-Joins [13],
Partition Based Spatial Merge Joins [14] and the ε-grid-order
method [2] do not compute a tree structure, but explicitly or
implicitly bucket the data based on a partition of the parameter
space. Queries then need only be performed on the relevant
buckets allowing the majority of the parameter space to be
pruned. However, both these techniques and the tree based

methods explicitly enumerate all links of the similarity join,
resulting in an output explosion for the cases we are concerned
with here.
B. Clustering

Clustering algorithms can broadly be split into four cate-
gories: means/mediod-based algorithms, hierarchical cluster-
ing algorithms, clustering using specialized structures and
graph clustering algorithms. k-means/mediod algorithms and
their variants (e.g. CLARANS) choose k initial medoids,
calculate the average distance to them and then attempt to
sample better means/medoids [15], [16], [17]. Hierarchical
clustering algorithms (e.g. CLIQUE [18]) join nearby points
into clusters based on a user defined clustering “granularity”
Consequently, clustering decisions can be made locally, since
no optimization over the whole data is required. The BIRCH
algorithm [19] is related to hierarchical clustering methods, but
uses its own specialized structure. It is built around a CF-tree
which makes maximum use of the available memory while
providing the count, center and sum of squares of the data at
each node. It produces good clusters in just one pass over the
data and was specifically designed to adhere to I/O-limitations.
Finally, graph clustering algorithms based on minimum cuts
(e.g. CHAMELEON [20]) identify data clusters by connecting
nearby data points. Clusters are then separated into groups by
cutting the smallest number of links.
C. Limitations of Clustering Methods for Compact Similarity
Joins

While post-processing the results of a similarity join us-
ing one of the above clustering algorithms would result in
compressed output, none of the clustering algorithms are
sufficient to solve the compact similarity join problem due
to the additional constraints the join problem imposes. Post-
processing using clustering will fail to meet our needs due to
one or more of the following reasons:
Cluster Shape

Arbitrary cluster shapes (e.g. k-means/ mediods and
sampling based algorithms) cannot guarantee that all
points within a cluster mutually satisfy the query
range.

Runtime
Similarity joins are already expensive; adding a clus-
tering algorithm for post-processing will make them
even slower. This restriction excludes hierarchical
and graphical methods as well as BIRCH1.

RAM Limitations
As we are primarily concerned with cases where an
output explosion occurs, it is impossible to hold all
links in RAM — excluding any graphical approaches
based on minimum cuts.

III. METHOD

An output explosion occurs for a data set when multiple
points fall within a hypersphere with a radius equal to the

1The CF-tree would have to be reconstructed each time to be optimal for
each new query range.
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Fig. 1. An illustration of the output difference for a standard similarity join
(solid lines) and our compact similarity join (dotted circles). Note that we
reduce the 8 links shown in the diagram to 3 groups ({1, 2, 3, 4}, {4, 5} and
{6, 7}), a space savings of 50%.

21 3 4 5

Fig. 2. An example data set with multiple optimal compact representations,
when ε = 3. Solid lines indicate the output of a standard similarity
join. One optimal compact representation of this join are the three groups:
{1, 2, 3, 4}, {2, 5} and {3, 4, 5}. This example also results in a space savings
of 50%.

range query. In these cases, instead of simply returning all
pairs of points, we can return groups of points that mutually
satisfy the query radius. If a group we return has k points,
this implies that all the

(

k
2

)

pairs of data points in the group
satisfy the query. For large k the savings are enormous: our
approach reports all k points once, whereas other similarity
join algorithms return all O(k2) links individually.

Figure 1 shows 7 data points, with a query range, ε, given
by the diameter of one of the dashed circles. The standard
similarity join outputs the eight pairs of data points that fall
within the query range (represented by the lines between two
data points). Instead, a compact representation outputs only 3
groups which contain points that all mutually satisfy the query
range; these groups are {1, 2, 3, 4}, {4, 5} and {6, 7}. Note that
it is possible for points to appear in more than one group, as
is the case for point 4. Nevertheless, the output is linear rather
than quadratic in the number of points. The circles in Figure
1 show the optimal compact output for the problem.

While the compact representation for the example given
in Figure 1 is unique, this does not generally hold. For
instance, consider the task of placing the integers on the
real line 1, 2, 3, . . . , 5 into groups with ε = 3, shown in
Figure 2. A standard similarity join would return 9 pairs:
{1, 2}, {1, 3}, {1, 4}, {2, 3}, . . . , {4, 5}. One optimal approach
is to create the groups: {1, 2, 3, 4}, {2, 5}, {3, 4, 5}. Similarily
the groups {1, 2, 3}, {1, 4}, {2, 3, 4, 5} are also optimal. In
both cases, we reduce 9 links to 3 groups, resulting in
a 50% output size savings. However, finding an optimum
configuration requires a search for the optimal link-graph
partition into cliques, which is NP-complete. In this work,
we give a near-optimal solution that results in significant time
and space savings.

IV. ALGORITHMS

We propose two algorithms to compute the similarity join
of a data set in our compact notation. We only assume that the

minimum and maximum distance (similarity) between any two
nodes in the tree data structure can be calculated efficiently.
This assumption has negligible implications, since most tree
structures contain some form of a bounding shape for each
node. In particular, these assumptions are upheld by all the
commonly used tree structures (e.g. R-trees, R*-trees and
Metric trees).

A. Standard Similarity Join Algorithm (SSJ)
A standard similarity join (SSJ) algorithm serves as our

benchmark both in terms of runtime and output length. This
algorithm recursively descends the tree and outputs all links
individually. As such, the number of output links does not
depend on the underlying tree structure. However, timing
variations are observed due to structure differences in the tree
resulting from the order in which data point were inserted.

B. Naive Compact Similarity Join Algorithm (N-CSJ)
Tree structures tend to group nearby points to facilitate

quick retrieval of neighbors and executions of range queries.
Thus, we can modify the standard similarity join algorithm to
exploit the tree’s grouping. If the tree structure groups the data
well, then the majority of the links will be contained within a
single subtree; only a small fraction will cross over between
two tree nodes.

Given a query range ε, N-CSJ recursively descends the
tree checking whether the maximum distance contained in the
bounding shape of each subtree is smaller than ε. If so, the
algorithm creates a group that contains all data points in that
subtree, using the bounding shape of the node as the group
boundary. If not, N-CSJ continues the recursion as before. No
effort is made to group links that bridge nodes within the tree
structure. In particular, if the bounding shape of a leaf node
has a maximum diameter greater than ε then no clusters will
be formed and all links will be output in a individually, just
as with the SSJ algorithm.

When the maximum diameter of a tree node N is less than
the query range, we need only access each sub-node of N
once to write out the group. Moreover, since all pairs of data
points in N satisfy the query range, no additional distance
computations are necessary. Thus, N-CSJ will be faster than
SSJ when there are nodes with diameters less than the query
range, otherwise, N-CSJ will reduce to SSJ. The pseudo-code
for N-CSJ is given in Figure 3 where ncsj is true. The early
stopping clauses that differentiate SSJ and N-CSJ are shown
in italics.

C. Compact Similarity Join Algorithm (CSJ)
Depending on the query range and how the data is grouped

within the tree structure there may be many links that cross the
nodes’ bounding shapes and/or there may be few tree nodes
that fall completely within the query range, resulting in links
being returned individually.

Our second algorithm attempts to merge these links into
the g most recent groups. Whenever we are confronted with
an individual link, we consider the maximum distance the



1 SIMJOIN(TreeNode n){
2 if maximum diameter of n < range
3 createNewGroup(n)
4 if n is leaf{
5 for each pair of objects of n : pair
6 if distance between items of pair < range
7 if ncsj
8 output(pair)
9 else // if csj(g)

10 mergeIntoPrevGroup(pair)
11 } else{
12 for each child of n : a
13 simJoin(a)
14 for each child of n with index > a : a’
15 if min distance between a and a’ < range
16 simJoin(a, a’)
17 }
18 }

19 SIMJOIN(TreeNode n1, TreeNode n2) {
20 if maximum diameter of \{n1, n2\} < range
21 createNewGroup(\{n1, n2\})
22 if n1 and n2 are leaves {
23 for each object of n1 : o1
24 for each object of n2 : o2
25 if distance between o1 and o2 < range
26 if ncsj
27 output(pair(o1, o2))
28 else // if csj(g)
29 mergeIntoPrevGroup(pair(o1,o2))
30 } else if n1 is leaf {
31 for each child of n2 : c2
32 simJoin(n1, c2)
33 } else if n2 is leaf {
34 for each child of n1 : c1
35 simJoin(c1, n2)
36 } else {
37 for each child of n1 : c1
38 for each child of n2 : c2
39 simJoin(c1, c2)
40 }
41 }

42 MERGEINTOPREVGROUP(PAIR P) {
43 for(i in 1 to g of recent groups){
44 extend MBR of group i to include p
45 if (diameter of MBR < range)
46 include p in group i, return;
47 else
48 undo extension of MBR
49 createNewGroup(p)
50 }

Fig. 3. High level pseudo-code for Similarity Joins. Lines in italic font
indicate differences between standard (SSJ) and compact join algorithms
(NCSJ & CSJ(g))

bounding shape would contain if it were extended to include
the link. If that distance is smaller than the query range, the
link is merged into the group by extending the bounding shape,
if necessary. Due to the inherent grouping of the indexing
structure, a link is most likely to fit into one of the recent
groups since they are likely to be in the proximity of this link.
If the algorithm cannot fit a link into one of the g previous
groups, a new group containing just that link is created. Results
for various values of g are shown in Section VI. Figure 3
provides the pseudo-code for CSJ(g) when ncsj is false.

The crucial addition compared to N-CSJ is the merge-
into-previous-groups routine. This routine allows CSJ(g) to

incorperate links which cross the subtrees into the compact
representation, reducing the overall output size. Thus, the ob-
served output difference between N-CSJ and CSJ(g) yields an
estimate of the fraction of output links which cross the subtree
structure. As we will see in Section VI-A, this difference is
often on the order of a factor of two, indicating that a majority
of the clusters include links which cross the subtree structure.

D. Algorithm Extensions

The algorithms are implemented as self-joins, but can
easily be adapted for spatial join queries, where two trees
containing different data sets are joined. The algorithms have
two subroutines: one for operating on single nodes for self-
self joins, and a second that, given two nodes, performs joins
between the nodes. In the case of a spatial join only the latter
dual tree join is called using a tree from each data set. In this
setting the pruning during the compact spatial join allows us
to indicate that an entire sub-region from each type of tree is
within the query range. If the nodes in the two data sets have a
different distribution, the inclusion check will often fail. This
indicates that the resulting spatial join is unlikely to contain
an output explosion. In general, an output explosion occurs
if both data sets have a large number of points in the same
regions of parameter space. When this is the case, the indexing
trees will place small nodes in these dense areas, to ensure the
tree remains balanced. Thus, we expect nodes of the two trees
to have similar coverage in the areas where there is a risk of
output explosion.

Once the compact output is generated, it allows for efficient
storage. Individual links can easily be recovered by expanding
the returned groups. However, one could use the compact
representation to focus on particular regions of interest, or,
pass the compact representation to other algorithms for fur-
ther savings. We believe this latter approach of maintaining
the savings is the more interesting. There may be many
applications that use similarity join output that (with minor
adjustments) could perform their operations on and benefit
from the compact representation. For example, if the aim is
to search for outliers based on the join output, a compact
representation already provides a type of pre-sort. After all,
we would expect outliers to be separate from large groups of
data, so the focus should be on the small groups returned by
the compact similarity join.

E. Algorithm Completeness and Correctness

Theorem 1 (Completeness): Given a query range ε, let p1

and p2 be any two data points such that ||p1 − p2|| ≤ ε. The
output of N-CSJ and CSJ(g) contains the link l(p1, p2).

Proof: (Outline) Let Ni with i = 1, 2, . . . be the leaf node
of the tree data structure storing the points p1 and p2, let Gj

with j = 1, 2, . . . be a group created to compact the output
of N-CSJ or CSJ(g) and let maxMBR(O) be the maximum
diameter of the minimum bounding shape of object O.
Case 1: p1, p2 ∈ N1 and maxMBR(N1) ≤ ε



The early stopping rule will create a group G1 for all
members of N1 and consequently, p1 and p2 will be
output in G1. Hence, the output of N-CSJ and CSJ
will implicitly contain l(p1, p2) (in G1).

Case 2: p1, p2 ∈ N1 and maxMBR(N1) > ε
When N-CSJ or CSJ(g) hit N1, both algorithms
check all pairwise combinations of points for sat-
isfaction of the query range. In N-CSJ, all pairs
satisfying the query range are enumerated individ-
ually in the output, hence p1 and p2 are output as a
separate link. CSJ(g), when it finds link l(p1, p2) will
attempt to merge it into the g most recent groups. A
successful merge only occurs if, when p1, p2 ∈ Gj

for some j ≤ g, then maxMBR(Gj) ≤ ε. In that
case p1 and p2 are included in Gj and hence the
output of CSJ(g) will implicitly contain l(p1, p2) in
Gj . If the merge attempts are unsuccessful, CSJ(g)
will create a new group Gg+1 containing p1 and p2

defined by MBR(l(p1, p2)). Hence, the output will
implicitly contain l(p1, p2) in Gg+1.

Case 3: p1 ∈ N1 and p2 ∈ N2

If maxMBR(N1, N2) ≤ ε then, similar to case 1,
l(p1, p2) is (implicitly) contained in the output due
to the early stopping rule. Otherwise, all pairs of data
points in the two leaves will be considered and the
case is similar to case 2.

Theorem 2 (Correctness): Let p1 and p2 be points con-
tained in a group G in the output of N-CSJ or CSJ(g). Then
||p1 − p2|| ≤ ε.

Proof: (Outline) Suppose ||p1 − p2|| > ε.
Case 1: p1, p2 ∈ N1

Then maxMBR(N1) > ε. Hence the algorithms will
consider each pair individually. p1 and p2 will not
satisfy the query range, hence N-CSJ will not output
them among the individual links, i.e. there is no G
in the N-CSJ output that would contain the points.
Contradiction.
In the case of CSJ(g) the only further case we
have to consider is if there is a point p3 such that
||p1 − p3|| ≤ ε and ||p2 − p3|| ≤ ε and p1, p3

are already contained in one of the g most recent
groups, say Gg∗ . When CSJ(g) considers merging
the link l(p2, p3) into the g most recent groups
then the algorithm will attempt to extend Gg∗ to
include p2, p3, but then maxMBR(Gg∗) > ε due to
||p1 − p2|| > ε and the merge will fail. Hence, there
is no G in the CSJ(g) output that would contain the
points. Contradiction.

Case 2: p1 ∈ N1 and p2 ∈ N2

Then maxMBR(N1, N2) > ε. So the algorithms will
consider each pair of points individually and we have
the same situation as in the previous case, again a
contradiction of the supposition that ||p1 − p2|| > ε.

V. FURTHER THEORETICAL NOTES

Given a query range ε, our aim is to compact the output of
a similarity join query into one or more groups, where each
group guarantees that all points it contains mutually satisfy the
query range. This problem has a well-defined, though possibly
non-unique optimal solution. However, given the complexity
of the problem we face many trade-offs between computational
tractability and approaching an optimal solution. Here we
discuss why we believe the approaches above strike the best
balance between near-optimal space and fast response time.

A. Group Shapes: Inclusion and Exclusion
Given a group of data points that mutually satisfy the

query range, and a test point, we want to quickly determine
whether or not the given point is within the query radius
of each point in the group, and hence can be added to the
group. The naive approach of computing the distance between
between all members of the group and the new point to ensure
the query radius is satisfied, becomes prohibitively expensive
when group sizes become large — that is, whenever output
explosions occur. Thus, to ensure that our compact similarity
join is as fast as the standard similarity join for all possible
data sets, we restrict grouping operations to those which can
be performed in constant time.

One approach to quickly check the group membership
is to store a bounding shape for each group. Then, when
membership queries are performed, one need only check that
the maximum distance between the point and the bounding
shape satisfies the query range. In two dimensions the bound-
ing shape that contains the most area such that any pair of
points within that area mutually satisfy a query range ε is a
circle of diameter ε. Using circles for bounding shapes makes
the inclusion check very simple. However, determining the
optimum centers for the bounding circles adds a cost that
depends exponentially on the number of dimensions [21].

Instead, we approximate groups with a minimum bounding
hyper-rectangle, and require that the maximal diagonal of
this hyper-rectangle is less than the query range. Membership
checks, as well as insertions and updates of the boundary for
hyper-rectangles can be computed in constant time. Hyper-
rectangles are obviously a conservative estimate of the true
group’s size and hence do not produce optimal grouping.
However, since many tree structures utilize hyper-rectangles
as bounding shapes for tree nodes, these shapes can be used
directly, eliminating the need to compute bounding shapes in
many situations.

B. Insertion Ordering
It is not clear how to choose the best group into which

a link should be inserted, such that the sum of sizes of
all groups is minimized. Keeping a list of groups (in order
of creation) and inserting links one at a time into the first
group in which they fit (creating new groups as needed)
does not provide the optimally compact solution, as seen in
the following example. Take 10 points evenly spaced along
a line with values from 1 to 10. Using a query range of



7, add the links which satisfy the query range in sorted
order (e.g. 1 − 2, 1 − 3, . . . , 1 − 10, 2 − 3, . . . , 9 − 10). The
resulting groups are {1, 2, 3, 4, 5, 6, 7, 8}, {2, 3, 4, 5, 6, 7, 8, 9}
and {3, 4, 5, 6, 7, 8, 9, 10}, which implicitly contain many
of the same links. Moreover, the links can be represented
more concisely by the groups {1, 2, 3, 4, 5, 6, 7, 8}, {2, 9} and
{3, 4, 5, 6, 7, 8, 9, 10}, corresponding to a different insertion
order. While the links represented in both sets of groups are
the same, we prefer the more compact representation, as it will
save disk space and hence algorithm runtime. In this example,
the savings are roughly 50%, but in larger data sets we have
observed the difference to be much more substantial.

This grouping problem becomes more difficult once it is
extended into more dimensions as it is not clear how to arrange
the groups to minimize their collective size. Naively, one could
check all possible partitions of a set of points to find the
optimal grouping. However, the number of partitions of a set of
n points is given by the Bell numbers2: BN+1 =

n
∑

k=0

Bk

(

n
k

)

,
where B0 = 1. Clearly, even when considering small numbers
of data points this is infeasible.

The grouping problem manifests itself in two ways. First,
when descending the index tree, one would ideally want to
consider all possible partitions of the children for grouping.
While this will not guarantee an optimal grouping overall, it
will guarantee an optimal grouping of these particular subtrees.
However, the branching factor of the underlying tree structure
will greatly affect the feasibility of such an approach; since
R-trees usually have 50 to 100 children at each node, this
sort of computation would be prohibitive. The second way in
which we confront the ordering problem is when the algorithm
reaches a leaf node that it cannot fit into one group. Ideally one
would want to consider all partitions of the data points at this
leaf. In the first case, we sidestep the problem by considering
all pairwise combinations of child nodes or leaves. In the
latter case we are forced to add the links sequentially into
the previous groups.

VI. SPECIFIC EXPERIMENTS AND RESULTS

We tested both algorithms on several different real and
synthetic data sets, using computation time and output size
as measures of performance. We assume that the data is given
in a standard tree data structure (R∗-tree by default). Runtime
is measured from the moment the algorithm is started until the
last tuple of the complete exact result of the query is written
to disk. Consequently, runtime will include all disk accesses.
Output size is measured by the size in bytes of the resulting
output text file. Each data point is zero-padded to ensure it
is represented by the same fixed number of bits. A link is
written as a single line in the output file containing the two
data points, e.g. 0001 0002, while a cluster is written as the
line 0001 0002 0003. . . .

All data sets were normalized to fit into the unit square.
We consider 9 different query range values equally spaced

2See Eric Weisstein, Mathworld,
http://mathworld.wolfram.com/BellNumber.html

on a log-scale, between 2−9 and 1
2

, allowing us to compare
the performance of very small query ranges with larger ones.
We consider four different data sets, three of which are real
world examples. These data sets were chosen as several of
them are common in the literature, and their relatively small
sizes allowed us to build the corresponding tree structures
quickly. However, utilizing small data sets results in output
explosions occurring only at relatively large query ranges (as
the overall density is low). The synthetic and Pacific NW data
sets illustrate the effect of larger data sets.
MG County

Montgomery County Data with 27K datapoints (2D,
real).

LB County
Long Beach County Data with 36K datapoints (2D,
real).

Sierpinski3D
100,000 datapoints from a Sierpinski pyramid (3D).

Pacific NW
Road segments in the states of Washington, Ore-
gon and Idaho taken from the U.S. Census Tiger
database3 with 1.5 million datapoints (2D, real).

Scatter plots of the data sets are shown in Figure 4.
Except for experiment 4, we used the Spatial Index Library

at UC Riverside, a standard R*-Tree implementation devel-
oped by Marios Hadjieleftheriou 4.

A. Experiment 1: Computation Time and Output Reduction
For each data set and for each query range value we

compared N-CSJ and CSJ(g) with the standard similarity join
(SSJ). In the case of CSJ(g) we varied the number of recent
groups that were considered in a merge of a new link with
g ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100}. For each algorithm and each
query range we ran 25 iterations. The results are shown in
Figure 5, where we plot time (left) and space (right) as a
function of query range. For clarity Figure 5 shows the curves
for SSJ, N-CSJ and CSJ(10) only. As we show in Figure 6, the
performance difference between CSJ(g) for different values of
g is minor in comparison to the difference between any CSJ(g)
and SSJ or N-CSJ.

For the Montgomery County data we measured the time
and space requirements just among the versions of CSJ(g)
algorithm. The results are shown in Figure 6, where g is plotted
on the x-axis and the y-axis is linear unlike the previous
plots. This figure shows that space savings of about 20% can
be achieved by considering the 10 most recent groups with
virtually no time expense. For larger values of g there are no
additional savings.

Several general trends can be observed:
1) N-CSJ outperforms the SSJ in both space and time for

all data sets we considered. For large query ranges N-
CSJ is strictly better, while for small query ranges it
matches the performance of SSJ.

3See: http://www.census.gov/geo/www/tiger/index.html
4See http://www.cs.ucr.edu/˜marioh/spatialindex/



Fig. 4. Scatter plots of four data sets we consider. The third is a 3D Sierpinski pyramid, the other three are real world data sets. The Montgomery and Long
Beach County data sets are common in the literature. The fourth data set is comprised of all the road segment endpoints in the states of Washington, Oregon,
and Idaho (U.S. Census Tiger database).

2) CSJ(10) outperforms N-CSJ and SSJ in every case.
Again, for small query ranges CSJ(10) does as well as
the others while there are significant savings for large
query ranges. In particular, it has significant additional
space savings compared to N-CSJ, resulting in both time
and space savings over SSJ.

3) The query range at which SSJ diverges from N-CSJ and
CSJ(g) is a function of data set size and density.

4) The results are consistent even for the large Pacific NW
data set with 1.5 million data points.

5) The additional gains of CSJ(g) diminish rapidly as
the number g of recent groups that are considered for
merging a new link increases (see Figure 6).

B. Experiment 2: Scalability (Number of Data Points)
To test the effects of output explosion, we generated data

sets with different numbers of data points from a 3D Sierpinski
pyramid. For a fixed query range of 0.125, we measured the
runtime and output size of the algorithms, shown in Figure
7 plotted in a linear scale. As expected, the SSJ algorithm
results in (quadratic) output explosion. For large numbers of
data points, we provide estimates (filled as opposed to empty-
signs), since they exceeded free disk space on the system.
In comparison, the curves of N-CSJ and CSJ(g) have a near
linear increase in both performance measures, indicating that
the algorithms control the output explosion. This compression
of a quadratic to a linear output size was similiar to the optimal
output given for the example problem discussed in Section III.

C. Experiment 3: Distribution of Savings
To determine where the observed savings arise in the pre-

vious experiments, we measured the computation time of the
algorithm with and without disk accesses. Experiments show
that there is no significant difference in the number of disk
page and cache accesses between the algorithms, regardless
of the page and cache sizes. However, Figure 8 illustrates
substantial differences in computational and disk write times
between the algorithms. To quantify this difference, we mea-
sured the computation time of the algorithms both with and
without writing the output to the disk. Results depend on the
size of the query range, how the data is distributed, and how
well the data is grouped by the underlying tree structure. Most
of the time savings come from the early stopping criterion,
while moderate savings can be attributed to smaller output
files, and hence less disk I/O.

D. Experiment 4: Different Tree Structures
We implemented the algorithm for several different under-

lying tree structures, including R∗-trees, R-trees and Metric
trees. Recall that the only requirement the algorithm assumes
of the data structures is the ability to easily calculate the
maximum and minimum distance between any pair of subtrees.
This is satisfied by all data structures we considered since they
all contained some form of bounding shapes.

Preliminary experiments on a variety of data sets found
no significant difference in any of the performance measures
for any of the algorithms, demonstrating our algorithms can
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Fig. 5. Results for Experiment 1 on MG County, LB County, Sierpinski3D and Pacific NW, data sets, respectively (rows). All axes logarithmic. Left column:
time versus query range; right column: output size vs query range. Full, black shapes stand for estimated values, due to crash. The traditional SSJ crashes or
loses consistently, often by several orders of magnitude.
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be easily applied to any tree structure. Nevertheless, the fact
that there were virtually no differences is surprising, as we
had expected that the different branching and balance factors,
as well as the different techniques for partitioning the data
(overlapping or non-overlapping bounding shapes) would have
an effect on the gains our algorithm. We plan to pursue this
topic in future work.

VII. DISCUSSION

The experiments in Section VI show that our algorithms
solve the first problem we posed: compaction of results in the
case of an output explosion with no additional computation
requirements. However, since both of our algorithms only
assume the inclusion property – parent minimum bounding
regions (MBRs) include children MBRs – it follows that these
results are not restricted to data sets comprised of data points.
In particular, the algorithms are equally applicable to metric
space, and the gains carry over. Hence, problem 2 is solved
as a corollary of the solution we provide for problem 1. The
inclusion property is the only essential requirement any index
structure must satisfy.

In this work, we have focused on instances where an index
structure is given by some tree that stores the data. While
this situation is natural with many database applications (as
databases often use R-tree variants to store spatial data), it
is clearly not universal. Without an index, one would have to
build a tree structure on top of the data in order to use the
algorithms we presented. Bulk loading algorithms exist that
speed up the process [22], [23], [24]. However, tree creation
is expensive in computation time and memory. As a result,
several techniques for similarity joins have been developed
for situations where one does not have the tree structure at



one’s disposal. These techniques include the powerful ε-grid-
ordering, [2] that extend similarity joins to massive multi-
dimensional regimes. While not the focus of this paper, we
note that the ideas we present can be extended to the ε-grid-
ordering algorithm. In particular, one need only modify the
JoinBuffer function in [2]’s work to add the early termination-
as-a-group case.

VIII. CONCLUSION

We have addressed the problem of output explosion in
similarity joins. We have shown that a win-win is possible
for a compact similarity join: We can vastly reduce the size
of the output of a similarity join and at the same time achieve
a faster runtime. This is a huge benefit given how expensive
similarity joins are in the first place.

The contributions of this work are the following:
• Identification of the output explosion issue.
• Proposal of a family of solutions, the compact similarity
join algorithms (“naive” and with windows).

• Proofs that our algorithms report exactly the same infor-
mation as the traditional similarity joins do.

• General algorithmic design which can be applied directly
to any indexing tree. Algorithms can be applied to both
vector and metric data sets, as they only require that
parent nodes completely cover their children.

• Guidelines on parameter tuning: Even the “naive” N-
CSJ achieves significant performance savings; the more
elaborate CSJ(g) is even better, achieving a “sweet-spot”
when the window size g is ∼ 10.

• Extensive experiments on real and synthetic data, illus-
trating (a) the scalability of our methods with respect
to database size N , and (b) dramatic savings over the
traditional similarity joins, by up to several orders of
magnitude, with respect to both space and time.

A promising future research problem is the analysis of the
response time of the methods as a function of the query
range ε, and also as a function of the intrinsic (“fractal”)
dimensionality of the input data set.
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