Causation and Intervention

Frederick Eberhardt



Abstract

Accounts of causal discovery have traditionally split into approaches based on
passive observational data and approaches based on experimental interventions
that take control of (the distribution of) one or more variables. The former
includes a vast number of techniques for the inference to causal structure on
the basis of statistical features of data, while the latter provides in addition a
methodology of how an experiment should be performed, in order to be infor-
mative about causal structure. In this thesis, the causal Bayes net framework
is used to integrate these two approaches and general guidelines are provided
not only of how experiments should be performed but also which experiments
should be performed to discover the causal structure among a potentially large
number of random variables. In that sense this thesis aims to extend consid-
erations found in experimental design from single experiments to sequences of
experiments. To do so, the thesis provides a precise account of what constitutes
an intervention that allows for, but does not necessessitate, a role of agency in
interventions. We describe a space of interventions that is broader than standard
randomized controlled trials, and explore what implications follow for discov-
ery when different types of interventions are used. Results pertaining to the
methodology of causal discovery, its limits, the efficiency of its search strategies
and the meta-analysis of experimental results are presented. This thesis analy-
ses the combinatorics of sequences of experiments for causal discovery, ties the
discovery problem into a game-theoretic framework and points to some of the

(many) difficulties that remain open research questions.
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Chapter 1

Introduction

In the most general sense, this thesis attempts to contribute to the literature on
causal discovery: Given a set of variables, how should one proceed to discover
the causal relations between the variables? The aim is to provide a methodology
of discovery that is sensitive to the particular features of causal relations and
that is able to identify these features efficiently. Our focus will be primarily
on the discovery of causal structure, i.e. the qualitative relation that specifies
which variable is a direct cause of which other variable. While this separation
of structure search and quantitative estimation of the dependencies of effects
on their causes (the parameterization) is common, the two aspects are by no
means separate endeavours. Knowledge of the true causal structure simplifies
the estimation of parameters, while under certain assumptions only differences
in the parameters can help discover the causal structure.

The project builds on the representation of causal relations within the frame-
work of causal Bayes nets [43, 32]. In a causal Bayes net the causal structure
is represented by a directed acyclic graph and a joint probability distribution
over the variables accounts for the dependencies among the variables. Two as-
sumptions, the causal Markov and the causal Faithfulness conditions provide
the foundation of this representation. Together they imply a correspondence
between the causal separation relations implied by the graph and the indepe-
dence relations present in the joint probability distribution over the graph. As is
common in most causal structure search, and certainly within the causal Bayes
net framework, this thesis assumes a well defined set of causal variables. This
is not to say, that latent (unmeasured) variables are assumed away, but rather

that the set of given variables are taken to be meaningful causal variables with



at least a hypothetical notion of how they can be subject to an intervention.!

More specifically, the thesis focuses on active search for causal structure.
Given a set of causal variables, one can distinguish two ways to learn about
causal relations between the variables: One can either obtain so-called passive-
observational measurements of the variables or one can subject a subset of the
variables to an experimental intervention. In the first case, the values of the
variables are recorded as they “naturally occur”, as, for example, in logitudinal
or cross-sectional studies. In the second case, one intervenes on the “natural
process” by controlling the (distribution over the values of) some of the vari-
ables and records the values of the others. This use of interventions for causal
discovery is found in randomized experiments in clinical trials, but in general
the notion of interventions on a causal system is much broader than the simple
randomization of one or more variables. There are many ways to manipulate a
set of variables and in principle there is no reason to think that it takes some
agent to do so. The inferences that can be drawn about the causal structure dif-
fer between passive observational and interventional data, since the approaches
imply different constraints on the set of variables. In both cases however, the
causal structure may still be underdetermined, i.e. there may be several dif-
ferent structures that — even in the sample limit — cannot be distinguished. In
such cases, a sequence of experiments is required to uniquely identify the true
causal structure.

To obtain information in each experiment that can be combined to recover
the true causal structure, sequences of experiments have to be designed carefully.
Not every sequence of experiments will recover the true causal structure and
some sequences of experiments might ultimately recover the causal structure,
but could never be performed because they are too long, too complex, too
expensive or require experiments that cannot be performed easily. Consequently,
rather than just discovery in principle, this thesis aims at a better understanding
of (at least one sense of) efficient discovery. What is the best sequence of
experiments given a set of assumptions and constraints?

The thesis proceeds by providing background information on causal discovery
in the first two chapters, defines interventions in the third and then provides
several different results on discovery using interventions in Chapter 4 and 5.

Chapter 6 provides algorithms that instantiate the results of the previous two

IDiscovery or determination of causal variables or an account of what it takes to be a
causal variable is something that is not addressed here. It is a separate (but not independent)
important problem, that inherits many of the difficulties found in the analysis of natural kinds.



chapters and Chapter 7 discusses the particularly tricky issue of conflict res-
olution that arises when experiments that are subject to statistical errors are
combined. Chapter 8 describes a set of simulation results using some of the
algorithms and results of earlier chapters, and lastly, Chapter 9 summarizes the

results briefly and discusses several open problems.

1.1 History of Methodology for Causal Discov-
ery

Galileo’s astronomical observations and experiments with inclined planes illus-
trate the contrast between passive observational and experimental discovery. In
the case of the astronomical observations Galileo was able to record the posi-
tions of some of Jupiter’s moons and noted that their periodic appearance and
disappearance was consistent with an orbit around Jupiter. Galileo was able
to develop hypotheses about the orbits and derive testable predictions but was
limited to observing and making inferences about a system he had no control
over.

In contrast, in his experiments with inclined planes Galileo was able to care-
fully control size, weight and initial velocity for each object on the plane, as well
as the length and inclination angle of the plane. By fixing all the other vari-
ables to particular values he could test whether a change in weight resulted in a
change in the acceleration of the object on the inclined plane (as suggested by
Aristotle). In modern terminology we would say that Galileo fixed or clamped
all but one potential cause variable, varied the one remaining potential cause
variable and measured the difference in the outcome variable. While the strat-
egy of this procedure is evident, Galileo does not give an explicit account of the
methodological role or the advantages of the interventions (clamping or varying
variables) to the aim of discovery. The implicit argument is that changes in
the outcome could only have arisen due to changes in the causal influence of
the varied variable, since all other variables are held constant. While Galileo’s
experiments are surely not the first instantiation of such a method, they are the
earliest we have good records for.

First accounts of a methodology of causal discovery appear in Bacon [1].
Bacon suggested that in order to find the cause of a particular phenomenon one
should construct two lists, one of positive and one of negative instances. The list

of positive instances should be ordered by increasing degree of the occurrence



of the phenomenon. The cause of the phenomenon is then the set of properties
present in all the positive instances and absent in all the negative instances and
the intensity of the properties increases according to the ordering in the list of
positive instances. Bacon does not distinguish between observing the instances
and bringing particular circumstances about artificially, so it seems as if his
method restricts itself to passive observational discovery.

Much later Mill develops a very similar methodology for causal discovery
with his experimental methods of agreement and difference [28]. Mill is aware
of the distinction in implementation of passive observation vs. intervention but
is ambiguous about the difference in the epistemic access the two approaches

provide.? Mill puts forth five canons:

First Canon (Method of Agreement): If two or more instances of the
phenomenon under investigation have only one circumstance in common, the
circumstance in which alone all instances agree is the cause (or effect) of the

given phenomenon.

Second Canon (Method of Difference): If an instance in which the phe-
nomenon under investigation occurs and an instance in which it does not occur
have every circumstance in common save one, that one occurring only in the
former, the circumstance in which alone the instances differ is the effect, or the

cause, or an indispensable part of the cause, of the phenomenon.

Third Canon: If two or more instances in which the phenomenon occurs have
only one circumstance in common, while two or more instances in which it does
not occur have nothing in common save the absence of that circumstance, the
circumstance in which alone the two sets of instances differ is the effect, or the

cause, or an indispensable part of the cause, of the phenomenon.

Fourth Canon (Method of Residues): Subduct from any phenomenon such

2“For the purpose of varying the circumstances, we may have recourse (according to a
distinction commonly made) either to observation or to experiment; we may either find an
instance in nature suited to our purposes or, by an artificial arrangement of circumstances,
make one. [...] There is, in short, no difference in kind, no logical distinction, between the
two processes of investigation. There are, however, practical distinctions to which it is of
considerable importance to advert.” ([28], p. 211) But contrast this quote with: “But if we
cannot artificially produce the phenomenon A, the conclusion that it is the cause of A remains
subject to very considerable doubt. [...] Unfortunately, it is hardly ever possible to ascertain
all the antecedents unless the phenomenon is one which we can produce artificially.” ([28], p.
213)



part as is known by previous inductions to be the effect of certain antecedents,

and the residue of the phenomenon is the effect of the remaining antecedents.

Fifth Canon (Method of Concomitant Variations): Whatever phenomenon
varies in any manner whenever another phenomenon varies in some particular
manner is either a cause or an effect of that phenomenon, or is connected with

it through some fact of causation.

Mill indicates that the first two Canons essentially embody Bacon’s method-
ology®, but he takes the method of difference to embody more explicitly the
controlled experimental design that Galileo used with the inclined planes, al-
though he does not refer to Galileo in particular.* While Mill speaks of artificial
experiments there is no explicit discussion of whether other potential cause vari-
ables should be clamped (i.e. held fixed) at some particular value or whether
one should aim through careful experimental design to increase the likelihood
of obtaining corresponding samples where the other variables incidentally hap-
pen to have the same values. This distinction is now known as the difference
between statistically conditioning on (or statistically controlling for) a variable
as opposed to clamping (or experimentally controlling for) the variable. It is
doubtful whether Mill was aware of the difference.

If Mill could assume that the experimenter is dealing with a causally suffi-
cient set of variables (i.e. there are no unmeasured common causes) and if he
could ensure that his matching of samples does not amount to conditioning on
a common effect of two variables, then the epistemological difference between
clamping and statistically conditioning disappears anyway, since both can be
used to isolate the causal connection between one potential cause-effect pair.
However, using statistical conditioning alone may still pose a significant data
collection problem.® It does not seem plausible that Mill was aware of these
aspects. In a discussion of the limitations of his methodology Mill hints at the

problem of causally insufficient sets of variables.® But he does not discuss the

3[28], p. 216.

4«Of these methods, that of difference is more particularly a method of artificial experiment,
while that of agreement is more especially the resource employed where experimentation is
impossible.” [28], p. 216.

5Some constellations of variable values might be very rare if one does not force them by
clamping.

6«In other cases, when we intend to try an experiment, we do not reckon it enough that
there be no circumstance in the case the presence of which is unknown to us. We require,
also, that none of the circumstances which we do know shall have effects susceptible of being
confounded with those of the agents whose properties we wish to study.” [28], p. 251.
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methodological value of the assumption of causal sufficiency and provides no
principled method to ensure either that causal sufficiency is satisfied or that
conditioning on common effects is avoided, or what one ought to do if either
assumption fails or is not known to be satisfied.

In 1935 R.A. Fisher laid out in detail the methodological aspects of discov-
ery using randomization in The Design of Experiments [13]. Fisher had realized
that if one randomized the values of the purported cause variable, the treatment,
one could break any correlation due to latent common causes of the treatment
and outcome variables, thereby removing spurious correlations.” In addition,
randomization provided a reference distribution over the treatment variable that
together with an assumption about the functional form of the distribution of
the outcome variable allowed the estimation of statistical parameters repre-
senting the strength of the causal influence of the treatment on the outcome.
Together with design principles that guided the randomization within particular
subgroups (blocks), randomization could be used to perform experiments that
were sensitive to interactive effects between different treatment variables.® In all
cases, randomization of the treatment is supposed to ensure that any observed
correlation between treatment and outcome could be attributed to the effect of
the treatment on the outcome (instead of some unmeasured common cause).
Fisher’s insight led to a vast development in experimental designs involving
randomization. Fisher’s basic idea of one treatment and one outcome variable
is extended to sets of treatment and outcome variables in Factor experiments
and variations of Latin-square designs. On the basis of these developments —
and despite their limitations, some of which are mentioned below — randomized
trials have become the golden standard to test the efficacy of new treatments in
medical research.

The methodology underlying Fisher’s approach has not gone without crit-
icism. The main complaint, repeated in various versions [50, 21, 16] concerns
the claim that the randomization makes the randomized variable independent
or its normal causes. If the values of the intervened variable are determined by
some random process, then it may happen — by an unfortunate coincidence —
that the randomized sample is correlated with some cause of the variable. For

example, a random sample from a population of a city might just pick out a

7[13], p. 19-21.

8Two variables have an interactive effect on some third variable if their causal influence
depends on the state of the other variable. For example, the battery has no effect on the
motor starting if the fuel tank is empty.
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sample containing only women (despite the fact that men and women live in
the city), and if gender is an unknown common cause of the treatment and
outcome, then the inference about the causal relation between treatment and
outcome based on this sample may incorrectly postulate a direct cause where
none exists. Randomization only breaks the correlation between the intervened
variable and its normal causes in the large sample limit. For finite samples the
methodological advantage randomization provides is not guaranteed. This has
led to large discussion of how to handle “unfortunate” random samples.

In cases, where the causes of the treatment variable are known, this diffi-
culty with random samples can be avoided by assigning the treatment such that
the distribution of the treatment variable is balanced with regard to the value
assignments of its causes (see balanced, matched or stratified experimental de-
signs). In the 1970s Rubin and Holland ([37, 38, 39]) developed an approach to
causal discovery that built on these insights. They viewed causal discovery as a
massive missing data problem. In their view, the problem with causal discovery
is that for any individual token, one only ever observes one instantiation of the
variable values. Causal claims, however, are supposed to support counterfactual
inferences, i.e. what would have happened if certain variable settings had been
otherwise. Consequently, for them, the problem of discovery is to determine the
values of individual tokens in circumstances that did not actually occur, e.g. for
a particular treated participant, the crucial missing information is how this par-
ticipant would have reacted if she had not been subject to treatment. The states
of variables that did not occur for a particular token are treated as missing data.
In order to recover this “missing data” the aim of their design and analysis is to
match each individual token (e.g. a participant in a medical experiment) with
one (or a group) that resembles it as closely as possible, but is not in the same
treatment group. The causal effect of the treatment is then measured in terms
of the average difference in outcome between the matched pair (of groups). Ru-
bin’s approach to causal discovery still follows the randomized design closely.
Conceptually it is presented as a missing data problem, tokens are matched in
subgroups (strata) but treatment is randomized within these strata. This ran-
domization within strata is an attempt to break any dependence on unknown
common causes, for which such active balancing is impossible.

A different approach to tackling the problems with finite random samples
is put forward in Bayesian experimental designs [4]. These designs attempt to
remedy the concerns raised with regard to spurious correlations in random sam-

ples by taking the actual outcome of the randomization into account explicitly

12



in the analysis of the data. On a high level, Bayesian designs assume that a prior
distribution is given over the potential causal structures, which is updated, using
Bayes’ formula, with the actual data observed in an experiment. Such a design
is more robust with regard to correlated samples, since the independence of the
random sample is not presumed in the analysis and the outcome of the random
sample enters the updating process. Intuitively, the analysis is sensitive to cor-
related samples and can be appropriately conservative in its conclusions when
they occur. Furthermore, Bayesian experimental designs allow for an explicit
representation of the experimental cost, and the trade-off between experimental
cost (e.g. ethical concerns or difficulty of experiment) and expected knowledge
gain about the causal structure [46, 20]. We will discuss Bayesian approaches
to the problem of discovery of causal structure in more detail in Chapter 3.

All these experimental designs assume a bipartite separation of the variables
into a set of treatment and outcome variables (and possibly co-variates) and do
not — at least not in any principled manner — address cases that do not fit such
a framework. That is, the experimenter is supposed to know in advance, which
variables are the potential causes (treatments) and which the potential effects
(outcomes). In cases where no such separation is known a priori or where such
a bipartite separation is not possible (e.g. network structures), the principles
underlying these experimental design do not provide any guidance on how to
proceed. Consequently, in the case of causal structure search, these methods
are only informative about a very narrow set of structures. The aim of an
experiment is to determine whether or not the treatment variable has an effect
on the outcome variable, and if so, how strong it is. No guidance is given on
how to choose the set of treatment and outcome variables in the first place.
This may be due to the fact that a bipartite separation of the set of variables
is supported in many fields (e.g. due to time ordering information or limited
possibility of interventions), but one can certainly imagine many cases where
such restrictions are unwarranted (e.g. when there are several causal pathways
between the treatment and outcome variables).

A more general representational framework of causal structure was developed
in a branch of computer science and philosophy: causal Bayes nets [43, 32]. In
contrast to the bipartite structures assumed to underlie the models in traditional
experimental design, causal Bayes nets consider general graphical networks (al-
though we will restrict the discussion to acyclic ones here). Causal Bayes nets
represent the causal relations among a set of variables by a graphical structure

and a probability distribution over the variables. The framework allows for
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the representation of interventions (as in the case of randomized experiments)
and the computation of their effects. This enables us to model the various
experimental designs discussed above. In this thesis we will explore how this
framework can be used to provide informative guidelines on how to choose dif-
ferent experimental interventions given a set of variables and assumptions about

the search space.

1.2 Bayes Nets and Formal Definitions

Causal Bayes nets? [43, 32] provide a framework that connects a causal struc-
ture over a set of variables with a probability distribution over those variables.
Formally, causal Bayes nets are represented by a directed acyclic graph (DAG)
G = (V,E) over a set of variables V. = {X;,..., X,,} with a set of directed
edges E, and a probability distribution P(V) over the graph.

To reference particular graphical relations, genealogical terms are used in
the obvious ways: The parents of a node X, pa(X), in G are the nodes Y
with Y — X the children of X, ch(X), are all the nodes Z with X — Z.
The ancestors of a node X, anc(X), are all nodes with a directed path into X
(and X itself), the descendents, desc(X), are all nodes for which there exists a
directed path from X to that node (X is a descendent of itself). The neighbors
of X, neigh(X), are the union of the parents and the children.

Two assumptions connect the graph to the probability distribution.

Assumption 1.2.1: Causal Markov Condition

A directed acyclic graph G over V and a probability distribution P(V) satisfy
the Markov condition if and only if for every W in V, W is independent of
V\ (desc(W) U pa(W)) given pa(W).

Assumption 1.2.2: Causal Faithfulness Condition
The probability distribution P(V) is faithful to the graph G if all and only
the independence relations true in P(V) are entailed by the Markov condition

applied to G.

These two assumptions enable a correspondence of a graphical separation cri-
terium (see d-separation below) with conditional independence relations. The
causal Markov assumption is a generalization of the ideas of “screening off” un-

derlying Reichenbach’s Principle of Common Cause [34]. Intuitively, the Markov

9The formal defintions provided here follow Spirtes et al. [43] as closely as possible. Many
definitions and theorems are taken verbatum from their text.
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condition states that if two variables are distributionally dependent, then they
are causally connected, while the faithfulness condition claims the convers: If
two variables are distributionally independent, then they are causally discon-

nected.©

We will use the following graph terminology:

Definition 1.2.3: Graphical Terms

adjacent: Vertices V; and V5 are adjacent in G if there is an edge between

them, with these vertices as endpoints.

path: A path between two vertices V7 and V5 in a graph is a sequence of vertices
starting with V7 and ending with V5 such that for each pair of consequent

vertices in the sequence, there is an edge in graph G.

undirected path: An undirected path between two vertices V3 and V5 in a
graph is a sequence of vertices starting with V; and ending with V5 such
that for each pair of consequent vertices in the sequence, there is an undi-

rected edge in graph G.

acyclic path: A path is acyclic if it contains no vertex more than once, other-

wise it is cyclic.

directed path: A directed path between two vertices Vi and V5 is a sequence
of vertices starting with V; and ending with V5 such that for each pair of
consequent vertices X7, Xo, occurring in that order in the sequence, there

is an edge Fx, x, = X1 — X3 in graph G.
source of path: The source of a path is the starting vertex of a directed path.
sink of path: The sink of a path is the end vertex of a directed path.

undirected graph: An undirected graph is a graph that only contains undi-

rected edges.
directed graph: A directed graph is a graph that only contains directed edges.

directed acyclic graph (DAG): A DAG is a directed graph where all paths

are acyclic.

10Note that Markov and faithfulness relate causal features with distributional features, not
sample features.
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complete graph: A graph is complete if there is an edge between every pair

of vertices.

connected graph: A graph is connected if, when all edges are made undi-

rected, there is an undirected path between every pair of vertices.
subgraph: G’ = (V/,E’) is a subgraph of G = (V,E) if V' CV and E' C E.

clique: A clique is a set of vertices in V over which there is a complete (sub)graph,

i.e. there is an edge between every pair of vertices.

tier ordering: T(V,>r) A tier ordering is an ordering of mutually exclusive
and exhaustive sets Ty =71 ... =1 T, of the variables Xi,... Xy € V in
a directed acyclic graph such that 77 contains all the variables with no
parents in V, and for any 7T with j > 1, we have X; € T} if and only if
thereis a Y € T;_; with Y € pa(X;) and there does not exist a W € Ty,
where k > j with W € anc(X;) \ {X;}.11

mediator: Vertex Y is a mediator on a directed path between V; and V5 if
it is on the path but not the source or the sink. Note that ¥ may be a

mediator relative to one path, while it is not relative to another.

common cause: Vertex Y is a common cause of V] and V5 if there is a directed
path from Y to V; and a directed path from Y to V5 with no vertex shared
on the paths except Y. Note that ¥ may be a common cause relative to

one path, while it is not relative to another.

collider: Vertex Y is a collider on a path between V; and V5 if the substructure
X — Y « Z is contained in the path, for some variables X, Z on the path.
Note that Y may be a collider relative to one path, while it is not relative

to another.

non-collider: Vertex Y is a non-collider on a path between Vi and V5 if it is

on the path and a mediator or a common cause.

unshielded collider: Vertex Y is an unshielded collider in a DAG G if G
contains the substructure V; — Y « V5 and there does not exist an

edge Vi — V5 or V7 < V5. An unshielded collider implies particular

1 The definition implies that all the roots (and unconnected variables) of a graph are in the
first tier, and that any variable in tier k is connected to a root by a directed path of length
k — 1. There may be shorter connections, too, but at least one of length k — 1.
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independence relations that can be discovered.'?> An unshielded collider

is also sometimes referred to as a v-structure.

active vertex: A vertex V is active on a path relative to a set of vertices W
just in case either (i) V is a collider, and V or any of its descendents is in

W, or (ii) V is a non-collider and is not in W.

active path: A path U is active relative to a set of vertices W just in case

every vertex on U is active relative to W.

latent variable: A latent variable is a variable that does not form part of the
variables under consideration, i.e. it is unmeasured and not in V, but it

is causally connected to the variables in V.
confounder: A confounder is a latent common cause of two variables in V.

causal sufficiency: A set of variables V is causally sufficient if there are no

confounders.

exogeneity: A variable X is exogenous to a set of variables V if there does

not exist a variable Y € V such that Y is a cause of X.

Definition 1.2.4: d-separation

For a graph G, if X and Y are vertices in G, X # Y, and W is a set of vertices
in G not containing X or Y, then X and Y are d-separated given W in G if
and only if there exists no undirected path U between X and Y, such that

1. every collider in U has a descendent in W
2. no other vertex in U is in W.

We say that if X # Y, and X and Y are not in W, then X and Y are d-
connected given set W if and only if they are not d-separated given W. If U, V
and W are disjoint sets of vertices in G and U and V are not empty then we
say that U and V are d-separated given W if and only if every pair < U,V >
in the cartesian product of U and V is d-separated given W. If U,V and W
are disjoint sets of vertices in G and U and V are not empty then we say that

U and V are d-connected given W if and only if U and V are not d-separated.

12Independence relations of an unshielded collider when all three variables are passively
observed: (i) X and Y are dependent, (ii) Y and Z are dependent, (iii) X and Z are inde-
pendent, and (iv) X and Z are dependent conditional on Y. These independence relations
imply that Y is a common effect of X and Z, i.e. X — Y and Z — Y. The constraints can
be appropriately extended when there are more than three variables.
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1.3 Causal Discovery based on Passive Observa-
tion

Causal discovery depends on distinguishing different causal structures by the
different probabilistic features they imply in particular circumstances given a
set of assumptions. Which causal structures can be distinguished depends in
part on which techniques of differentiation are available and what assumptions
one is willing to make about the nature of the probability distribution and the
causal structure. Domain knowledge or information given by the data collection
process (such as time order) might further inform the search for causal struc-
ture. Without additional domain knowledge and without interventions, one is
left with techniques that distinguish sets of (passive observational) probability
distributions that are Markov and faithful to different causal graphs. Two main
approaches can be distinguished: score based techniques and constraint based
techniques. Score based techniques compute a numerical score for the goodness
of fit of each possible causal model given the data. There are many different
scores based on the likelihood, priors, model complexity or information theoretic
measures. The score is supposed to pick out those models that are most likely
or most plausible to have generated the data. In contrast, constraint based
search procedures test for different probabilistic constraints in the data, such
as (conditional) independencies or differences in some statistic, that restrict the
possible causal models. Causal models are selected depending on whether they
satisfy the constraints found in the data. For any particular set of constraints,
there may be equivalence classes of causal structures, such that all structures
in one equivalence class are different, but indistinguishable even in the large
sample limit. For example, if one considers passive observational data only,
then the classes of causal structures that imply the same (conditional) indepen-
dencies, are referred to as observational Markov equivalence classes (OMEs).
All graphs in a Markov equivalence class imply the same conditional indepen-
dencies among the observed variables. Concretely, assuming causal sufficiency,
the following three causal structures form one OME. They all imply only one

independence constraint, namely X is independent of Z given Y (X1 Z|Y):
1. X<~Y =7
2. X —-Y -7

3. X«<Y 7
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The OME can be represented by a pattern [47]:

X Y Z

An undirected edge between two variables X and Y indicates that each graph
in the OME has an edge between X and Y but that the edge points in different
directions for different graphs.

The class of structures indistinguishable by independence constraints be-
comes substantially larger, when the assumption of causal sufficiency is dropped.

If L is a latent variable, then in addition to the previous three structures we

have:

L L L
X<—Y Z X<~~—Y~——17 X<~~Y—7
L L L
X Y —Z7 X—Y —7 X Y —Z7

Algorithms that use independence constraints to discover causal structure are
— with passive observational data — limited in how much can be discovered.
There are numerous ways to search for causal structure in passive observational
data and not all algorithms are limited to observational Markov equivalence
classes. Here I will give an overview with specific focus on algorithms that will

be integrated (in modified form) into the search procedures in Chapter 6.

1.3.1 PC-Algorithm

The PC-algorithm!? is a constraint based causal structure search algorithm. It
uses independence constraints to infer causal structure between variables under
the assumption that the set of variables is causally sufficient. The PC-algorithm
proceeds in two stages, the first searches for adjacencies between variables, while
the second resolves — where possible — orientations of edges. The PC-algorithm is
initialized with a complete undirected graph over the set of variables. It proceeds

by testing for independencies in order of size of the conditioning set. It considers

13[43], p. 84.
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all pairwise independencies first and where an independency is found the edge
between the variables is removed. As edges are removed only a subset of all
possible higher-order independence tests have to be considered. At the end of
this first stage, all adjacencies in the graph have been resolved. In a second stage
all unshielded triples X, Y, Z of vertices'® are subjected to a collider test: If Y is
not contained in the conditioning set that was used to remove the X Z-edge, then
the unshielded triple is oriented as X — Y « Z, otherwise it is left unoriented.
Lastly, a set of rules (Meek-Rules, [23]) are employed that orient edges, whose
orientation is implied by the existing edges and and known orientations. For
example, if there is a X — Y — Z-path and an undirected edge from X to Z,
then that is oriented X — Z (to preserve acyclicity of the graph). The output
of the PC-algorithm is a pattern that represents the Markov equivalence class
of graphs that all imply the same independence constraints that were found in
the data.

The PC-algorithm is provably correct in the sense that given an indepen-
dence oracle that supplies the independence constraints true in the distribution
that generated the data, the PC-algorithm recovers as much information about
the true causal structure as is possible with the available independence facts.
However, it only guarantees pointwise consistency to the true model, which im-
plies that there is no one fixed sample size that bounds the error probabilities
simultaneously for all probability distributions Markov and faithful to a DAG
over the given variables [36].

The algorithm can be supplemented with background knowledge that forces
the existence or prohibits the presence of particular edges with and without
orientations. Extensions of the PC-algorithm to causal structure search in sets
of variables that are causally insufficient are implemented in the FCI-algorithm
[43].

1.3.2 Convservative PC-Algorithm

The conservative PC-algorithm [33] is a slight modification of the original PC-
algorithm. One of the sources of errors in the PC-algorithm is the orientation of
unshielded triples as colliders. For any unshielded triple X,Y, Z of vertices the
PC-algorithm only checks the conditioning set C that was used to remove the
X Z-edge. If C does not contain Y, then the unshielded triple is oriented as a

14 A triple X, Y, Z of vertices is unshielded if X and Y are adjacent and Y and Z are adjacent,
but X and Z are non-adjacent.
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collider. Instead of just considering C, the cPC-algorithm checks all subsets of
potential parents of X and Z: If Y is not contained in any such set C’ such that
XU Z|C', then the triple is oriented as unshielded collider: X — Y « Z. If Y
is contained in all such sets C’ such that X1l Z|C’, then the triple is left as it
is, connected by two undirected edges. For any other case the triple is marked
as “unfaithful”, which indicates that the algorithm is unable to tell whether
there is an unshielded collider, whether Y is a common cause or whether there
is a chain from X to Z or vice versa. The output of the cPC-algorithm is an
augmented Markov equivalence class that reflects the uncertainty for the triples
that are marked as unfaithful colliders, by including the graphs that place a
collider at the unfaithful collider vertex. Simulation studies in [33] show that
the cPC-is much less error-prone.

The cPC-algorithm inherits the correctness results of the PC-algorithm, but
in addition, the cPC-algorithm is uniformly consistent, i.e. there is one sample
size that bounds the error probabilities for all possible probability distributions
Markov and faithful to a DAG over the given variables.

1.3.3 GES-Algorithm

The Greedy Equivalence Search (GES) algorithm [24, 5] is in contrast to the
previous two a score based algorithm. It uses a score to identify the true causal
structure. GES places a prior over all possible directed acyclic graphs over the
given N variables. It is initialized with an empty graph and proceeds in two
stages, a forward and a backward stage. In the forward stage edges are added to
the graph until there is no improvement in the score. In the following backward
stage edges are removed again until there is no improvement in the score. The
forward stage is a greedy search over equivalence classes that differ from the
current equivalence class by having one additional edge.'® The search proceeds
until a local maximum is reached. The following backward stage is similar, only
that equivalence classes are considered that match the current equivalence class
except for one missing edge. The Bayesian scoring criterion is used to evaluate
the score of any step in the search.

The GES-algorithm, like the PC-algorithm is provably correct. In the large
sample limit it returns the Markov equivalence class containing the true causal
graph.

5For details see [5], p. 521-522.
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1.3.4 Independent Component Analysis - LINGAM

More recently, an entirely different approach has been put forward for causal
structure search for linear non-Gaussian models: LINGAM [41]. The approach
makes use of a statistical tool to identify linear models: Independent Component
Analysis (ICA). In a linear model the variables x = (Xi,...,Xy) are linear
functions of their parents and the error terms, here represented by e, which are
assumed to be non-Gaussian and independent. In the LINGAM-algorithm the

causal model is represented my a matrix equation:
x=Bx+e

where the matrix B is an NV x N matrix representing the edge coefficients on
edges connecting the variables. If the columns of B correspond to the hierar-
chical order of the variables in the graph, then B is lower triangular. In a linear
model the variables are linear functions of their parents and the error terms, here
represented by e, which are assumed to be non-Gaussian and independent. The
basic idea of LINGAM is to recover the B-matrix from a data matrix: Solving

the above equation for x we get
x=(I-B)'e

This equation together with the above assumptions fits the ICA framework, and
it follows that (I —B) is identifiable.! The upshot is that the non-Gaussian er-
ror assumption enables discovery of the exact true causal structure, as opposed
to only the Markov equivalence classes. Efforts have been made that extend the
LiNGAM-approach to latent variables [18].

Given these algorithms it becomes clear that any account of the limits of discov-
ery must be sensitive to the particular algorithms employed, the assumptions
they make about the functional form of the model and the criteria that are used

for the search.

1.3.5 Limitations of Search by Passive Observation

The various versions of the PC-algorithm and the GES-algorithm are limited

even in the large sample limit to discovering the Markov equivalence class con-

16For more detail see [41].
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taining the true graph. If the search method is limited to independence con-
straints, then in general, interventions are required to uniquely identify the true
graph in a Markov equivalence class.

The results based on the LINGAM-algorithm suggest that there are no lim-
itations to structure search in passive observational data — at least not in prin-
ciple — when sample size is not the concern. For non-normally distributed data
any structure among the observed variables, and with the extensions of the
more recent results, even the presence of latent variables can be discovered.
The limitation that the results do not hold for normally distributed data is a
rather minor weakness. However, the results do not extend to discrete variables.
Much of the following, but not all, will provide methods and results that apply
to structure search for discrete models as well.

The advantage of interventions is that they expand the set of criteria that can
be used for identification of causal structure. Interventions provide in addition
to the passive obervational distribution over the variables, a manipulated dis-
tribution. Different graphs, that appear equivalent given passive observational
data only, can be distinguished by their different manipulated distributions.
For example, consider the set of three graphs discussed at the beginning of this
section that form the following OME:

X Y Z
X Y A
X Y A

A randomization of Y would make Y independent of its causes, i.e. it would
leave X and Z unconditionally dependent in the first case — the common cause
— but independent (due to the randomization) in the second and third, the two
chain graphs. Further, for the second graph, where X is the source of the chain,
X and Y would also be independent, whereas X and Z would not, and in the
third, where Z is the source of the chain, X and Z would be independent but
X and Y would not. The three equivalent structures become distinguishable
even for simple independence tests by their different manipulated distributions,
represented by the following three manipulated graphs in which the causal in-

fluences that get destroyed by the intervention on Y are removed:
1. X«<Y =7

2. X Y - Z
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3. X <Y 7

Consequently, interventions are not only of interest to make discovery possible at
all, but also to enable discovery with means that would not suffice if only passive
observational data were available. In addition, there are various considerations
relating to the estimation of parameters that make interventions a useful tool,
but we will not go into any detail of this aspect of interventions in this thesis.
How interventions should be placed in order to distinguish different causal
structures and under which circumstances different types of interventions dis-
tinguish different causal structures is the subject of this thesis. There are four
cases to consider: First, a single intervention may not be sufficient to distin-
guish causal structures. Second, under certain assumptions no interventions
are needed to distinguish causal structures. Third, sometimes causal structures
can be distinguished without interventions, but the use of interventions allows
a weakening of other assumptions while maintaining the same level of identifi-
ability. And fourth, there are cases for which interventions are the only known

way to make progress.
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Chapter 2

Intervention

In this chapter we lay out the space of interventions. We review in some detail
the three most comprehensive accounts of interventions, by Pearl [32], by Spirtes
et al. [43], and by Woodward [49]. We follow all three accounts in their key fea-
tures, but attempt to give a more general minimal description of interventions
in the second section that includes interventions of different strength and inter-
ventions that may not be entirely exogenous. In a third section we discuss some
of the aspects of our definition of interventions that may be considered contro-
versial on philosophical grounds. In the last remaining sections we tighten the
general definition of interventions to specify particular types of interventions.
Since this thesis is about discovery, we focus the discussion of interventions on
epistemological issues. We leave a discussion of the metaphysics of interventions
aside, since that issue is closely connected with the more general issue of what
constitutes a causal variable. A broader discussion of such issues can be found

in Woodward’s Making things happen [49].

2.1 Interventions and Causes

Pearl [32] and Sprites et al. [43] focus on the formal constraints an interven-
tion imposes on a system of variables, while Woodward gives a more general
metaphysical analysis of the aspects of intervention.

Pearl considers interventions relative to a structural equation model that
describes the causal relations over a set of variables. For Pearl an intervention

is atomic if the intervention “amounts to lifting [the intervened variable] X;
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from the old functional mechanism x; = f(pa;, u;) [where pa; are the graphical
parents of X; and u; are the unobserved influences on X;] and placing it under
the influence of a new mechanism that sets the value x; while keeping all other
mechanisms unperturbed.”! In a causal Bayes net G = (V, E), Pearl represents
an intervention on a variable X € V by an intervention variable I that is
added to the causal structure G with a direct link I — X into the intervened
variable. For Pearl, the intervention variable can take values in {idle, do(x;)}
where x; ranges over the values of X;. In contrast to Fisher’s randomizations
[13] that determine a distribution over the intervened variable, Pearl’s atomic
intervention forces (clamps) the intervened variable to one particular value.
But like a randomization, the intervention breaks the causal influence of the
normal causes on the intervened variable, which is reflected in the resulting
“manipulated” distribution of X; conditional on its graphical parents (normal
causes).?
P(X; = zi|pa;) if I; = idle

P(X; = z;|pa;, I;) = ¢ 0 if I; = do(x}) and z; # x

/
[ %
/

1 if I; = do(x}) and x; = =}

(3

Since the intervention breaks the causal influence of the normal causes on the
intervened variable, the effect of this type of intervention can be represented by
a manipulated graph, in which the edges into the intervened variable (other than

from the intervention variable) are removed, as shown in the following figure.
X X

¢

Y A Iy Y Z

If the true graph is shown on the left, then an intervention on Y results in the
manipulated graph, where the causal influence of X on Y is destroyed, on the
right.

On the basis of this account of an intervention on a single variable, Pearl de-
velops the do-calculus® to compute the effect of interventions on the probability

distribution over the set of variables V:

1[32], p. 70.
2[32], p. 71.
3132], p. 85.
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“Let X,Y and Z be arbitrary disjoint sets of nodes in a causal DAG G.
We denote by G+ the graph obtained by deleting from G all arrows pointing
to nodes in X. Likewise, we denote by Gx the graph obtained by deleting
from G all arrows emerging from nodes in X. To represent the deletion of
both incoming and outgoing arrows, we use the notation G, [...]. Finally, the
expression P(y|&,z) £ P(y,z|%)/P(z|) stands for the progability of Y =y
given that X is held constant at x and that (under this condition) Z = z is

observed.

Algorithm 2.1.1: Pearl’s Rules of do-Calculus
Let G be the directed acyclic graph associated with a causal model and let P(.)
stand for the probability distribution induced by that model. For any disjoint

subsets of variables X,Y, Z and W, we have the following rules.

Rule 1: (insertion/deletion of observations)

P(yl|z,z,w) = P(y|&,w) if (YILZ|X,W)a,

Rule 2: (action/ observation exchange)

P(y|z, 2, w) = P(y|&, z,w) if (YALZ|X,W)

GYZ
Rule 3: (insertion/ deletion of actions)

XZ (W)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node
in Gy.”

Pearl uses this calculus of interventions to specify conditions for the identi-

fiability of causal connections:*

Theorem 2.1.2: Pearl: Identifiability

“A causal effect ¢ = P(y1,...,yk|Z1,...,%m) is identifiable in a model charac-
terized by a graph G if there exists a finite sequence of transformations, each
conforming to one of the inference rules in the theorem above, that reduces
q into a standard (i.e. “hat”-free) probability expression involving observed

quantities.”

4132], p. 86.
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It has since been shown that the do-calculus is complete [19].

The underlying idea is that by specifying appropriate formal conditions on
the intervention, namely, in Pearl’s case the clamping of the variable to a particu-
lar value, and the exogeneity of the intervention, one can characterize conditions
in which the true causal structure can be discovered. Furthermore, some of these
conditions allow for discovery, when the causal structure would otherwise have
not been identifiable. Pearl’s do-calculus consequently gives an epistemological
account of a particular type of intervention.

Spirtes et al. [43] largely share Pearl’s representation of interventions in
causal Bayes nets, although they permit an intervention to force non-degenerate
distributions over the intervened variable. Spirtes et al. provide a simpler and

more general theorem for the computation of the effects of interventions:

Theorem 2.1.3: SGS: Manipulation Theorem

“Let G = {V,E} be a directed acyclic graph and let I be the set of variables
in V that are subject to an intervention. Then Gynman i the unmanipulated
graph corresponding to the unmanipulated distribution Pynman(V) and Gran
is the manipulated graph, in which for each variable X € I the edges incident
on X are removed and an intervention variable I;(x) — X is added. A variable
X €V is in man(I) if it is subject to an intervention, i.e. if it is a direct child

of an intervention variable I;(x). Then

Punman(l) (V) = H Punman(l) (X|pa(Gunman7 X))

Xev
Pman(I) (V) = H Pman(I) ('X‘IS(X) = 1) X
Xeman(I)
H Punman(l) (X|pa(Gunmana X))
XeV\man(I)

for all values of V for which each of the conditional distributions is defined.”

This theorem specifies how an intervention manipulates the causal structure
and the probability distribution over the set of variables V. The theorem can be
used both to predict the effect of interventions on a known causal structure and
to derive statistical features that can be used to discover the causal structure
by using interventions.

While these rules and theorems specify formal constraints resulting from
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interventions, they do not tell us what an intervention or a causal effect is.
One of the difficulties in providing a more detailed metaphysical account of an
intervention is the interdependence between the notion of causal effect and the
notion of intervention. Pearl uses his description of an intervention to define a

causal effect:®

Definition 2.1.4: Pearl: Causal Effect

“Given two disjoint sets of variables, X and Y, the causal effect of X on Y,
denoted either as P(y|z) or as P(y|do(z)), is a function from X to the space of
probability distributions on Y. For each realization x of X, P(y|Z) gives the
probability of Y = y induced by deleting from the model all equations corre-

sponding to variables in X and substituting X = z in the remaining equations.”

So, for Pearl, for two variables to stand in the relationship of cause and
effect amounts to a functional relation between the manipulation of variables
in set X and the probability distribution over a set of variables Y. However,
this function is only defined in terms of a model and the appropriate changes
of equations in a model. Pearl’s account of intervention does not tell us what
constitutes an intervention until a model has been specified.

Woodward also defines a direct cause in terms of interventions, but his strat-

egy is different:®

Definition 2.1.5: Woodward: Direct Cause

“A necessary and sufficient condition for X to be a direct cause of Y with respect
to some variable set V is that there be a possible intervention on X that will
change Y (or the probability distribution of Y') when all other variables in 'V

besides X and Y are held fixed at some value by interventions.”

Woodward’s intervention does not depend on a specified model of the causal
relations connecting the variables. Instead, he appears to go for an arguably
circular definition. He defines an intervention in terms of influences that control

(the distribution over) the values of the intervened variable:

Definition 2.1.6: Woodward: Intervention Variable
“[ is an intervention variable for X with respect to Y if and only if I meets the

following conditions:

1. I causes X.

°[32], p. 70.
6[49], p. 55 and p. 98. Korb [22] largely follows Woodward in this approach.
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2. I acts as a switch for all the other variables that cause X. That is, certain
values of I are such that when I attains those values, X ceases to depend
on the values of the other variables that cause X and instead only depends

on the value taken by I.

3. Any directed path from I to Y goes through X. That is, I does not
directly cause Y and is not a cause of any causes of Y, if any, that are
built into the I — X —Y connection itself; that is, except for (a) any causes
of Y that are effects of X (i.e., the variables that are causally between X
and Y) and (b) any causes of Y that are between I and X and have no
effect on Y independently of X.

4. I is (statistically) independent of any variable Z that causes Y and that
is on a directed path that does not go through X.”

Definition 2.1.7: Woodward: Intervention
“I’s assuming some value I = z; is an intervention on X with respect to Y if
and only if I is an intervention variable for X with respect to Y and I = z; is

an actual cause of the value taken by X.””

Both Pearl and Woodward give an account of causes in terms of interven-
tions. The main difference between Pearl and Woodward is that Woodward
does not require the reference to a fully specified model or a set of equations
when defining an intervention and he commits explicitly to causal terminology
in defining an intervention. Woodward is fully aware of the circularity this
appears to entail. If causal claims are to be understood in terms of (hypo-
thetical) interventions, it suggests that the notion of an intervention is more
fundamental than that of a cause. However, as Woodward’s definition explic-
itly acknowledges, the definition of interventions quite obviously involves causal
terms, since probabilistic features are insufficient to adequately distinguish in-
terventions from conditionalization.® Woodward® and Hitchcock [17] discuss
this apparent circularity in the definition of causal relations and interventions

at length, but they do not consider it vicious. Woodward argues that the causal

7One variable is an actual cause of another variable if it is a cause at the individual (token)
level as opposed to the population level. Woodward provides a definition of what constitutes
an actual cause, which we will not discuss here, apart from indicating that the resort to token
causation does not reduce the definitional problems of type causation and certainly does not
refer the problems to grounds that are supported by broad agreement among philosophers.

8See [25], [32], Chapter 3 and many others.

9149], p. 104-107.
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claim in the definition of an intervention depends only on an understanding
of the causal effect of an intervention on the intervened variable, but does not
depend on an account of causal relationships between ordinary causal variables
(variables in V). There is for Woodward, so to speak, a difference between the
causal relation between an intervention variable and an intervened variable on
the one hand, and the causal relation between two ordinary causal variables
(whatever it may take to be one) on the other. The former is needed for an
understanding of the concept of intervention, while the concept of an interven-
tion is required to understand the latter. Woodward may be understood as
trying to draw a line between causation and causality: The former, involving
interventions, is required for a definition of the latter, which makes no explicit
claim about interventions. To Woodward, this non-vicious circularity between
the definition of intervention and that of direct cause is simply an indicator
that the notions of cause and intervention cannot be reduced to more primitive
notions.

Spirtes et al. [43] take a different approach: A cause is a primitive and in-
terventions are additional exogenous causes that augment the causal graph over
the variables under consideration. These interventions imply particular addi-
tional (“context specific”) independencies in the graph when the interventions
are active. But while taking a cause to be a primitive provides an elegant way to
escape the problem, it seems like a rather simple way of disposing of a problem
that could keep many philosophers in business.!?

Both Pearl and Woodward only consider interventions that make the in-
tervened variable (causally) independent of its normal causes — by clamping
or randomization — they do not consider weaker forms of interventions. They
also both only appear to consider interventions as variables that are uncaused,
although there is no explicit statement to that effect. Both Pearl and Wood-
ward appear to consider the intervention variable to be a mere representational
artefact of the model, rather than corresponding to any real variable. Neither
is committed to a distribution over the intervention variable. Pearl quite ex-
plicitly only considers distributions conditional on values of the intervention
variable. But also, neither restricts themselves to intervention variables as deci-
sion points. If the intervention variable were a decision point, then there might
be some debate as to whether it has a marginal distribution, and an interven-

tion would involve some form of agency or free will to determine the state of the

10Given much of the philosophical literature, this appears to be an end in itself.
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intervention variable. Woodward explictly emphasizes that his understanding

of interventions does not require a notion of agency.'!

2.2 Interventions as Discovery Tool

Fisher [13] develops the theory of randomized controlled trials for their partic-
ular value for discovery. He describes a randomization as an intervention that
assigns treatment at random after all disturbing causes are determined (in the
sense of “set”, not in the sense of “discovered”). Ideally, treatments should
be “the last in time of the stages in the physical history of the objects which
might affect their experimental reaction.”!? Interventions are used to create
circumstances that support the inference from a particular observed association
between the treatment and the outcome to the causal influence of the treatment
on the outcome. The randomization is supposed to ensure that no influences
other than the intervention determine the state of the intervened variable and
that consequently any confounding due to known or unknown common causes
can be eliminated.

This feature will be one of the guiding considerations in specifying interven-
tions as discovery tools. Our aim will be to provide criteria that are weaker
than Fisher’s. We follow Pearl in many representational aspects and Woodward
in rejecting agency as a necessary component for an intervention. But in do-
ing so, we have to give a precise account of an intervention variable and how
an intervention differs from an ordinary causal relation. We will first provide
a minimal definition of an intervention (for discovery) and then turn to more

specific common forms of intervention.

Definition 2.2.1: Intervention — discrete model
Given a discrete causal Bayes net G = (V,E), with probability distribution
P(V), where each X; € V has k; values, an intervention I on a subset S C 'V

satisfies the following criteria:

1. I ¢ V is a variable with 1 + [[y g ki states, i.e. I has a state for each

combination of values of the variables in S and one additional idle or

11See section on Nonanthropomorphism in [49].
12[13], p. 20.
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O-state:!3

{idle, [do(zs(1),1),do(T52),1),---,do(Ts(s) 1)),

[do(Zs(1) k1)) AO(Ts(2) kur) )5 - -+ > AO(Ts(5) koo )]}

. I is a direct cause of each variable X € S, i.e. I — X. That is, there is at
least one value X = x such that P(X = z|I = 0) # P(X = z|I = k #0).14

. There is a joint distribution P(V,I) over the variables in V and I and
consequently I has a — possibly degenerate — marginal distribution over
its values. If there are several simultaneous interventions, there is a joint

distribution over V and the set of simultaneous interventions I.

. The probabilistic effects of causes of I, if any, are known. That is, if there
is a variable C, with C' — I and possibly C' € V, then P(I,V\ {C}|C) is
assumed to be known. This is most relevant when C' € V or when C is a

(latent) common cause of I and some variable in V.

. If there is a variable C' € V that is a cause of I, then there exists at least

one other cause of I that is not in V.1°

. When I = idle (I = 0), the passive observational distribution over V

obtains, i.e.

P(VII=0) = P(V)
= 11 PWilpa(vi))
Viev

= P(Sppa(s)) [] P(Vilpa(Vi))
VieV\S

13The idle state represents circumstances in which the intervention is ineffectual, i.e. the
state of the intervened variable is functionally independent of the state of the intervention
variable. This feature is not essential in the further discussion, but is an attempt to capture the
notion that an intervention can be turned off and that there are circumstances in which one can
speak of a passive observational distribution over the variables. Woodward assumes implicitly
that there is such a state and Pearl accounts for it in terms of a functional independence of
the structural equations of the intervened variable on an idle intervention variable. This state
space is a direct extension of the states of Pearl’s intervention variable to an intervention on
a set of variables.

14This is sometimes referred to as a test pair condition, that a direct cause must satisfy.

15Gee discussion below on the difference between causes and interventions for a motivation
of this assumption.
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7. When I =k # 0, the conditional distribution over S is manipulated, i.e.

P(V|I=k)=P(S|pa(S),I =k) [[ PVilpa(Vi))
VieV\S

where
P(Slpa(S), 1 = k) = [] P*(XIpa(X),] = k)
Xes

and for each X € S we have

PY(X|pa(X), I = k) # P(X|pa(X), I = 0)

8. If I is an intervention that involves a decision to intervene, then a further
decision node D is associated with I. D is a direct cause of I, has several
states (depending on the state space of the decision), but no marginal
distribution, i.e. P(V,I) is only defined given a specific choice of the
value of D).

An intervention is said to be confounding if S is larger than a singleton set,
i.e. if an intervention manipulates more than one variable.'® An intervention is
confounded if there is a common cause C' of the intervention variable and some

other intervention variable or of some variable in V.

If the variables in V are continuous, then so is I (though higher dimensional if
I is confounding). The state space of I must cover the space of all combinations
of states of variables that I intervenes on. The distribution over I may, of
course, not be continuous. The state space of the decision node D is a space of
probability distributions representing the possible intervention distributions.
Below we illustrate the main constellations that relate an intervention variable I
to other variables in the system. Suppose the set of variables under consideration
is V={X,Y,Z}. Let D be a decision node and let C be a variable that is not

16 A confounding intervention is different from multiple simultaneous interventions. For
a confounding intervention the intervention variable is a common cause of the variables it
intervenes on and consequently the variables are correlated as a result of the intervention.
Multiple simultaneous interventions influence the intervened variables independently.

34



inV.

v

Iy —>Y A Iy ==Y

A

The first graph shows a standard intervention on Y. Whether or not the inter-
vention breaks the causal effect of X on Y is left open by the current definition.
The second graph shows that a decision might influence the distribution over
the intervention variable. For example, one may decide to determine the treat-
ment of a patient by flipping a fair coin, or, instead, one may decide to flip a
weighted coin. Both are possible intervention distributions (distributions over
the values of the intervention variable), which one can decide between. A deci-
sion point is always separated from the variables under consideration (i.e V) by
an intervention variable (I) specifying the intervention distribution. If there is
a variable in V| such as X in the third graph, that influences the intervention
distribution, then there must be another cause of I, in this case C, that also
influences the distribution over I, otherwise I is not an intervention. C' could,
of course, also be a decision point (as e.g. for conditional interventions). In the
second row, the first graph shows a confounded intervention, while the second
graph shows a confounding intervention.

The definition of an intervention specifies the key features relevant for an
intervention as discovery tool. For an intervention to be useful to discovery, it
must place constraints on the system it intervenes on and bring exogenous influ-
ences into the system of variables under consideration. The former is achieved
by the manipulation of the marginal distribution of the intervened variables and
by assumptions about parts of the causal structure surrounding the interven-
tion variable. The latter is achieved by ensuring that the intervention is either
exogenous to V or has at least one cause that is not in V. Both aspects can be
used for causal discovery since they distinguish causal structures which might

otherwise appear indistinguishable.
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The definition is minimal in the sense that it does not restrict how many
variables are influenced by an intervention, there is no restriction on the effect
the intervention has on the intervened variable (other than that the intervention
has some effect on the distribution of the intervened variable given its causal
parents). In particular, there is no requirement that the intervention should
make the intervened variable independent of its normal causes. The definition
leaves open the possibility of considering interventions that are dependent on
variables in the system or that may be confounded by other variables. The
distribution over the intervention variable allows for an explicit representation
of the intended intervention distribution which may or may not be successfully

conferred on the intervened variable.

2.2.1 Discussion
Difference between Interventions and Causes

An intervention variable is similar to an ordinary causal variable in that it has
states, a marginal distribution and may have causal ancestors. Lack of causal
ancestors is not a necessary requirement for interventions and it does not gen-
erally restrict discovery much, if they are causal ancestors of the intervention
variable alone. With the minimal definition we can easily make sense of in-
terventions which have further causes. We need not even restrict ourselves to
exogeneity. There are many cases, where it is quite plausible to speak of the
variables under investigation as being a cause of the intervention and discovery
procedures can be adapted accordingly. For some interventions the state of the
variables that are subject to study have an explicit influence on the intervention
and its distribution, as, for example, in sequential experiments. More generally,
many scientists are led to particular experiments on variables, because those
variables produced curious data in the past. Hence, at least informally, one
would speak of the variables being a cause of the intervention.

One may argue that the variables that influence the intervention are different
to the variables intervened upon. If a time dimension were included, they would
have a different time stamp. But this distinction does not help, since one would
still refer to all variables at all time instances as “the variables under investiga-
tion”, i.e. as forming part of V. Exogeneity, would therefore not be satisfied,
and one would not want to definitionally enforce exogeneity by excluding vari-
ables prior to an intervention from the set V: First, for most other aspects of

the search procedure, these variables contain relevant information and second,
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such a restriction would exclude variables from V that need not be excluded, e.g.
variables that are causally disconnected from the intervention (which ones those
are, may not be known from the outset). The basic point is simple: Making
exogeneity a necessary requirement of an intervention in general is excessively
restrictive. Analyses of interventional data can be adapted to a whole variety of
possible constellations. Interventions should be thought of as ordinary causes,
like any other cause, potentially fully connected in a network. It therefore fol-
lows quite obviously that some interventions influence more than one variable
simultaneously. When such a confounding intervention occurs unintentionally,
it is often referred to as a “fat hand” intervention, since it is similar to someone
trying to manipulate some intricate object with insufficiently slim fingers.

But an intervention differs from normal causal variables in (i) that it can
assume a large variety of different marginal distributions, (i) that it can be
affected by decision points that do not have a marginal distribution, (iii) that it
need not correspond to some real variable and can in most cases be considered
a representational artefact of the model. Our specification of the distributional
constraints is just in terms of a distribution over the set of variables V condi-
tional on states of the intervention I and for the most part that will be sufficient.
However, the marginal distribution over the intervention variable has several
functions: (a) it distinguishes the intervention variable from a decision point
and therefore clearly distinguishes the intervention distribution from the place
where agency may enter the process; (b) it can be used to explicitly represent
non-degenerate intervention distributions, as they are used in randomized tri-
als; and (c) it can be used to represent different intervention distributions, e.g.
whether a randomization is uniform over the values of the intervened variable
or not.

Interventions also differ from ordinary causal variables in that they require
some knowledge about local causal structure. In our definition of an interven-
tion, the direct connection between an intervention variable and an intervened
variable is known, and any confounding of the intervention is assumed to be
known, as is any causal influence on the intervention variable from variables in
V. This partial knowledge of causal structure is necessary for an intervention,
if it is going to be used as a discovery tool. Such knowledge places appropriate
constraints on the variables under investigation. Causal background knowledge
about particular causal paths also supplies similar constraints that can be used
for causal learning, but the difference between background knowledge and inter-

ventions is that an intervention introduces an ezternal influence into the system.

37



This aspect is preserved in particular by point 5 of the definition. If the interven-
tion variable were completely (distributionally) determined by variables in V,
then it could be marginalized out and would amount to background knowledge
regarding one specific pathway internal to V. The external influence on the in-
tervention variable prevents a full determination of when the intervention occurs
as a function of the variables under investigation. Intuitively, requiring that an
intervention introduces an external influence into the system ensures that the
variables under investigation cannot “switch the intervention oft”, when effects
of interest would occur. For example, if the variable that influences the inter-
vention always sets the intervention on Y to “idle” when some other variable
X has the value X = 1, then an interactive effect between X and Y on vari-
able Z may not or may only very rarely be observed, since the intervention is
prevented from forcing the value of Y to the state that creates the interactive
effect when X = 1. An external influence on I creates an additional trigger for
the intervention. Of course, higher level causes of the intervention or interactive
causes of the intervention may still prevent the efficacy of an intervention at the

“interesting times”, but now we are splitting hairs.

Agency

Following Woodward, we distinguish the role of agency (in form of decision
points) from that of an intervention. The underlying motivation is that we do
not want an account of interventions to depend on an account of agency or free
will. It seems quite unncessary to require for an understanding of interventions
an account of what constitutes free will or agency. The crucial aspect of in-
terventions as discovery tools is that they place known constraints on a system
of variables. Agency is unnecessary. A machine can perform interventions and
discover causal structure from the resulting data.

Interventions are points at which agency can impact the system of variables
under consideration, but interventions can also be understood without refer-
ence to agency. Without any component of agency, interventions are viewed as
marking the borderline of the set of variables under consideration. For a partic-
ular set of variables V, an intervention introduces an external influence into the
system, but if the system of variables were expanded, the intervention variable
may become an ordinary causal variable, caused by a set of other variables that
come into consideration through the expansion.

If the intervention is associated with a decision point for which no marginal
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distribution can be given, then an intervention remains an intervention variable,
no matter how far one expands the system of variables, since no joint distribu-
tion over the intervention and its causal parents (in this case including a decision
variable) can be given; only a conditional distribution of the intervention vari-
able given a state of the decision variable can be specified. Decisions therefore
remain as sources of causal influence that are external to the system, no matter
how far the system is expanded.

On our definition, decision points are two levels removed from the variables
in V. This enables us to represent decisions as choices of intervention dis-
tributions, which may or may not be conferred upon the intervened variable
appropriately. So there are three levels: The choice of one particular interven-
tion distribution at the decision point, the intervention variable, which follows
the intervention distribution, and the intervened variable that may or may not
adhere to the intervention distribution. We thus have a very natural way to
model failure to comply with treatment. Furthermore, the choice, for which one
may not be able to provide a distribution, is a decision about which experiment
to perform, i.e. which intervention distribution to pick, and not about which

treatment to assign to which individual.

In the following two subsections we refine the definition of interventions further
to consider two particular types of interventions that lie at opposite ends of a

spectrum of harder to softer interventions.

2.2.2 Structural Interventions

Interventions which make the intervened variable independent of its normal
causes are sometimes referred to as randomizations (following Fisher), surgical
interventions (following Pearl), ideal interventions (following Spirtes et al.) or
independent interventions (following Korb). I will refer to them as structural

interventions, because they manipulate the causal structure among the variables.

Definition 2.2.2: Structural Intervention
Given a set of measured variables V, a structural intervention Iy on a subset

S C V is an intervention on S that satisfies the following additional constraints:

1. There is no common cause of I and any variable in V and no variable in

V is a cause of I,.

2. When I, = k with k£ # 0, I, makes every variable in S independent of
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its causes (breaks the edges that are incident on the variables in S). I
determines the distribution of S, that is, in the factored joint distribution
P(V), the term P(S|pa(S)) is replaced with the term P(S|I; = k), all

other terms are unchanged.

The first restriction on the causal structure surrounding the intervention
variable could be dropped. As a result confounded structural interventions
would be possible. The limits of what can be learned about the causal structure
then depend on what this restriction is weakened to. Simple causes of inter-
ventions are unproblematic, but confounding causes can weaken the discovery
procedure. We will not pursue this line.

The definition of a structural intervention implies that the causal structure
(as opposed to just the parameterization) is manipulated, since any causal influ-
ence on the intervened variable (other than from the intervention) is destroyed.
For example, if the allocation of children to particular schools is randomized,
then the social economic status of the family, which would under normal circum-
stances influence which school district a child lives in, is made independent of
the school allocation. If social economic status is also a cause of job prospects,
then the randomization destroys any confounding of school attendance and job

prospects:

SES SES

School —— Job I, — School —— Job

The manipulated causal structure is referred to as the post-manipulation graph.

Definition 2.2.3: Post-Manipulation Graph
Given a graph G and a set S of variables subject to a structural intervention,
the post-manipulation graph is the graph where all the edges incident on any

intervened variable (X € S) are removed.

The change in causal structure goes along with a change in the joint probabil-
ity distribution over the variables that is specified by the Manipulation theorem
(Theorem 2.1.3) given earlier. A structural intervention may manipulate multi-
ple variables simultaneously in a correlated manner (confounding interventions).
In order to achieve the surgical effect on the causal structure, a structural inter-

vention requires that the distribution over the intervened variable is fully deter-
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mined by the intervention. This can be achieved in many ways: The intervened
variable can be clamped to a particular value (a degenerate intervention distri-
bution), or a randomization device can be used to impose some non-degenerate
distribution over the values of the intervened variable. While a randomization
breaks the causal dependence between the intervened variable and its normal
causes, probabilistic independence is only guanranteed in the large sample limit.
For any finite sample the randomized distribution over the intervened variable
may still turn out to be associated by coincidence with the distribution over
the causes of the intervened variable. When this occurs mistakes can occur in
the inference to causal structure between the intervened and other variables.
How this type of situation should be resolved and what, given that samples are
only ever finite, should be made of randomization in experimental practice, has
led to much debate in the literature on experimental design. One solution is to
balance the distribution of samples with regard to the causes of the intervened
variable. If only some of the causes are known, one can balance with regard to
those and randomize the intervention variable within those blocks.!”
Fisher-type randomized trials, as they are found in medical research, and
controlled experiments in which variables are fixed to particular values can be
modeled as structural interventions. The advantage of a non-degenerate inter-
vention distribution (i.e. not clamping) is that one can explore interactive causes
more easily: If X only has an effect on Y when Z is in a particular state Z = 21,
then it is of no use to clamp Z = 25. However, if we have a non-degenerate

distribution over the values of Z, then the interactive cause can be discovered.

2.2.3 Parametric Interventions

Structural interventions take full control of the intervened variable, but an in-
tervention need not be that strong. To qualify, an intervention only needs to
influence the conditional distribution. This weaker form of an intervention is
captured in the notion of a parametric intervention, also sometimes referred to

as a partial, soft, conditional or dependent intervention.

Definition 2.2.4: Parametric Intervention
Given a set of measured variables V, a parametric intervention I, on a subset

S C V is an intervention on S that satisfies the following additional constraints:

17Care needs to be taken with balanced designs. Balancing does not break the causal effect,
and therefore balancing with respect to e.g. a common effect can lead to erroneous inferences.
While balanced designs allow for the same inferences as structural interventions in many cases,
they are not identical.
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1. There is no common cause of I,, and any variable in V and no variable in

V is a cause of Ij,.

2. When I, = k with k # 0, I, does not make the variables in S indepen-
dent of their causes in V (it does not break any edges that are incident
on variables in S).!® In the factored joint distribution P(V), the term
P(S|pa(S)) is replaced with the term P*(S|pa(X),I, = k), where

P*(Slpa(X), I, = k) # P(S[pa(X), I, = 0).

Otherwise all terms remain unchanged.

As with structural interventions, the first constraint (the lack of causes of
the intervention variable) is not essential, but can impact discovery strategies.
And as before, multiple variables can be subject to a correlated parametric in-
tervention, and again the constraints on intervention distributions are minimal.

Although a parametric intervention does not imply any structural changes
among the variables in V and the post-manipulation graph is only changed
by the addition of the intervention variables, its influence is evident in the
manipulated probability distribution. The manipulation theorem 2.1.3 can be

adapted accordingly.

Theorem 2.2.5: Manipulation Theorem for Parametric Interventions
Let G = {V,E} be a directed acyclic graph and let S be the set of variables in
V that are subject to a parametric intervention. Then G ,man is the unmanip-
ulated graph corresponding to the unmanipulated distribution Pypman (V) and
Gman is the manipulated graph, in which for each variable X € S an interven-
tion variable I, x) is added with I,(x) — X. A variable X € V is in man(S)
if it is subject to an intervention, i.e. if it is a direct child of an intervention

variable I, x). Then

Punman (V) = H Punman(X|pa(Gunmana X))
Xev

Pman(V) = H Pman(X|pa(Gunman7 X)7 Ip(X) = k) X
Xes

18Note, that we restrict parametric interventions to those types of interventions that do not
break any structure but instead only influence parameters.
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H Punman (X‘pa(Gunmana X))
XeV\S

for all values of V for which each of the conditional distributions is defined.

Since I, does not make the variables in S independent of their causes (parents
in the graph) I, is not a structural intervention. Instead, I, changes (and
increases the number of) the parameters in the conditional distribution of the
intervened variable on its parents.

A simple example of a parametric intervention is an intervention on the
income of participants in an experiment: Rather than setting their income ac-
cording to an independent probability distribution, thereby determining it com-
pletely, a parametric intervention increases their income by, say, $1,000. This
would have the effect that people with high incomes would still have high in-
comes, determined largely by the original causes for their high income, but we
would have changed the conditional probability distribution, due to the influence

of the additional money.

Education Education

3

Happiness I, — Income

Income Happiness

It is not necessary for a parametric intervention to consist of adding a constant
to the value of the intervened variable. It is possible to perform a parametric
intervention on binary variables as well — all that is required is that there is a
change in the conditional probability distribution from the passive observational
case such that:
P(X|pa(X), Iy x) = 0) = P(X|pa(X)) # P(X|pa(X), I)x) = 1)

This constraint is theoretically trivial to satisfy, since the addition of the in-
tervention variable doubles the size of the conditional probability table of the
intervened variable X.

The difficulty of a parametric intervention, however, is how to perform it
when nothing is known about the causal structure among variables. If the
normal causes are not known, how can one ensure in performing an intervention

that some of the causal influence from the normal causes on the intervened
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variable is preserved? If there is reason to believe that the causal relations are
additive, then there might also be reason to believe that an intervention is a
further additive cause in the model. For the finite discrete case, the situation is
not as clear. We do not have an account of how to guarantee that an intervention
is parametric. We take this to be one of the major limitations of this type of

intervention.

Parametric Interventions and Instrumental Variables

The technique of using parametric interventions for causal discovery is closely
related to the theory of instrumental variables in economics. Suppose there are
two variables, X and Y with Y = X + ¢, where € is an error term. A problem
for the estimation of (8 arises when X is correlated with €, the error. In such a
case a consistent estimator of 3 can be found if there is a variable Z (called an
instrument) that is correlated with X, but independent of € and correlated with
Y only through X, i.e. ZLY|{X,e}. Graphically, this can be represented by
assuming that € is a latent common cause of X and Y, as shown in the following
figure:

€

I\

Z—=X—>Y

This structure mirrors the set-up for parametric interventions: If Z were an
intervention variable of X, the same independence relations would apply: The
instrument is independent of € and correlated with Y only through X, which is
the same as requiring that the intervention is on X only and exogenous (and
uncaused) with respect to the set V.= {¢, X,Y}. The independence relations
implied by this particular constellation of variables make both instrumental vari-
ables and parametric interventions a powerful discovery tool even for causally
insufficient sets of variables. We return to this point in the following chapters.

The difference between the two is mainly in the semantics: Instrumental
variables are generally taken to be real variables, corresponding to some causally
relevant feature in the real world, whereas intervention variables can just be a
feature of the model. As with instrumental variables, we assume here that there
is a well-defined marginal distribution over the intervention variables, however
there is generally no requirement for instrumental variables to have an “idle”-

state for which they have no effect on the set of variables under investigation.®

19But note the comment earlier, that this idle state is a conceptual feature of interventions
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Unlike intervention variables, all of their states can have an active influence on

the set of variables.

2.2.4 Contrast of Structural and Parametric Interventions

Structural and parametric interventions are the two extremes on a continuum
of weaker to harder interventions. The structural intervention makes the inter-
vened variable independent of its causes whereas a parametric intervention is
only an intervention on the parameterization of the causal model. There are all
sorts of other interventions that have a weaker or stronger effect on the struc-
ture or parameterization, making the intervened variable independent of more
or fewer of its causes. The distinction of the two extreme forms of interven-
tions as I have presented it here can be found in work by Korb [22] and the
need for a weaker version than just the structural intervention is described with
various examples by Campbell [3]. Korb also discusses the possibility of mixed
interventions. In that case the manipulated distribution is a mixture of two ma-
nipulated distributions, one structurally manipulated and one parametrically
manipulated. As he notes, these mixtures can be represented by manipulated
distributions that are somewhere between structurally and parametrically ma-
nipulated ones. It shows that there is a wide variety of additional modeling
assumptions one can make about the particular nature of the manipulated dis-
tribution. The effect (and problems) with regard to causal discovery in light
of the two extreme types of interventions are discussed in detail in the next

chapters.

The interventions we discuss here are all designed for static models, i.e. they
do not work without adjustment for time series models or dynamic Bayes nets.
In dynamic models one has to account for how fast and for how long the effect
of interventions percolates through a dynamic system and at what time inter-
vals the system is being sampled. Further, one has to distinguish between an
intervention at one time instance and a continuously occurring intervention. In
general it is not guaranteed that the effect of an intervention will fade away,
since one might have chaotic effects in a dynamic system. Here we just pro-
vide a short (and probably incomplete) list of problems that a full account of

interventions on time series needs to consider.

1. What is the nature of an intervention on a time series?

and formally fairly inessential for discovery procedures.
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2. Is there a single intervention at one time tick or is the intervention repeated

at every time tick?

3. In order to draw inferences from data, does the data sampling have to be

synchronized with the interventions?

4. Does the dynamic system return to an equilibrium state after an interven-

tion? How is this ensured?

5. If the dynamic system is non-linear, its development might be sensitive to
initial conditions and hence predictions of interventions may be impossible.

How does the model accommodate this?

Similar considerations apply to interventions on cyclic or undirected models.?"
An account needs to describe how the effect of the intervention percolates
through a cyclic or undirected structure, how feedback is handled and how

the intervention affects cycles. We will not pursue this here.

20For more detail see [35].
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Chapter 3

Search with Interventions:

Pure Search Strategies

The following two chapters explore the possibilities and limitations of causal
structure search using interventions. Both chapters consider sequences of ex-
periments. How experiments in a sequence are chosen is specified by search
strategies. The chapters are divided according to two types of search strategies
that correspond in game-theoretic terms to pure and mixed strategies. Pure
strategies specify one particular experiment (with probability 1) for each pos-
sible scenario, i.e. for each history of experiments already performed and each
possible current state. We distinguish two types of pure strategies: fixed and
adaptive ones. A fixed search strategy determines one particular sequence of
experiments before any data is collected. No adjustments and no early stops are
permitted after that, the full sequence of experiments must be performed. An
adaptive strategy also announces a sequence of experiments prior to the first
experiment, but the specification of the sequence of experiments can be contin-
gent on experimental outcomes. That is, an adaptive strategy can specify in
advance how it will adapt in light of particular outcomes of some experiment.
Chapter 3 covers fixed and adaptive strategies. It is divided into four main
sections: An introduction to search for causal structure that covers work that is
closely related to this thesis, a section that describes the space of assumptions
that will become relevant throughout this chapter and the next, and a section
each on fixed and adaptive strategies. In Chapter 4 we cover mixed strategies.

A mixed strategy can specify for each possible scenario (history of experiments
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and current state) a distribution over the possible experiments. A random sam-
ple from that distribution then determines the experiment in the sequence. For
each type of search strategy we analyze how many experiments are necessary
and sufficient to discover the causal structure under various assumptions. We
consider structural and parametric interventions, and causally sufficient and in-
sufficient sets of variables. We provide bounds on the number of experiments
and search strategies that implement sequences of experiments that respect the

bounds

3.1 Bayesian Searches with Interventions

Results in this thesis are most closely related to work by Tong & Koller [44] and
Murphy [29] on selecting the best next experiment to perform when searching
for causal structure. Both use a Bayesian approach to structure learning and
both use information theoretic measures to identify the optimal next experi-
ment. Their basic framework assumes a prior distribution P(G) over the space
of directed acyclic graphs over a given set of IV variables, and a prior over the
parameterization for each graph P(6¢|S = G), both of which are updated given
data D from an experiment £ that manipulates a subset of the variables V in
the graph. Given data D from experiment &, the distribution over graphs is

updated by Bayes Theorem for each G € G:

_ P(86|G.£,D)P(G)
Zc/eg P0s|G', E,D)P(G")

P(G|¢E,bq, D)

Concretely, this means that for each possible graph G € G, the manipulated
graph G¢ is computed given the intervention set of experiment €. Then, for
each graph G¢ the parameters of G¢ that are not manipulated by the experiment
are updated given the data, and lastly, with the updated parameters in place,
the distribution over the graphs can be updated. Technically, it is an update
of the distribution of manipulated graphs, but the update of the manipulated
graphs reflects back on the unmanipulated graphs, as does the update on the
parameters, for those parameters that were not affected by the manipulation.
Two graphs that have the same manipulated graph receive the same boost from
the data, since the likelihood of the data is the same for both graphs in the
experiment (assuming the relevant parameters are the same). The posterior

distribution over graphs after one experiment becomes the prior distribution for
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the next experiment and the process iterates.

Both Tong & Koller and Murphy use an information theoretic measure to
determine the next experiment. They perform the experiment that minimizes a
form of entropy in the posterior distribution over possible graphs. Tong & Koller
minimize the average of the entropy for each pair of variables, while Murphy
minimizes the entropy of the posterior over graphs directly.

The computation involved in the update is enormous: For the exact compu-
tation of the posterior one has to compute the posterior value for each possible
DAG over the variables. To do so, one has to integrate out the model param-
eters for each DAG. The integrals are simple, but large in number, and the
number of DAGs grows super-exponentially in the number of vertices. For the
choice of the best next experiment one theoretically has to consider each pos-
sible intervention (of which there are 2, where N is the number of variables)
and determine its expected impact on the entropy.

Both Tong & Koller and Murphy do not perform the exact computation.
Tong & Koller restrict themselves to networks that have a total ordering over
the variables. Murphy uses sampling techniques to estimate the result. Both
parties only consider structural interventions that clamp the intervened variables
to a particular value and only consider intervention sets of up to 4 variables.
Their choice of experiment is the best next experiment, which need not be the
best choice for a sequence of experiments.

Tong & Koller and Murphy both provide a fully Bayesian account of how
active search for causal structure using sequences of experiments can be per-

formed. Our approach considers the constraint based counterpart.

3.2 Search Space Assumptions

By imposing extra constraints on the causal system interventions provide addi-
tional leverage for causal structure search. As indicated in the previous chapter,
an intervention can help distinguish causal structures that appear equivalent in
passive observational data. In general, it is not the case that a single intervention
on one variable is sufficient to uniquely identify the one true causal structure
in an observational Markov equivalence class (OME). For example, all the com-
plete graphs over three variables imply the same independence constraints under
passive observation and consequently form an OME. If the first graph in the

top row is the true graph, then only its OME (represented by the pattern on
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the right in the first row) can be discovered by passive observation using inde-
pendence tests. A single intervention on one variable will help discover some
edges, but it does not uniquely identify the true causal structure in all cases.
The three graphs in the second row below show the post-manipulation equiv-
alence classes for a single structural intervention on X, Y and Z, respectively

(the intervention variables are ommitted for simplicity):

X X
Y Z Y Z
=X X X
\ \ AN
| AN
| AN
N
\ N\
Y —Z =Y z V--->Z<

Restricting ourselves to independence tests only, in the case of a structural
intervention on X, the XY -edge and the X Z-edge can be determined, but only
the adjacency, not the orientation of the Y Z-edge can be discovered. For a
structural intervention on Y, the Y Z-edge can be determined and the X Z-
edge can be determined (X — Z — Y form an unshielded collider in the post-
manipulation graph since the structural intervention on Y destroys the XY-
edge). However, for the XY-edge, it is only known that either there is an
incoming edge or there is no edge at all (represented by the dashed arrow),
since X and Y appear independent in the manipulated distribution. Similarly,
for an intervention on Z, only disjunctive information is discovered for the X Z-
and Y Z-edges, and only the adjacency is recovered for the XY-edge. If it is
known that the graph is complete, then only in the case of an intervention
on Y are we able to identify the graph uniquely. In all other cases a further
intervention is necessary. It turns out that any pair of experiments involving
two different single interventions is sufficient and two experiments are in the
worst case necessary to identify the graph uniquely. To analyze sequences of

experiments formally, we use the following definition of an experiment:

Definition 3.2.1: Experiment
An experiment &; on a set of variables V is represented by a triple of sets
&; = (S;, U, Pol;), where S; represents the subset of V that is subject to an
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intervention in &;, Pol; is the corresponding set of intervention variables, and Uj
contains the remaining passively observed variables. U US; =V, U;NS; =
and V N Pol; = 0.

According to this definition a passive observation is considered to be one
experiment (with an empty intervention set). Furthermore, it is possible that
an experiment involves multiple independent, but simultaneous interventions on
the set of variables. We say that an experiment is a single intervention exper-
iment if S is a singleton set. We refer to a multiple intervention experiment
if S contains several variables and each has its own corresponding intervention

variable in Pol.

The results that we present in the following two sections and in the next chap-
ter are sensitive to assumptions that are made about the search space. Since
we consider sequenes of experiments with a variety of search strategies, with
different types of interventions and different numbers of intervention variables,
assumptions can be combined in many ways. Many of the assumptions are not
independent, their effect on the search depends on what other assumptions are
made. Throughout this thesis we take four assumptions about the causal struc-
ture to be fundamental: Causal Markov, Causal Faithfulness, acyclicity and
knowledge of the distribution family. The first two were presented in Section
1.2, so we just add the third and fourth here:

Assumption 3.2.2: Acyclicity of Causal Structure

The true causal structure over a set of variables is acyclic.

Assumption 3.2.3: Distribution Family
We assume that the true model is a discrete binary model or a linear model

with normal errors, and that it is known, which of the two it is.

We take the causal Markov assumption (Assumption 1.2.1) to be a core char-
acteristic of causal processes. That is, if a causal system violates the Markov
assumption, then there is something fundamentally wrong in trying to describe
the system as causal, e.g. the variables are misspecified, the value space of
the variables is inappropriate or the process is not causal. Causal faithfulness
(Assumption 1.2.2) is not essential for all results. In particular, there are re-
sults similar to ours by Nyberg and Korb [31], that do not assume faithfulness.
But unless stated otherwise, it is assumed. Acyclicity is, of course, violated in

many real cases. We make this assumption for simplicity, since the difficulties
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arising from cyclic causal structures and the problems for discovery procedures
involving interventions on cyclic structures go beyond the scope of this thesis.
We consider two types of models. For the discrete case we analyze models
where each variable has two states, for the continuous case we consider linear
models with normal errors, i.e. the value of each variable is determined by a
linear sum of the values of its parents plus an (independent) error term that is
normally distributed with mean zero: For each variable X € V, X =" ¢;Y;+e
with Y; € pa(X). Many of our results extend to other types of models and dis-
tributions as well, but we do not consider them explicitly here. In particular,
most results also hold for discrete models with several (as opposed to just two)
states and the results on linear normal models extend to continuous additive

models as well.

Assuming Markov and faithfulness, probabilistic independencies can be used to
identify d-separation relations. In particular, the independence of two variables
X and Y for some conditioning set C implies that there is no edge X — Y or
Y — X in graph G. However, if one cannot find a conditioning set that makes
the two variables independent, it follows that X — Y or Y — X only if one also
assumes causal sufficiency, i.e. that there are no latent common causes. If there
is an unmeasured variable L with X <« L — Y then X and Y are correlated
despite the fact that there is no conditioning set (involving observed variables
only) that makes them independent. The assumption of causal sufficiency has
significant impact on what can or cannot be discovered about a particular causal
structure. Causal sufficiency belongs to the set of assumptions we switch on and
off: We present results that rely on these assumptions and results that do not

depend on their satisfaction.

Assumption 3.2.4: Causal Sufficiency

There are no latent common causes of the set of variables V.

Assumption 3.2.5: Oracle
The experiment returns the independence relations (or, in Section 3.3.3, corre-

lation values) true in the manipulated population distribution.

Assumption 3.2.6: Independence Tests
(Conditional) independence tests are the only admissible means to identify

causal structure given a distribution over the variables.
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Assumption 3.2.5 allows an analysis of the discovery problem independent of
statistical variability. In this way the combinatorical problems arising from the
combination of different experiments can be separated from sampling issues. As-
sumption 3.2.6 restricts the search methods to conditional independence tests.
The main appeal of conditional independence tests is that they are distribution
free and relate most directly to the qualitative nature of the causal structure.
There are, of course, other — even distribution free — tests to search for causal
structure given a particular — possibly manipulated — distribution over a set of
variables, and we will return to these in the cases where independence tests turn
out to be insufficient. No assumptions (other than acyclicity) are made about
the nature of the causal structure and no background knowledge or time order

information is presumed.

For different sets of assumptions and different types of interventions we give
bounds on the number of experiments necessary and sufficient to discover the
causal structure among N variables. These bounds are worst case bounds on
different types of search strategies. A search strategy determines the sequence
of experiments, i.e. which set of variables is subject to an intervention at which

stage in the sequence.

Definition 3.2.7: Search Strategy
A search strategy is a complete plan of which experiment will be performed next
at any point in the sequence of experiment and for any history of experimental

outcomes that may occur.

We consider three general families of strategies: fixed, adaptive and, in the
next chapter, mixed strategies. Strategies differ in how experiments are chosen
given the available information about the true underlying causal structure from
earlier experiments. For any set of search space assumptions, we describe three
aspects: the bound on the number of experiments sufficient and (where possi-
ble) in the worst case necessary to discover the causal structure given this set
of assumptions, a strategy that specifies a sequence of experiments that stays
within the bound, and (in Chapter 6) an algorithm that combines the infor-
mation from the different experiments to determine the causal structure. The
strategies we specify respect the bounds, but are not always unique, they do
not necessarily minimize the number of variables subject to intervention, nor do
they always minimize the size of the largest intervention set in the sequence of

experiments. In particular, if one is willing to perform more experiments, then
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in most cases one can do better on these other measures.

3.3 Fixed Search Strategies

We first consider fixed search strategies. Fixed search strategies specify one par-
ticular sequence of experiments. Which experiment is performed only depends
on how many variables there are and what the current index in the sequence of
experiments is. One can think of a fixed strategy as announcing the sequence of
experiments before any experiments are performed. Later experiments cannot
be adapted to take the results from earlier ones into account. Fixed strategies
can be used to identify the longest sequence of experiments that may be re-
quired to discover any particular graph. Such a mini-max guarantee provides a
worst-case bound for a search procedure: Since fixed strategies are independent
of particular experimental outcomes, there is for any number N of variables a
fixed sequence of experiments that guarantees that no matter what the true
graph is, it will always be determined uniquely within the number of experi-
ments specified by the fixed strategy. To make the worst case bound tight, the
fixed strategy should further guarantee that for any fixed sequence of experi-
ments that is shorter there is some graph which that sequence will not uniquely
determine. Importantly, the fixed strategy may not depend on a “lucky” or
adaptive choice of intervention set.

In the following five subsections we consider structure search with fixed
strategies under a variety of different combinations of assumptions and different
types of interventions. We first consider fixed strategies using structural inter-
ventions and then fixed strategies using parametric interventions. Within each
of these cases we consider causally sufficient and insufficient sets of variables and
strategies with single and strategies with multiple simultaneous interventions in
each experiment. In a third subsection we consider search strategies based on
tests of differences in correlations instead of independence tests, in the fourth
section we assume that particular background knowledge is available and in the
fifth section we briefly consider some restrictions that the search strategy may
be subject to. Unless specified otherwise, all results hold for both discrete and

linear models.
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3.3.1 Fixed Strategies with Structural Interventions

Under assumptions 1.2.1-3.2.6 above and allowing only a single structural in-
terventions on one variable per experiment, we get the following bound on the
number of experiments necessary and sufficient to learn the causal structure

among N variables.!

Theorem 3.3.1: (fixed strategy) Single Structural Interventions, Causally
Sufficient

N —1 experiments are sufficient and in the worst case necessary to determine the
causal graph among N > 2 variables? when only a single structural intervention

is allowed in each experiment.

This bound implies that no matter what the true underlying causal structure
is, there is a fixed sequence of experiments that guarantees that this graph can
be uniquely identified. Furthermore, for any shorter sequence of experiments
involving single interventions only, there is a graph — in this case a complete
graph — the sequence cannot identify uniquely. The theorem provides a worst
case bound in the sense that it uniquely identifies any possible (acyclic) causal
structure over N variables independently of how the selection of variables for
intervention relate to the causal structure. The fixed sequence of experiments

of length N — 1 that guarantees the bound is specified by strategy 3.3.2:

Strategy 3.3.2: (fixed) Single Structural Intervention, Causally Suffi-
cient

Given N causally sufficient variables Xi,..., X, let the sequence of experi-
ments €1,...,Ex_1 be such that &; = (S;, U;, Poly) with S; = {X;} and where

I (x,) € Pol; is a structural intervention.

The strategy is not sensitive to the order of the variables subject to inter-
vention, nor does it matter which particular variable X; is the variable X,, that
is not subject to an intervention. The strategy is unique (up to re-ordering
and re-naming of variables) in the sense that it is the only fixed strategy that
guarantees to recover every causal structure within the bound.

In this type of worst case analysis there is no advantage to passive obser-
vation. Any fixed sequence of experiments involving a passive observational

experiment does not recover every graph or it exceeds the bound in the worst

LAll proofs are given in the appendix. This result was first presented in [11].
2For N = 2, two experiments are sufficient and in the worst case necessary.
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case.

We illustrate the result with a simple example over three variables:

X X
Y Z Y Z
=X X X
I \\
I AN
| AN
N
\ \
Y Z =Y ~<---7 Y- ——->7<

Suppose the true graph is the one shown on the top left. The remaining four
graphs show what knowledge can be obtained about the true graph under pas-
sive observation (top right) and intervention on X,Y and Z, respectively, on
the bottom row. Only an intervention on X identifies the true graph uniquely.
All other experiments require a second experiment. In all cases, a second ex-
periment consisting of an intervention on X would (of course) suffice. For the
middle graph in the second row a passive observation or an intervention on
Z would also suffice; for the graph on the bottom right a passive observation,
or an intervention on either X or Y would suffice to discover the true causal
graph. If no background knowledge is available, one cannot guarantee a priori
that an intervention on X is sufficient (since Y or Z may be the common cause
instead), so since N =3, N — 1 = 2 experiments are sufficient and in the worst

case necessary.

If assumption 3.2.4 (causal sufficiency) is dropped, then, in the worst case,

discovery is no longer possible:

Theorem 3.3.3: (fixed strategy) Single Structural Intervention, Causally

Insufficient
Given a causally insufficient set of variables, no sequence of experiments is suf-
ficient to determine the worst case causal graph among N variables when only

a single structural intervention is permitted in each experiment.

The negative result derives directly from the fact that in the case of a causally
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insufficient set of variables we cannot use the lack of a conditioning set that
makes two variables conditionally independent, to establish an adjacency be-
tween the variables: two variables might be non-adjacent, but dependent for
every conditioning set due to a latent common cause. Consider the following

two graphs over three variables with two latent variables L, and Lo:

X

Y X

Y

Ly Z Lo Ly Z Lo

No sequence of single intervention experiments distinguishes these two graphs.

If, in contrast, causal sufficiency is maintained, but we allow the possibility that
multiple variables can be subject to an intervention simultaneously and indepen-

dently, we can reduce the bound on the number of experiments significantly:3

Theorem 3.3.4: (fixed strategy) Multiple Structural Interventions,
Causally Sufficient

|logo(N)| + 1 experiments are sufficient and in the worst case necessary to
determine the causal graph among N variables when multiple simultaneous and

independent structural interventions are allowed in each experiment.

The worst case graph is again a complete graph over the variables, but even
that is discovered within the limits of the bound by a strategy of the type of
Strategy 3.3.5:

Strategy 3.3.5: (fixed) Multiple Structural Interventions, Causally
Sufficient

Given N causally sufficient variables Xi,..., Xy, let the sequence of experi-
ments consist of k = |log,(N)|+1 experiments &1, ..., & with &; = (S;, Uj, Poly)
such that for each pair of variables X,Y in V one of the following holds:

1. There is an experiment &; such that X € S; and Y € U; and an experiment
€; such that X € U; and Y € S;. That is, one experiment where X is
subject to an intervention and Y is not, and one where Y is subject to an

intervention and X is not.

3This result was first presented in [10].
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2. There is an experiment &; such that X € S;jand Y € U, and an experiment
&; such that X € U; and Y € Uj;. That is, one experiment where X is
subject to an intervention and Y is not, and one where both X and Y are

passively observed.

We do not specify a particular sequence of experiments in the strategy, since
for different values of NV there can be several ways of satisfying the constraints.
One way of satisfying these constraints is that each experiment intervenes on
| N/2| variables simultaneously, with different combinations each time (see Fig-

ure 3.1 for examples for N =8 and N = 7).

Figure 3.1: Intervention sets for Strategy 3.3.5 for N =8 and N = 7. For N =8
only three of the four intervention sets are shown, but one variable (marked in
black) is contained in all of them. So there are in this case many choices for
the fourth intervention set, as long as it does not contain the black vertez.

In general this approach can be formalized by using Cantor sets: For IV vari-
ables, the first intervention set is S; = {X;|0 < < | |}. The kth intervention
set (k > 2) is determined by selecting those X; for intervention, whose i are
covered by the mapping of the interval (0; N/2] by k — 1 iterated applications

of the functions

fi(x) = 0.5z
folz) = 0.5 +05N

The result are intervention sets that follow the construction of a particular type
of Cantor set (see the first example with N = 7 in the following table). When

N is a power of 2, an additional passive observation is required (see the first
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example with N = 8 in the table). But this approach is not unique. Depending
on the number of variables, there can be quite a bit of flexibility in the sequence

of experiments, as the following examples in the table show.

Variables | Experiments ‘ Intervention Sets
I = {Xy, Xo, X3}
N=T 3 I, = {X1, X4, X5}

I3 = { X5, X4, X6}
I, = {X1, X5, X3}
N=7 3 I, = {X5, X4, X5}
I3 = { X3, X4, X6}
I = {X1, X5, X5, Xy}
I = {X1, X5, X5, X¢}

N=38 4
13:{X17X37X57X7}
IL=0
I = {X;, Xy, X3}
I, ={X1, X4, X
N=38 4 2 = { X1, Xy, X5}
I3 = {X2, Xy, X6}
L = {X7}
Il = {X17X2aX3,X4aX5,X6,X7}
I, = {X1, X5, X3, X3, X9, X10, X
N =15 4 2 { 1,32, A3, A8, A9, A10, 11}

I3 = {X1, Xy, X5, X5, Xy, X12, X13}
I, = { X5, X4, X6, X5, X10, X12, X14}

There are three forms of flexibility in arranging the intervention sets: First,
the intervention sets are insensitive to renaming of the variables. It does not
matter which variable is X; and which is X5, as long as different indices refer
to different variables. Second, if we keep the size of the intervention set in each
experiment constant, then there is generally some flexibility in exactly which
combinations of variables are subject to interventions. We can see an example
of this in the first two examples with NV = 7: The intervention sets are the same
size in both cases (3,3,3), but they contain different variables in the sense that
the sets are not equal up to renaming. Third, there sometimes is flexibility in
the size of the intervention sets. This is evident in the two examples with NV = 8.
The distribution over the intervention sets is different: (4,4,4,0) vs. (3,3,3,1).
This flexibility does not exist for N = 7. We cannot have an intervention set

of size two or four without exceeding the bound on the number of experiments.
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The underlying intuition is: the smaller 2™ — N is, where m is the smallest
integer such that 2™ > N, the more flexibility there is in the distribution of
the size of the intervention sets. When N is a power of 2, then the number of
experiments increases by one. So, the closer 2" — 1 and N are, the closer we
approach the bound of what can at best be learned from m experiments, and
hence flexibility decreases.

These features could become extremely relevant when considering cost func-
tions. If the cost function is over the number of variables intervened (rather
than, say, number of experiments, or sample size), then it is desirable to keep

the total size of the intervention sets low (as in the second example with N = 8).

If we now drop assumption 3.2.4 (causal sufficiency) while keeping multiple
simultaneous interventions, then, unlike for the single intervention case, causal

discovery remains possible:

Theorem 3.3.6: (fixed strategy) Multiple Structural Interventions,
Causally Insufficient

Given a causally insufficient set of variables, N experiments are sufficient and
in the worst case necessary to discover the causal structure among the N ob-
served variables if multiple variables can be subject to a structural intervention

simultaneously and independently in each experiment.

In this case, only the causal structure among the observed variables is dis-
covered. Given a set of variables, the structure among the observed variables
is the subgraph that only contains vertices that are measured and edges that
connect two measured vertices. In general, the location or presence of latent
common causes cannot be discovered on the basis of independence tests alone.*

The fixed strategy corresponding to the bound is:

Strategy 3.3.7: (fixed) Multiple Structural Interventions, Causally

Insufficient
Given N causally insufficient variables X1,..., Xy, let the sequence of exper-
iments €1,...,ExN be such that each &; consists of a simultaneous structural

intervention on IV — 1 variables, leaving out a different one each time.

We conjecture that this strategy of experiments is the only one that guar-

antees attainment of the bound for every possible DAG over N variables. It

4Note that we only consider latent common causes, we do not consider latent embedded
variables, even though there might be some circumstances in which they can be detected. In
general, discovery of latent embedded variables is still largely an open problem.
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is possible to discover the graph with other fixed strategies that do not require
an intervention on N — 1 variables for each experiment. But for such fixed
strategies more than N experiments are required and at least one of them must
still intervene on all but one variable. We illustrate the bound for the simplest

possible case of two variables, where L is a latent common cause:

|

Suppose the true graph is the one on the left, then the remaining two graphs

L
|
|
|
A \
X——=Y X--->Y<

— Y =

show the manipulated structures for the two possible (informative) interven-
tions. An intervention on Y is insufficient and a second experiment must be
performed. After the second experiment, only the structure among the observed

variables (X and Y') is guaranteed to be discovered.

3.3.2 Discovery with Parametric Interventions

Parametric interventions do not destroy causal structure and therefore can be
used (and combined) more efficiently than structural interventions. In partic-
ular, when two variables are both subject to a structural intervention, then all
information about the causal structure between them is lost. This is not the
case for parametric interventions and consequently, if they can be performed,
parametric interventions result in quite different bounds on the number of exper-
iments. Under assumptions 1.2.1-3.2.6, but now with parametric interventions,

we get:®

Theorem 3.3.8: (fixed strategy) Single Parametric Intervention, Causally
Sufficient

N — 1 experiments are sufficient and in the worst case necessary to determine
the causal graph among IV variables when only a single parametric intervention

is allowed in each experiment.

For single parametric interventions the bound is no different to Theorem
3.3.1 (single structural interventions) and the search strategy is the same as

Strategy 3.3.2, just with parametric instead of structural interventions. The

5These results were first presented in [12].
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strategy remains insensitive to order and which variable is not subject to an

intervention. We give an example with three variables:

w w w

X<~—Y Ix = X<—"Y X<~—Y~<—1Iy

The first graph is assumed to be the true graph among the variables. Since
the parametric interventions do not destroy any causal structure, no edges are
missing in the manipulated graphs shown for a parametric intervention on X and
Y, respectively. Consequently, adjacencies can be determined by any standard
structure search method for passive observational data. Orientations can be
determined by a collider test: In the first experiment Ix, X and W form an
unshielded triple, since I'x and X are adjacent, and X and W are adjancent, but
Ix and W are (by construction) non-adjacent. Since we find that Ix LW, but
Ixt W|X, we can orient the triple as a collider. Similarly for Ix, X and Y. We
cannot orient the WY -edge. However, in the second experiment Iy,Y and W
also form an unshielded triple, but in this case we find Iy ILW|Y. Consequently,
the triple is not a collider, and since we know that Iy — Y, we can orient
Y — W. Combined, the experiments resolve the causal structure uniquely.

In the way we have described the example, the collider tests depend on a
marginal distribution on the intervention variables. But in principle that is not
necessary, since the same information can be obtained by considering differences
in conditional distributions. For example, in the first experiment we know all
the adjancencies. If we find that P(Y|Ix = k1) # P(Y|Ix = ko), then the
X,Y-edge can be oriented from X to Y, if the quantities are equal, then one

can conclude X < Y (which would be true in the specific case of this example).

So far, we have not seen any difference in the number of experiments between
parametric and structural interventions. But if we consider multiple simultane-

ous parametric interventions, we do much better than before:

Theorem 3.3.9: (fixed strategy) Multiple Parametric Interventions,
Causally Sufficient
One experiment is necessary and sufficient to determine the causal graph among

N variables when multiple simultaneous parametric interventions are allowed in
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each experiment.
The corresponding search strategy is trivial:

Strategy 3.3.10: (fixed) Multiple Parametric, Causally Sufficient
Given N causally sufficient variables X7, ..., X,,, let the sequence of experiments
consist of one experiments €; such that all but one variable is subject to a

parametric intervention.

It does not matter which variable is not subject to an intervention. Under
the given assumptions one may also subject all variables to parametric interven-
tions simultaneously (instead of just N — 1), but it is not necessary. The huge
reduction in the number of experiments results from the fact that parametric
interventions can be combined independently of each other, as they do not de-
stroy causal structure. The reduction in the number of experiments comes at
a price: In comparison to the structural intervention strategies, substantially
more conditional independence tests may be needed to perform all the collider
tests. In the one experiment of the above strategy all variables may have to
be tested for colliders on the basis of the data from a single experiment. The
collider tests generally involve higher order independence tests, which may not

be as reliable.

If we drop assumption 3.2.4 (causal sufficiency), the case for parametric interven-
tions becomes substantially more complicated. In general, just given assump-
tions 3.2.5 and 3.2.6 above, parametric interventions are insufficient to uniquely
identify the worst case possible graph, no matter whether we consider single or
multiple parametric interventions per experiment. So, for completeness, we can

state:

Theorem 3.3.11: (fixed strategy) Parametric Interventions, Causally
Insufficient

No sequence of experiments is sufficient to determine the worst case causal graph
among N causally insufficient variables if only parametric interventions (single

or multiple) are allowed in the experiments.

However, it is not the case that all the power of identifying causal connections
is suddenly lost. Two example cases will illustrate the problem. Consider the
first two graphs in Figure 3.2.

There are no independence constraints among the observed variables (and

intervention variables) that distinguish the first two graphs. However, the third
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graph in the same figure can be distinguished from both of the first two. 11 X5
and I11L15| X5 hold for the third graph but do not in the first two graphs.®
That is, parametric interventions imply their own equivalence classes, which
are different from the equivalence classes resulting from passive observation or
structural interventions. Theorem 3.3.11 states that no sequence of experiments
involving parametric interventions results in a singleton equivalence class if all

graphs over IV variables are considered possible.
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Figure 3.2: No independence constraints among the observed variables (and
intervention variables) distinguish the first two graphs, but there exist indepen-
dence constraints among the observed variables (and intervention variables) that
distinguish the third graph from both of the first graphs.

5The number of independence constraints that had to be checked is enormous.
We checked them automatically by using a feature of the Causality Lab program
(http://www.phil.cmu.edu/projects/causality-lab/).
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The conditions for recovering the causal structure among causally insufficient
variables uniquely when only parametric interventions are available, depends on

a result by Verma and Pearl [47] on inducing paths.”

Definition 3.3.12: Inducing Path

If G is a directed acyclic graph over a set of variables V, O is a subset of V
containing X and Y, and X # Y, then an undirected path p between X and Y
is an inducing path relative to O if and only if every member of O on p except

for the endpoints is a collider on p, and every collider on p is an ancestor of
either X or Y.

If we can determine adjacencies among a set of causally insufficient vari-
ables, then orientations can be determined by collider tests. Adjacencies can be
determined when there are no inducing paths (Theorem 6.1 in [43]). So we can
characterize the cases when parametric interventions are sufficient for causal

discovery on causally insufficient sets of variables:

Theorem 3.3.13: Parametric Interventions and Inducing Paths

Let G be a graph over a set of variables V and let O be a subset of V containing
the observed variables. Let G4, be the graph G where each variable X € O is
extended with an intervention variable Ix — X. The subgraph Go of G over
the observed variables can be uniquely determined by parametric interventions
on each variable in O if and only if for each pair of variables X, Y € O that are
non-adjacent in G, there is no inducing path between Iy and Y and no inducing
path between Iy and X relative to VU {Ix|X € O} in Gpan.

Needless to say, this theorem only provides the conditions, it does not give

any indication of how one can ensure that these conditions are satisfied.

We can thus summarize our results on the number of experiments sufficient and
in the worst case necessary when tests of independence are used to discover

causal structure:

Type of Experiment H Causal Sufficiency ‘ Structural ‘ Parametric

Single Yes N -1 N -1
Multiple Yes logy(N) +1 1

Single No impossible | impossible
Multiple No N impossible

"The definition is taken form [43].
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For each of these strategies, the maximum number of interventions necessary in
some experiment in a strategy that satisfies the corresponding above bound is

given in the following table:

Type of Experiment H Causal Sufficiency ‘ Structural ‘ Parametric

Single Yes 1 1
Multiple Yes N/2 N-1

Single No - —
Multiple No N-1 -

3.3.3 Tests of Differences in Correlation

The previous section was based on Assumption 3.2.6, i.e. that tests of inde-
pendence are the only permissible means to search for causal structure in the
available data. Independence tests do poorly when the set of variables is not
causally sufficient. We either are unable to uniquely discover the causal struc-
ture or we have to intervene on all but one variable in each experiment. If
instead of Assumption 3.2.6 we allow tests that check for differences in corre-
lation (in the case of linear models) and use that information to differentiate
causal structures, then results turn out differently again. In the causally suffi-
cient cases (Theorems 3.3.1, 3.3.4, 3.3.8 and 3.3.9), this change of assumptions
makes no difference to the number of experiments needed for causal discovery in
the worst case — independence tests are all one needs. Of course, there may be
particular causal structures that imply certain constraints on correlations that
can be used to identify the causal structure, where independence tests fail. But
in the worst case, for a fixed strategy, differences in correlations do not provide
any benefits in terms of the length of the sequences of experiments, when the
set of variables is causally sufficient. However, in the case of causal insufficiency,

the negative results of Theorem 3.3.3 can be avoided — at least for linear models:

Theorem 3.3.14: (fixed strategy) Single Structural Intervention, Cor-
relation-Test, Causally Insufficient

Given a set of N causally insufficient variables, N experiments are sufficient
and in the worst case necessary to determine the causal graph among the ob-

served variables when only a single structural intervention is allowed in each
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experiment and the model is linear.

Furthermore, correlation tests combined with these experiments enable us

to recover the presence and location of latent common causes:

Theorem 3.3.15: Search for Latent Common Causes: Single Struc-
tural Interventions

Given a set of N causally insufficient variables and assuming the model is linear,
N experiments, with a single structural intervention only per experiment, are
sufficient and in the worst case necessary to determine for each pair of observed

variables, whether the pair is confounded by a latent common cause.

In Chapter 6 (Algorithms) we provide an algorithm that is able to identify
latent variables. By integrating these results with algorithms that search for
structure among latent variables, we conjecture that one is able to discover the
structure among observed variables, the presence and location of latent variables
and the structure among latent variables.

The bound signals a significant increase in the information that can — in
theory — be obtained from a sequence of single structural interventions. Not
only does this bound imply that it is possible to discover the causal structure
among the observed variables with single interventions despite the fact that the
set of variables is causally insufficient, one can even discover the location of
latent variables. However, to do so, requires a substantial amount of analysis
of the data, as will become evident from the presentation of the algorithms in
Chapter 6. The sequence of experiments for a search strategy that respects the

previous two theorems is straightforward:

Strategy 3.3.16: (fixed) Single Structural Intervention, Correlation-Test,
Causally Insufficient

Given N causally insufficient variables X1, ..., Xy, let the sequence of experi-
ments be such that each experiment &; is a structural intervention on a different
X;.

The strategy essentially matches Strategy 3.3.2 with one extra experiment.

We illustrate the result with one very simple example over five variables. More
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detail is given in the corresponding section in Chapter 6 and the Appendix.

EXW Ewv EXW eEwvV

X w Vv X w V
exz
exy exy
Y——>7 Y ——>7
eyz eyz

Suppose the true graph over V, W, XY, Z with its edge-coefficients is given on
the left, and assume that each pair of variables is confounded by a latent com-
mon cause not shown in the diagram. After performing N = 5 experiments,
each involving a structural intervention on one variable, we can define a partial
ordering () over the variables, such that X; = X, if and only if X;}l X, in
&;, the experiment in which X, is subject to a structural intervention. In our
example we have X = W >V and X > Y > Z. From this partial order we can
construct a partial order graph (POG)8, which contains a direct edge whenever
two variables follow each other directly in the partial ordering. The POG for
the partial order here is shown as the second graph. The correlations due to
the direct edges between two variables can be determined in the experiment in
which the cause variable is subject to a structural intervention. The POG is a
subgraph of the true graph. Now, by considering connections in the POG in
an order over the paths that ensures that connections of variables closer in the
graph hierarchy are determined before variables are considered that are further
apart in the graph hierarchy?, we can test for other direct edges between any
pair of variables X;, X; with X; > X; by comparing the total correlation be-
tween the two variables in the experiment in which Xj; is subject to a structural
intervention with the correlation due to the paths between the variables that
are already known. Since the structural intervention breaks any influence of
latent variables on X;, we are only comparing correlations due to paths among
the observable variables. If we start with “closer” connections in the graph,
we can ensure that all other direct connections are known before we consider
direct connections from vertices high in the graph to ones close to the sink.
Concretely, in our example, there are two paths of length greater than one in
the POG: X - W — V and X — Y — Z. In this case, it does nor matter
which path we consider first. So assume we start with the XWV-path. We

test whether the correlation pxy between X and V in the experiment €x, in

8See definition in the Appendix.
9Details of this order are given in Chapter 6 and the Appendix.
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which X was subject to a structural intervention, is equal to the correlation
due to the known path, i.e. whether pxy = exwewy. Since this is the case,
no direct edge is added from X to V. However, in the case of the XY Z-path,
pxz # exyeyz and hence an edge X — Z is added and the residual correlation
exz = pxz — exyeyyz is associated with the direct edge. If there were other
paths in the POG, they would be considered next, but for this example we are
done, we have discovered the structure (and correlations due to that structure)
over the observed variables.

We can now search for latent variables by comparing the correlation due to
the structure over the observed variables with the passively observed correlation
between variables. If they are not equal, there must be latent variables. In this
case we start from the root of the graph. If there are several roots, we must
check whether any pair of roots is confounded before we consider other pairs of
variables. Here we first consider whether any direct edge from the root is con-
founded by a latent variable. Concretely, we test whether the active correlation
pxw = exw is equal to the passively observed correlation Txyw . If it is, there is
no latent common cause between X and W. If it is not equal, then we have dis-
covered a latent common cause and can associate the residual correlation with
the latent common cause. Next we would consider any paths of length two from
the root. By considering potential common causes in a particular top-down or-
der (described in more detail in the chapter on algorithms), we can ensure that
we discover all confounders among variables higher in the graph before we con-
sider confounders of variables closer to the sink. By subtracting the correlations
due to all known pathways from the passive observational correlations between

two variables, we can identify all latent common causes between two variables.

As this example shows, the bounds of Theorems 3.3.14 and 3.3.15 depend on
being able to establish a partial order among the variables in the least number
of experiments. Using multiple simultaneous interventions, this can be done in
even fewer experiments, improving the case for search in causally insufficient

sets of variables substantially from the N-experiment bound in Theorem 3.3.6:

Theorem 3.3.17: (fixed strategy) Multiple Structural Interventions,
Correlation-Test, Causally Insufficient

2[log,(N)] experiments are sufficient to determine the causal graph among N
causally insufficient variables when multiple simultaneous structural interven-

tions can be performed in each experiment and the model is linear.
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Again this result extends to the discovery of latent variables:

Theorem 3.3.18: Search for Latent Common Causes: Multiple Struc-
tural Interventions

Given a set of N causally insufficient variables and assuming the model is linear,
2[logy(N)] + 1 experiments, with multiple simltaneous interventions per exper-
iment, are sufficient to determine for each pair of observed variables, whether

the pair is confounded by a latent common cause.

For these two theorems the bounds are not tight. Depending on N, the
bounds can be made tighter. The one experiment difference is just to ensure
that all pairs of variables are passively observed at some point in the sequence
of experiments. The strategy specifies the conditions that the sequence of ex-

periments needs to satisfy:

Strategy 3.3.19: (fixed) Multiple Structural Intervention, Correla-
tion-Test, Causally Insufficient

Given N causally insufficient variables X7, ..., Xy, let the sequence of exper-
iments consists of experiments such that for each pair of variables X,Y there
is an experiment &; = (S;,U;,Pol;) with X € S; and Y € U; and there is
an experiment €; with X € Uj and Y € S; and all interventions are struc-
tural. For discovery of latent variables there must also be an experiment &y
with {X,Y} C Uy.

The conditions for the structure among the observed variables are easily
satisfied by intervening on different sets of N/2 variables (like the Cantor set
construction for Strategy 3.3.5) and their complements. However, one can do
better by combining the interventions more optimally. For example, for N = 6
the requirements can be satisfied with four (instead of six) experiments by using

the intervention sets:
{Xla X27 X3}7 {X37 X4) X5}7 {X57 XGa Xl}) {X27 X4a X6}

It is an open question whether there is a tight bound that can be given indepen-
dently as a simple function of N, and whether it is always necessary to extend
the tight bound by one extra experiment to determine the passive observational
correlations.

The discovery procedure in the multiple intervention case is, apart from how

the partial order is determined, essentially analogous to the case of a single
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structural intervention per experiment. Care only needs to be taken that the
correlation tests are appropriately adjusted to those paths that are active in the
relevant experiment, since the multiple simultaneous interventions may break

causal connections.

It might appear that the structural aspect of the structural interventions is do-
ing the work for these results, i.e. that the results would not be possible if the
incoming edges from the latent common causes were not destroyed by an inter-
vention. This is not entirely true. The crucial aspect of these results is access
to unconfounded variables. Structural interventions are one way of producing
unconfounded variables, but for parametric interventions, the intervention vari-
ables are also unconfounded. Consequently, the negative result for parametric
interventions in Theorem 3.3.11 can — for linear models — also be reversed when

correlation tests are used:

Theorem 3.3.20: (fixed strategy) Single Parametric Interventions,
Correlation-Test, Causally Insufficient

N experiments are sufficient and in the worst case necessary to determine the
causal graph among N causally insufficient variables when only a single para-

metric intervention can be performed in each experiment and the model is linear.

With regard to discovery of latent variables, Theorem 3.3.15 applies here
for parametric interventions as well and the strategy also does not differ from
the structural intervention case (Strategy 3.3.16), with N experiments inter-
vening on a different variable each time, just using parametric interventions.
Since parametric interventions can be combined independently without inter-
fering, the previous result extends straightforwardly to multiple simultaneous

parametric interventions:

Theorem 3.3.21: (fixed strategy) Multiple Parametric Interventions,
Correlation-Test, Causally Insufficient

One experiment is sufficient and in the worst case necessary to determine the
causal graph among N causally insufficient variables when multiple simultaneous
parametric interventions can be performed in each experiment and the model is

linear.

Theorem 3.3.22: Search for Latent Common Causes: Multiple Para-
metric Interventions

Given a set of N causally insufficient variables and assuming the model is linear,
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one experiment, with multiple simultaneous interventions per experiment, is suf-
ficient and in the worst case necessary to determine for each pair of observed

variables, whether the pair is confounded by a latent common cause.

Strategy 3.3.23: (fixed) Multiple Parametric Interventions, Correla-
tion-Test, Causally Insufficient

Given N causally insufficient variables X7, ..., Xy, let the sequence of exper-
iments consist of a single experiment €; such that each X; is subject to a

parametric intervention.

The algorithm in the case of parametric interventions is very similar to the
structural intervention case with one small tweak. We will illustrate the tweak
with the same graph we used before, shown again on the left. Again we assume

that there is a latent common cause for each pair of variables in the true graph.

Ix Ty Iy
EXW ewv eIX\L eXWPIVVi eWVeIV\L
X W 1% X 14
exy exz ‘/
Y———=7 Iy 2y ——2z<1,

The same graph on the right includes all the intervention variables. We can
still construct a partial order and a POG, only this time X > Y if and only if
IxL Y in the experiment in which X is subject to a parametric intervention.
Hence, the POG is the same as before:

Iy T Iy
eIXi eIW\L eri
X EXW W ewv V
EXY
Iy 2y z<2 1,

Since one can determine the correlations between an intervention variable and its
intervened variable directly from the data (since the interventions are assumed
to be unconfounded), we can compute the correlations of the direct edges in the

POG. For example, exw = pr,,w/erx, where pr, w is the correlation between
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Ix and W when X is subject to a parametric intervention. The procedure is
otherwise exactly the same as before. Instead of determining the active correla-
tion p in terms of the correlation between the intervened variable and some other
variable, it is determined between the intervention variable and some other vari-
able, and then appropriately reduced by the effect of the intervention variable
on the intervened variable (i.e. by division by ej,) to yield the correlations for

individual edges.

We can thus now summarize the results for search procedures using tests for

differences in correlation:

Type of Experiment H Causal Sufficiency ‘ Structural ‘ Parametric
Single Yes N -1 N -1
Multiple Yes logy(N) +1 1
Single No N N
Multiple No 2logy(N) +1 1

For each of these strategies, the maximum number of interventions that oc-
curs for some experiment in a sequence that satisfies the corresponding bound

above is given in the following table:

Type of Experiment H Causal Sufficiency ‘ Structural ‘ Parametric

Single Yes 1 1
Multiple Yes N/2 N-1

Single No 1 1
Multiple No N/2 N

The results cannot be extended easily to the discrete case. As our example
showed, the results rely on the ability to compute the effect of causal pathways
individually, to compute the correlation due to particular subsets of pathways
and to be able to compare correlations according to different pathways. This is
not always possible for discrete models. Discrete models may contain interactive
effects, which prevent an account of a causal effect that can be associated with
individual pathways. Presumably, however, these results would hold for discrete
models that do not allow interactive causes, such as, for example, noisy-or mod-
els.'® We therefore conjecture that linearity, or at least some form of additivity

in the functional form of the model, is a necessary assumption.

10Gee [30] for details on noisy-or models.
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3.3.4 Search given Structural Knowledge

We have so far considered fixed strategies with single and multiple interven-
tions per experiment, with parametric and structural interventions, on causally
sufficient and insufficient sets, using independence tests and tests of differences
in correlations. This is how far we are going to go in analyzing the impact
of changes in the background assumptions until we relax the assumption of an
oracle in the simulations. We now return to the full set of initial assumptions:
causally sufficient sets of variables, independence tests only and we will restrict
ourselves to structural interventions. In addition to these assumptions we will
now add further assumptions and investigate their impact. The results described
so far make no assumptions about any prior knowledge regarding restrictions
on the possible causal strutures (other than acyclicity). There are many differ-
ent ways in which some knowledge about the causal structure may already be
available. To represent compactly all the knowledge that is already available or
has been gathered during a sequence of experiments about the causal structure

underlying a set of variables, we define a knowledge graph:

Definition 3.3.24: Knowledge Graph
A knowledge graph is a mixed graph over a set of variables V such that any

two variables are connected by at most one of the following edge-types:

direct cause: A directed edge represents the knowledge that one variable, the

start, is a direct cause of the other, the end (relative to V): X —=Y

non-adjacency: The absence of an edge represents the knowledge that neither

variable is a direct cause of the other: X Y

adjacency: An undirected edge represents a direct causal connection between

the two variables, whose orientation is not known: X —— Y

semi-directed: A semi-directed edge from variable X to Y represents the
knowledge that either neither variable is a direct cause of the other or
that X is a direct cause of Y: X ——>Y

no knowledge: A no-knowledge edge represents that nothing is known about

the direct connection between the two variables: X —7—Y

An edge in a knowledge graph is considered known if it is of one of the first two

edge-types, otherwise it is unknown. A knowledge graph is said to represent a
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causal structure uniquely when each of its edges is known and the structure is

acyclic.

A knowledge graph, like a pattern for an observational Markov equivalence
class (OME), can be used to represent an equivalence class of graphs that imply
the same independence constraints. The main difference to a pattern is that
a knowledge graph can represent information about independence relations re-
sulting from structural interventions. Clearly, an OME of a causally sufficient
set of variables can be represented as a knowledge graph, since an OME only re-
quires the first three edge-types. The fourth edge-type is needed when only one
variable of a pair is subject to a structural intervention and the pair appears
non-adjacent in the post-manipulation graph. The fifth edge-type is needed
when two variables are subject to structural interventions simultaneously, since
no information about the connection between them is gained. Not all knowl-
edge graphs represent equivalence classes of graphs that can be obtained from
sequences of experiments (see below).

A knowledge graph can be used to represent prior knowledge about the
causal structure or to summarize knowledge that has been gained from a se-
quence of experiments so far. Given a non-trivial knowledge graph, the choice
of variables to subject to an intervention in an experiment should be sensitive
to the information already present in the knowlegde graph. For example, sup-
pose that for a set of four variables W, X, Y, Z, the following knowledge graph

is known:

W--—-=X

Y——Z7

Clearly, the next intervention should be an intervention on Y or Z (and possi-
bly, but not necessarily W). The OPTINTER algorithm computes intervention
sets for knowledge graphs.

Algorithm 3.3.25: OPTINTER: Intervention Set Selection

Given a knowledge graph over a set of vertices V, each vertex in V can be
determined to be admissible or inadmissible and each vertex has a counter (of
clique memberships). Let mazInter be the maximum size of the intervention

set S for the next experiment.
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1. Mark all vertices as admissible and set the counters for each vertex to 0.
2. Initialize the intervention set S to be the empty set.

3. Find all maximal cliques of vertices connected by unknown edges and order
them Cax t0 Chin by the number of vertices they contain.!' (No need

to resolve ties.)

4. Each clique can be either resolved or unresolved. Mark all maximal cliques

as unresolved.
5. Compute h = 2M1°82(ICmaxDT=1 (the closest power of 2 with 2™ < |Ciyax]).
6. Let the relevant cliques C1, ..., Cy be the cliques with |C;| > h.

7. Sort all relevant cliques in order of size, place among equal sized cliques

the ones with the most inadmissible nodes first.

8. Let Ceyurr be the first (largest) unresolved clique in the list of relevant

cliques.

9. For each vertex U € Cgypr, set its counter to the number of unresolved

relevant cliques C} it is part of.

10. While (|S| < maxInter)&&(|Ceyrr N S| < |Ceyrr| — k), select vertex V €
Cleyrr such that V' is admissible and has the highest count; select randomly

among ties.'? Place it in S.
(a) 13 For any relevant clique Cj, if |C; N'S| = |C;| — h, then mark C; as
resolved.
(b) For any relevant clique Cj;, if |C; N'S| = h, mark its vertices as

inadmissible.

11. Return to 7 and start over until all relevant cliques are resolved or when

no further relevant cliques can be resolved.

1 Note, that if the knowledge graph results from a sequence of experiments, then there
cannot be cliques of semi-drected edges. All cliques of unknown edges are necessarily cliques
of no-knowledge edges or cliques of undirected edges.

12Tn a fixed strategy some deterministic rule can be used to select among tied variables.

13The following two constraints on admissible nodes and resolved cliques are appropriate
for a fixed strategy. In a mixed search strategy different lower limits apply for the optimal
number of variables that should be included in an intervention set.
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12. (Post Process: While possible with regard to the constraints (a) and (b) of
step 10, add vertices to the intervention set to resolve additional maximal

cliques.)'*

13. Return the intervention set.

OPTINTER attempts to find intervention sets in knowledge graphs that are
close to optimal: if OPTINTER is called before each new experiment, the short-
est sequence of experiments necessary for the worst case graph consistent with
the initial knowledge graph is determined. OPTINTER is not exactly optimal
for arbitrary knowledge graphs, since they might represent knowledge about the
causal structure that cannot be obtained from sequences of experiments. For
example, for a knowledge graph over three variables where each edge is a semi-
directed edge, a passive observation would be one optimal solution, resulting
in a single experiment. Such a knowledge graph cannot be obtained by any

sequence of experiments.
X

.
7/
S0
T
7/
» y

Y--->2Z7
OPTINTER returns an intervention set that contains one variable, and — de-
pending on which variable it is, e.g. Y or Z — it is not optimal, since two ex-
periments, instead of one are required. However, we conjecture that for certain
types of knowledge graphs, OPTINTER is optimal, when multiple simultaneous
interventions are permitted in each experiment.

One particular type of knowledge graphs are patterns representing passive
observational Markov equivalence classes (OMEs), which can be determined
from samples where no intervention was performed. Assuming causal sufficiency,
if the OME of the true graph is given, we conjecture the following bound on the

number of experiments required to uniquely identify the true causal structure:

Conjecture 3.3.26: Structural Interventions on OME

Given an OME of the true graph, if multiple simultaneous and independent
structural interventions can be performed in each experiment, then [log, (|Cinax|)]
experiments are sufficient and in the worst case necessary to recover the true
causal graph, where Ci.x is the largest clique of undirected edges in the true

OME.

14This step is not invoked for fixed strategies.
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Here the worst case consists of the most unfortunate choice of variables for
intervention relative to the graphs in the OME that one cannot guarantee to
avoid.

The conjecture is based on the realization that cliques are the main obstacle
to discovery using structural interventions. Cliques provide shields for colliders,
which increase the combinations of how edges could be oriented. Hence, to
discover the causal graph in the least number of experiments the main aim is
to determine the orientation of edges in cliques (the adjacencies are already
given by the OME). For a clique of size |C|, an experiment that intervenes on
k variables in the clique determines the orientation of k(|C| — k) of the clique’s
edges. This value is maximized for k = 1/2|C|. An algorithm that reduces by
half the size of all cliques of undirected edges for which no edge-orientation is
known clearly satisfies the conjectured bound. In general, the requirement is
a little weaker: If all undirected cliques Csj,, that are larger than h variables,
where h = 2M1082(ICmaxD1=1 (the closest power of 2 below |Chax|), are reduced
to cliques of size h in each experiment, then the conjectured bound is satisfied.
So for any such clique C, |C| — h variables have to be subject to an intervention
simultaneously.

The conjecture currently remains without proof because it is not entirely
clear whether it is possible to find intervention sets for any OME that break
down appropriately all such cliques Csj, in the graph. Since cliques may overlap,
a proof of the conjecture must guarantee that intervention sets can always be
found that resolve all of the overlapping cliques at once. For example, if the
Xo

that the causal structure can be resolved in a single experiment. There are

equivalence class is given by X3

X3, then the conjecture claims

two maximal cliques, {X1, X2} and {Xs3, X3}, that must be resolved in this
single experiment. Clearly we cannot select for each clique independently, which
variables to intervene on, since that may result in a choice of intervening on X,
and X5 simultaneously, which obviously would not resolve the graph. In this
case the optimal choice of intervention set — {Xs} — is obvious, but in general

this is not as simple. In particular, consider an undirected five-cycle:

X3 Xs

X5 X4 X3
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Here we have four overlapping maximal cliques of size 2. Again, one experiment
should be sufficient to recover the causal structure, but in this case it is impossi-
ble to find an intervention set that resolves all four cliques simultaneously. Any
selection would result in one clique for which both or no variable is contained
in the intervention set. However, the five-cycle is not a counterexample to the
conjecture since an undirected five-cycle (or any other cordless cycle greater
than three) cannot occur in any OME — there would always be an unshielded
collider.'® Hence, the conjecture certainly does not hold for arbitrary knowl-
edge graphs, but is dependent on the assumption that the graph is an OME or
a knowledge graph that is consistent with some sequence of experiments.

For arbitrary knowledge graphs there is a general negative graph theoretic
result due to Folkman [14] that prevents a general version of the conjecture even
for knowledge graphs of one edge-type. It relates the problem of intervention

set selection to coloring theorems:

Theorem 3.3.27: Folkman Clique Theorem — paraphrased
For any clique-size ¢ > 3, there is a graph G, whose largest clique has size ¢ and

for which every edge two-coloring has a clique of size ¢ in one color.

Considering only the undirected edges of an OME, let an edge be colored
red in experiment € if it connects an intervened and a non-intervened variable,
and blue if it connects variables that are both subject to an intervention or
both passively observed. Folkman’s theorem implies that for any integer ¢ > 3,
there is a graph G whose largest clique has ¢ members. Any coloring, so in
particular colorings of the type we defined, would result in a clique of size ¢ of
blue or red edges only. Due to the way our coloring is defined, it is impossible
for the clique to be among red edges, since three variables cannot be fully
connected by red edges. Consequently, the clique is among blue edges, and
since the intervened variables are separated from the non-intervened ones (by
red edges), the clique must be either among the intervened variables only or
among the unintervened variables only. That is, after the experiment, we are
left with a clique of the same size as we started off with. Since there is no way
to reduce cliques of unknown edges by more than half, the conjectured bound
does not hold for general knowledge graphs, not even for general adjacency
graphs. However, there is hope — as with the five-cycle — that the graphs that
satisfy Folkman’s theorem are not OMEs and not derivable from OMEs by

151t turns out that for the undirected 5-cycle knowledge graph, OPTINTER recovers the
structure in the minimum number of experiments for that knowledge graph, namely two.
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sequences of experiments. If that fails, an argument is needed that such graphs
are sufficiently rare so as not to be of practical worry.'®

Computing the appropriate intervention set given a knowledge graph is
closely related to the MAX-CUT problem of the subgraph of the knowledge
graph containing unknown edges only, which is in general NP-complete. There
are approximation algorithms, with the best offering a 0.878-approximation [15].
The approximation MAX-CUT algorithm is, of course, not designed, with the
specific aim to orient edges in cliques. Hence, an approximate MAX-CUT might
not be sufficient to guarantee the conjectured bound (even if true). The OPTIN-
TER algorithm is a greedy algorithm that selects the intervention set specifically
in light of the conjectured bound. In simulations it always successfully found
an appropriate intervention set resulting in a sequence of experiments satisfying
the bound, but that is no proof of correctness, nor really much of a plausibility
argument, since the space of graphs is large and our simulations can only cover
a small area. OPTINTER is computationally expensive, so for large graphs
a MAX-CUT approximation algorithm is probably a better choice, even if it

results in additional experiments.

If we assume that Conjecture 3.3.26 is true, we can specify a fixed strategy for

sequences of experiments on OMEs:

Strategy 3.3.28: (fixed) Multiple Structural Interventions, Causally
Sufficient - OME

Given an OME over N causally sufficient variables X1, ..., Xy, let the sequence
of experiments consist of k¥ = [log,(|Cmax|)] experiments, such that the inter-

vention set S of each experiment is determined by the OPTINTER algorithm.

In this fixed strategy, OPTINTER determines the intervention set of the
first experiment on the basis of the OME. For any later experiment ;, OPT-
INTER computes the intervention set based on the original OME, where any
edge between variables X and Y such that X € S; and Y € U; for some i < j
is considered known. That is, edges that are guaranteed to be determined by
earlier experiments (sample issues aside) are considered known for the determi-
nation of the intervention set of subsequent experiments. These edges can be
determined before any experiments are performed.

For example, if the initial OME is the graph on the left, then OPTINTER

161 am very grateful to Oleg Pikhurko for pointing me to Folkman’s Theorem. If my
rendition of Folkman’s Theorem is incorrect, then that is entirely my fault.
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will compute a priori that the intervention set in the first experiment is {X}
(assuming some appropriate rule that resolves the tie between X and Y, e.g. in
this case just lexicographic order). Given that the first experiment will consist
of an intervention on X, a resolution of the orientation of at least the XW-,
XY- and X Z-edges is guaranteed. So for the computation of the intervention
set for the second experiment, these edges can be considered known, therefore
leaving from the original OME only W —— Y —— Z, which obviously implies
the intervention set {Y} for the second experiment. One possible outcome of

the first experiment that shows that two experiments are in the worst case

N,

The second experiment of the pre-determined fixed strategy intervening on Y

necessary, is shown on the right.

W—X W<——

Y —Z

resolves the remaining unknown orientations.

So far we only considered experiments involving multiple simultaneous in-
terventions on an OME. The difficulty in specifying a bound on the number
of experiments given an OME, when only single interventions are permitted, is
due to the interdependence of orientation of two adjacent edges. For example,
if we know from passive observation that the OME of the true causal graph is

a chain of undirected edges,

X, — Xp—— - Xy

then we know that this chain cannot contain any unshielded colliders, since they
would have been discovered in the passive observation. But it could contain a
common cause at any vertex (except the ends). Consequently, if only a sin-
gle structural intervention can be performed per experiment, the most efficient
strategy would be to intervene on the middle vertex, resulting in a sequence of
log,(N) experiments in the worst case to recover the causal structure. With
multiple simultaneous interventions a single experiment with a structural in-
tervention on every other variable would solve the problem (as implied by the
conjecture). Similar arguments apply to tree structures and particular planar

networks made up of triangles or diamond shapes. Ultimately, if there are many
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dependencies between the directions of edges, then these can be exploited to im-
prove the efficiency of discovery. In general the number of experiments necessary
and sufficient to discover the causal graph given an OME when only single in-
terventions can be performed per experiment, is bounded by the >, (|C;| — 1),
where the C; are non-overlapping maximal cliques. But we have no results on
how tight this bound is, nor do we have a method, other than brute force, to
compute the appropriate intervention sets. For similar reasons, the intervention
sets computed by OPTINTER are not minimal with regard to the number of
variables subject to an intervention in one experiment or over the entire sequence

of experiments.

3.3.5 Restrictions

Lastly, in this section on fixed strategies, we will consider some restrictions that
might limit the discovery procedure. Actual experimental conditions might
place a whole variety of additional restrictions on the experimental procedure
that would undercut some of the assumptions made in the theorems of this
section. Here we just list a few results that are adjusted for some interesting

restrictions on the set of assumptions.

Limited Intervention Sets

Several of the search strategies that satisfy the bounds for multiple simultaneous
interventions require large intervention sets: up to N/2 for the log(N) + 1
bound of Theorem 3.3.4 for structural interventions, and up to N — 1 for the
one experiment bound of Theorem 3.3.9 for parametric interventions, where N
is the number of variables in V. If we are not able to handle such a large
intervention set, but can only intervene on k < N/2 (or k < N — 1) variables at

once, then — under assumptions 1.2.1-3.2.6 — the bounds increase as follows:'7

Theorem 3.3.29: Limited Structural Intervention Set, Causally Suffi-
cient
Given N causally sufficient variables, if the number of simultaneous structural

interventions is limited by kipqz < % in any one experiment, then

N

N
(r — 1)+ 55— logs(kmaz)

2kmaz

17This result for structural interventions was first presented in [10], but there we incorrectly
claimed that the bound was in the worst case necessary. Unfortunately, it is just sufficient.
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experiments are sufficient to discover the causal graph.

The result is essentially a mixture of the bounds for single and multiple
structural interventions. In the case of parametric interventions we only need
to ensure to subject each variable to a parametric intervention. Since they can

be combined independently, the result is trivial:

Theorem 3.3.30: Limited Parametric Intervention Set, Causally Suf-
ficient

Given N causally sufficient variables, if the number of simultaneous parametric
interventions is limited by kymax < N — 1 in any one experiment, (%] ex-
periments are sufficient and in the worst case necessary to discover the causal

graph.

Limited Conditioning Sets

The bounds on the numbers of experiments in the case of a causally sufficient set
of variables depend on the ability to — in the worst case — consider conditional
independence tests with conditioning sets of size N — 2, where N is the number
of variables in V. If it is not possible or ill-advised (e.g. due to lack of data) to
consider such large conditioning sets and we are limited to conditioning sets of
size k < N — 2, then we are unable to distinguish a direct causal link between
two variables from a causal connection that — in the worst case — consists of up
to N —2—k variables (all of which must be non-colliders). One can compensate
for this problem by intervening on more variables simultaneously, breaking all
possible paths, other than the direct one, by additional interventions. However,
in general we face for the worst case analysis a similar problem to the causally
insufficienct case (Theorem 3.3.6). That is, one either has to perform a large
number of simutaneous interventions or one is left only with some partial order
information on the variables, which may be sufficient if the graph is sparse, but

of no use to resolve the worst case, if only independence tests are considered.

Other Knowledge

Conjecture 3.3.26, if true, implies a whole set of corollaries: If it is known that
the true graph has at most k edges, then the worst case graph for discovery is
the graph where those edges are arranged into the largest possible clique. The
number of experiments necessary in this case and sufficient for all other graphs

with k£ edges is given by the log of the resulting clique-size. In the case of k
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edges, the bound on the number of experiments is approximately v/2k. If the
maximum number of parents of any node is limited by &, then the largest clique
one can construct has size k 4+ 1, so the bound on the number of experiments
is approximately log,(k 4+ 1). The strategy is always the same: Determine the
largest clique consistent with the constraints. The worst case number of exper-

iments is then given by the log of the clique-size.

Nyberg and Korb [31] consider a case of causal structure search with interven-
tions when faithfulness is not assumed. They prove that even without assuming
faithfulness, but assuming causal sufficiency, the causal structure among a set of
variables can be recovered, both with structural and parametric interventions.
Like us, they do not give an account of how parametric interventions — espe-
cially on an unfaithful structure — should be implemented. Their work suggests
a more general analysis of the impact of the faithfulness assumption on search

strategies using interventions.

Eaton and Murphy [7], inspired by biological cases, consider interventions in
which the target of the intervention is not known. In their case, no edge from
an intervention variable to some intervened variable, if it exists, is known. All
that is known is that the intervention variable cannot be a descendent of any
vertex in the system under consideration. This knowledge that the intervention
variable is exogenous, even though it is not known how the variable is connected
to other variables in the system, helps search for causal structure.

We would model their set-up differently. In their description the variable
that is manipulated — a chemical — is known, as is its distribution, but it is
not known which variables, if any, it affects, and how it does so. It is known
that the chemical variable is not a descendent of any other variable. Instead
of considering the chemical variable as an intervention variable, for which the
intervened variables are unknown, we would model the chemical as an explicit
causal variable that is subject to an intervention. Background knowledge can be
added to the search algorithm that ensures that no other variable in the system
affects this variable. Any dependence would be recognized as an outgoing causal
connection. The problem would not be framed as a “blind” intervention, but as

a structure search with background knowledge.
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3.4 Adaptive Strategies

Unlike fixed stratgies that announce one particular sequence of experiments
prior to the first experiment, adaptive strategies can adjust in light of the in-
formation gained as each experiment is performed. That is, adaptive strategies
specify for each stage in a sequence of experiments and for each history of in-
formation gained so far, a specific choice for the next experiment. However, the
choice at any one stage may — unlike the case for fixed strategies — depend on the
information that has been gained in previous experiments. The adaptation be-
comes particularly relevant if one discovers that one is not up against the worst
case. If one finds that there are independencies (implying non-adjacencies), that
in turn imply dependencies in the orientation of particular edges, then one can
in many cases discover the true causal graph in fewer experiments than speci-
fied by the worst case bound. For example, consider the following observational

Markov equivalence class:

X1 Xo X4 X5

X3

One can use several different fixed strategies, but the most appropriate among
the ones seen so far clearly seems to be the one specified by Strategy 3.3.28. The
corresponding bound (Conjecture 3.3.26) implies that two experiments should
be sufficient to recover the causal structure (and necessary in the worst case).
Consequently, the fixed strategy might suggest two experiments with interven-
tion sets S1 = {Xo} and Sy = {X;, X4}. These two experiments would, in fact,
recover the causal structure no matter which of the graphs in the OME is true.

However, if the true underlying graph is

X1 X2 X4 X5

X3

then the first experiment already supplies sufficient constraints (non-existence of

collider and acyclicity) to determine the graph uniquely. The second experiment
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is superfluous. An adaptive strategy would adjust accordingly and stop the
search. Similar adaptations occur when there are dependencies in how edges

are oriented. Consider an OME that is a chain, for example:

X, Xy —— o X,

If the first experiment happens to be an intervention on X (for whatever reason)
and it turns out that there is an edge X; — X3, then that automatically resolves
the orientations of the entire chain (namely from X; to X,,) and no further
experiment is needed.

A different form of adaptation may occur, when information becomes avail-
able to select the intervention set for the next experiment more optimally, and
thereby shorten the overall sequence of experiments. For example, suppose it
is known that the OME of the true graph is a complete graph over 5 variables,
shown on the left below. A fixed strategy might consist of the following three
intervention sets for three experiments that guarantee to discover the graph
within the bound: {X1, X3}, {X1, X4} and {X5}. All three experiments would
be necessary if the true graph were the graph shown in the middle below. But

suppose, in fact, the true graph is the graph on the right.

X1 Xl X1
/AN /1N AN
X2 X5 X2 X5 X2 X5

X3

X4 X3=— X4 Xs— X,

After the first experiment intervening on X; and X3 we get the knowledge graph
shown on the left below (semi-directed edges are resolved since adjacencies are

known from the OME, the no-knowledge edge between X; and X3 is omitted).

— X, — X,
/AN PAANN
Xz X5 X2 X5<:
= X3 —> X X3 — X4
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The X3X;i-connection and the X5X5X4-connection remain unresolved. An
adaptive strategy can under these circumstances adapt and select {X7, X5}
as the intervention set for the second experiment, which resolves the true causal

graph in two, instead of in three experiments, shown on the right above.

There are cases, where there are several choices of intervention sets, and there
may be no reason to prefer one over the other. For example, if there are two
variables X and Y, then — assuming causal sufficiency — there are three possible
causal structures. Suppose the true causal structure is X — Y. If one were
to intervene on X, the causal structure would be discovered in one experiment.
However, in the case of a passive observation or an intervention on Y, two
experiments would be required. Since any of the three structures might occur,
and the situation is symmetric with regard to the three possible experiments,
one cannot ensure a priori against a sequence of two experiments. The worst
case analyses in the previous section considered the longest of these possible
sequences of experiments, i.e. the least fortunate but not avoidable selection of
variables to subject to an intervention in each experiment in the sequence. In the
case of a complete graph such a worst case sequence of experiments intervenes
on each variable in the hierarchical order of the graph starting from the graph’s
root or sink.

It turns out, that against a worst case graph, there is no adaptive strategy
that can guarantee to do better than the fixed strategy bounds in the previous
section. That is, if the true graph is the worst case graph, then it is impossible
to ensure that an adaptive strategy does better than the number of experiments
specified by the fixed strategy bound. Or, in other words, there is no way to
guarantee that one performs experiments that provide information about the
true underlying graphical structure that could be used to adapt the search.
Of course, an adaptive strategy may be lucky to select intervention sets that

improve the bound, but there is no guarantee.

Theorem 3.4.1: Adaptive vs. Fixed Strategies
Under the same assumptions, no adaptive strategy can improve on the worst
case bounds of theorems 3.3.1, 3.3.4, 3.3.6, 3.3.8 and 3.3.9 if the true graph is a

worst case graph.

The implication of this theorem is not (!) that adaptive strategies are useless,
but rather that they do not change the worst case analysis. In any particular

search procedure, one does, of course, want to adapt in light of the findings of
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previous experiments, since one may not be facing the worst case structure or
one may be lucky in how intervention sets turned out. In fact, the worst case

might be quite rare.

If adjacency information is known, as in the case of an OME, then the orientation
dependencies can (in principle) be computed and the intervention set can be
selected accordingly. But if no adjacency information is available, then it is
not so clear how interventions should be placed in an adaptive strategy. One
does not want to lose adjacency information unnecessarily between variables by
subjecting too many variables to simultaneous structural interventions. But one
also does not want to intervene on too few and then discover a dense adjacency
graph. This raises the question of what the first experiment in an adaptive
strategy should be, when no adjacency information is available. Since the fixed
strategies presented in the previous section are designed explicitly with the worst
case in mind, they do not always provide an optimal starting point if one is not
up against the worst case. For example, in the comments on Theorem 3.3.2 we
indicated that passive observation was of no value against the worst case graph.
However, even if the graph is slightly less than complete, information gained
from passive observation (the OME) might imply a significant reduction in the
number of experiments necessary to discover the causal structure (if Conjecture
3.3.26 is true, the reduction would be from a function of the total number of
variables to a function of the size of the largest clique). Similarly, if the complete
graph is an extremely unlikely structure, then it may not be a good idea to start
with an intervention on N/2 variables (as suggested in some instantiations of
Strategy 3.3.5), nor is it necessary to intervene on N —1 variables simultaneously
(as suggested in Strategy 3.3.7) if there is reason to believe that not every pair
of variables is subject to confounding. In general little can be said about an
adaptive first experiment — all a first experiment can be adapted to are specific
assumptions if available (e.g. distributions over possible graphs).

While an adaptive strategy is no better than the fixed strategy in the worst
case, it can be designed to weakly dominate the fixed strategy, i.e. to stay within
the bounds described by the fixed strategies, never do worse and do better
where possible. Under these considerations, the cases where there is the kind of
flexbility of adjusting intervention sets (as in the examples of Strategy 3.3.5 with
8 variables), the first experiment should intervene on as few variables as possible,
so that non-adjacencies are discovered early. However, as the case for the same

strategy with 7 variables shows, this flexibility is not always available. Without
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that flexibility, one can only hope for a “lucky” intervention set or some non-
adjacency to appear early. An adaptive strategy that weakly dominates the fixed
strategy 3.3.5 is essentially a version of Strategy 3.3.28 with a slight modification
of the OPTINTER algorithm, and where the OPTINTER algorithm is called
after each experiment, when as much as possible about the causal structure has

already been determined:

Strategy 3.4.2: Adaptive: Structural Interventions, Causally Suffi-
cient

Given a causally sufficient set of N variables X1,..., Xy, let the first exper-
iment intervene on as few variables as possible (determined by the flexibility
described for Strategy 3.3.5) and perform each subsequent experiment &; with
S; determined by OPTINTER including step 12. OPTINTER is called on the

basis of the current total knowledge graph obtained after each experiment.

For causally insufficient sets of variables, the adaptive search remains an
open problem and appropriate changes have yet to be made to the OPTINTER
algorithm.
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Chapter 4

Search with Interventions:

Mixed Search Strategies

The bounds presented in the previous chapter for fixed and adaptive strategies
are worst case results. In general the worst case might be very rare and one
would like to have a sense of the expected case. The expected performance of
an algorithm depends heavily on what constitutes the space of possibilities and
the form of the distribution over these possibilities. One interesting case can
be analyzed straightforwardly and it is supported by a game-theoretic interpre-
tation of the discovery problem: the worst case expected performance, i.e. the
upper bound on the expected length of sequences of experiments necessary and
sufficient to discover the causal structure, no matter what the distribution over
the set of directed acyclic graphs is. That is, for each distribution P(§) over the
set G of directed acyclic graphs over N variables, take the expectation Ep( ) of
the number of experiments #ex(.) necessary and sufficient to discover the true
causal graph G uniquely; then take the upper bound — the supremum — of those

expectations. Or formally:
VP(S)  suplEp(Ftex(G))]

The key to computing this quantity is the specification of #ex(G) for some
causal structure G. To specify this quantity we need to specify how experiments
are chosen. But how experiments are chosen affects which causal structures

are difficult to learn, and thereby affects the supremum. For example: If the
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first experiment always consists of an intervention on variable X, then causal
structures in which X is independent of, or an effect (but not a cause!) of
the other variables, are more difficult to discover because any incoming causal
influence on X is destroyed by the intervention, and so the structure cannot
be distinguished from ones in which X is causally independent of the other
variables. Consequently, a distribution that puts more weight on those graphs
will be a candidate for the maximum expectation. But if the first variable
subject to intervention is determined by a flip of a (N-sided) coin to determine
the variable subject to the first intervention, then 1/N of the time — when the
coin determines X — the Scientist will do poorly, but in some of the (N —
1)/N other times, she will benefit from intervening on the causes of X, thereby
improving the expectation.

A restriction to fixed choices of experiments (given a particular set of ev-
idence so far in the sequence of experiments) therefore appears artificial, and
could even be detrimental. Consequently, #ex(G) is computed as the number of
experiments necessary and sufficient to discover the causal graph given a strat-
egy S, where S specifies for each possible choice of experiments (and history of
evidence) a probability distribution over experiments such that for every alter-
native strategy, S/, the supremum is higher (or equal) to the supremum for S.

Formally, #ex(G) is computed given a strategy S such that
VS £ S sup Ep(#ers (G)) = sup Bp(#exs(G)
E E

Given any possible history of causal relations discovered in the data generated
in the sequence of experiments so far, S specifies a distribution over the choices
of the next experiment. As the formal definitions indicate, there is an interde-
pendence between the appropriate choice (or distribution over choices) of the
next experiment and the underlying distribution over causal structures. But
this is a problem that we can get control over in a game theoretic framework.
In considering distributions over graphs and distributions over possible ex-
periments we broaden the space of search strategies from fixed and adaptive
strategies to include mixed strategies. The next experiment in a sequence is
determined on the basis of a random sample from an appropriately weighted
distribution over the options. The choice for the experimenter is to pick the ap-
propriate distributions over experiments. Fixed and adaptive strategies, which
correspond to pure strategies in game-theoretic terms, must commit to a par-

ticular choice of experiment for any circumstance. Mixed strategies consider a
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(weighted) random selection between the options.

In principle, the success of a mixed strategy can be measured in several
ways, but given our interest in a more representative measure of the quality of
the search strategy (in constrast to the worst case results) we will focus on the
expected number of experiments. Such an analysis is also supported by more
theoretical reasons: The focus on worst case expectation allows us to build on
Nash theory, which generalizes beyond two-person zero sum games. An anal-
ysis of the strategy in terms of a minimax considerations would not lend itself
to such generalization. Since there are many possible distributions over graphs
and many possible distributions over experiments, we will here only consider the
upper bound on the expectation, i.e. the distribution over graphs that results
in the highest expected number of experiments, against a mixed search strategy

that aims to minimize the number of experiments.

We start by recasting the causal discovery problem using interventions as a
sequential game that can be analyzed using game-theoretic techniques. In a
second section we then give results on the worst case bounds for the number of
experiments, when mixed search strategies are used. As in the previous chapter,
we describe strategies that instantiate sequences of experiments that respect
the given bounds, and again we consider both single and multiple intervention
strategies. In a last section we tie together this chapter with the previous one

by comparing the results within a general game-theoretic framework.

4.1 Discovery as a Game

Our approach to causal discovery can be viewed as a game between Nature
and the Scientist, similar to Wald [48]. The Scientist attempts to discover the
true causal structure and Nature tries to make discovery as difficult as possible
— in our case, in terms of the number of experiments. Nature gets to decide
what the truth is, but then has to stick with it, while the Scientist performs her
experiments. The game can be seen as a zero-sum game, in the sense that Nature
wins when there are more experiments, and the Scientist loses at the same rate.
Nature gets to select the true graph but may not change or adapt the graph after
its first move. Hence, Nature’s pure strategies are all the directed acyclic graphs
over N variables, but Nature may play mixed strategies by selecting the true

graph on the basis of a random sample from some distribution over the pure
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strategies. The Scientist performs experiments to determine the true graph.
After each experiment, the equivalence class of graphs that contains the true
graph and is consistent with the sequence of experiments so far, is revealed. The
pure strategies for the Scientist are all possible sequences of experiments. The
Scientist may end the game after any sequence of experiments by declaring one
of the graphs remaining in his information set (the equivalence class of graphs
containing the true graph consistent with the sequence of experiments) as true.
If the Scientist is correct, her pay-off is the negative number of experiments that
were performed (the fewer experiments, the better). If the Scientist is incorrect,

1 The Scientist may also play a mixed strategy over the

the pay-off is —oc.
possible experiments.

In this thesis we only consider the case for structural interventions, we as-
sume that the set of variables is causally sufficient and that we have access to
an independence oracle.

Since, by Theorem 3.3.1 and Theorem 3.3.4, the worst case bound on the
number of experiments is N — 1 for single interventions and log,(N) + 1 for
multiple simultaneous interventions, we do not need to consider pure strategies
for the Scientist that are longer than these bounds, i.e. the theorems give upper
bounds on the worst case loss for the Scientist (assuming she is paying attention
to the game). To illustrate how the discovery problem is mapped onto a game,

we consider one simple example, and then a more elaborate one.

Example: Two and Three Variables

We consider two examples, one with two and one with three variables. For two
causally sufficient variables X and Y, there are three possible causal structures
Sa, Sb and Sc:

Sa: X Y Sb: X —-Y Sc: XY

Two experiments involving structural interventions are sufficient and in the
worst case necessary to discover the causal structure uniquely. The full game of

Nature against Scientist is given in Figure 4.1.

LOf course, one could integrate a notion into the pay-off structure, that accounts for how
wrong the Scientist is, but we leave this for future consideration. A pay-off of —oco also ensures
that if at all possible, the Scientist will not end the game by guessing, but will continue playing
(searching) while it is possible to guarantee discovery of the true graph. We thereby force the
Scientist to be able to justify her response in the sense that it is provably the unique correct
response.
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Figure 4.1: Discovery of Causal Structure as a game of Nature against the Sci-

entist, here for two causally sufficient variables. See description of this exzample
i section 4.1.
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Nature can select among the three structures (grey boxes) Sa,Sb and Sc. The
Scientist does not know which structure is selected, so Sa, Sb and Sc form an
Information set, Info 0 (not shown in the figure). The Scientist makes the next
move and can end the game by guessing one of the structures without collecting
any data (represented by the three arrows leaving each grey box upwards with
Sa, Sb or Sc and the respective pay-offs to Nature of 0 when the choice was cor-
rect and oo when incorrect). Alternatively, the Scientist can perform a passive
observation (IV), an intervention on the first variable (X), or an intervention
on the second variable (Y'). Depending on the choice and the true underlying
graph, the game is either resolved because the graph can be uniquely identified
(pay-offs are indicated), or a new information set is returned, corresponding to

one of three knowledge graphs:

Info 1: X was subject to intervention and Y did not covary, so the edge is
either into X or there is no edge between X and Y: X <—-Y

Info 2: Y was subject to intervention and X did not covary, so the edge is
either into Y or there is no edge between X and Y: X ——>Y

Info 3: X and Y were passively observed and covaried, so there is an edge
between X and Y, but the direction is unknown: X —— Y

Again, the Scientist can end the game at this point with a guess, or can continue
with a further experiment. There is no need to consider strategies of more than
two experiments, since they uniquely resolve the true causal graph.

In tabular form, the game is represented as follows. We split the table into
three tables corresponding to sequences with 0,1 and 2 experiments. A(Sb)
means that the Scientist guesses structure Sb and thereby ends the game early.

“*7 indicates that this state does not occur:

Zero experiments, i.e. the game is ended immediately with a guess by the
Scientist (columns). Depending on the true graph (rows), the pay-offs to Nature

are indicated. If the guess was correct, the pay-off is 0, if it is incorrect, it is co.

| [ Asa) [ A(sb) | A(Se) |

Sa 0 00 00
Sb 00 0 00
Sc 00 o) 0
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One experiment, i.e. an experiment is performed (the first three columns
show the passive observation N; columns 4-6 show the intervention on X; and
the last three columns show the pay-off for an intervention on Y'). The experi-
ment either resolves the graph immediately (columns 1,6 and 9) or it is followed
by a guess indicated after the comma in the column header (only guesses of
graphs that have not already been excluded by the experiment are shown).
Again only pay-offs to Nature are shown. Combinations with a “*” do not oc-
cur. For example, for the first row, second column we have the true graph as
empty and the strategy is to perform a passive observation (V) followed by a
guess of structure Sb. But if the true structure is Sa, the empty graph, then
the structure would be uniquely determined by the passive observation already
(as column 1 shows) and there would be no need for a guess (in this case the

guess is for Sb). Hence, that combination does not occur and no pay-off is given.

| | NN, A(Sb) | N,A(Sc) | X, A(Sa) | X,A(Se) | X | Y, A(Sa) | Y, A(Sb) | Y |

Sa || 1 * 1 00 * 1 00 *
Sb * 1 00 * * 1 00 1 *
Sc * 0 1 o0 1 * * * 1

Two Experiments: The two experiments performed are shown in their order
in the column headers (only relevant combinations of experiments are shown).
Since two experiments always resolve the causal structure among two variables
uniquely, no guesses are needed and the pay-off is always two. Again some
combinations do not occur since the first experiment would already resolve the
graph uniquely and then no further experiment is required, e.g. row 1, column
1 is already resolved by the passive observation (see row 1, column 1 of the

previous table).

| [ NXNY[XN|[XY|YN]YX]

Sa * * 2 2 2 2
Sb 2 2 * * 2 2
Sc 2 2 2 2 * *

An analysis of the game shows that the Nash equilibrium is given by a mixed
strategy that is uniform over the three possible structures for Nature, and a
mixed strategy for the Scientist that is uniform over passive observation, an
intervention on X and an intervention on Y for the first experiment, and indif-

ferent between possible (relevant) experiments for the second experiment, if a
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second experiment is necessary. There is no Nash-equilibrium over pure strate-
gies and returning with a guess at any point is (obviously, given the infinities
in the pay-off structure) not Nash. That is, if Nature “selects” the true causal
structure among the two variables on the basis of flipping a fair three-sided coin,
then Nature is making the discovery task maximally difficult (in the earlier de-
scribed sense) for the Scientist. On the other side, by rolling a three-sided die
to choose whether to intervene on X, intervene on Y or just passively observe in
the first experiment, the Scientist is doing the best she can to discover Nature’s
secrets efficiently, given that Nature is an adversarial player. Any other strat-
egy, even mixed, will do no better and may well be worse (or will allow Nature
to adapt accordingly to make things worse). As a Nash equilibrium, this pair of
strategies for Nature and the Scientist characterizes a state in which a unilateral
move by Nature or by the Scientist does not improve their individual score.

The solution of the game is given by the value of the Nash equilibrium.
It represents the expected pay-off to Nature (and loss to the Scientist) when
playing the mixed strategy that is Nash. Since the game is zero-sum, the Nash
equilibrium also corresponds to the mini-max solution, i.e. the Nash equilib-
rium gives us an upper bound on the expectation of the number of experiments
necessary and sufficient to discover the causal structure. For this two variable
game it is 5/3 experiments, slightly better than the fixed strategy bound of
2. The Scientist’s strategy is in this case not an equalizer, since some graphs
are resolved in one experiments and others in two. The Nash equilibrium is,
if we ignore the indifference for the second experiment, unique. There is no
Nash-equilibrium over pure strategies, i.e. there is no Nash equilibrium if Na-
ture selects one particular causal structure with probability 1, since then the
Scientist could adapt to do better by selecting one particular experiment with
probability 1. But given the adapted behavior of the Scientist, Nature could
improve her score by choosing a different causal structure with probability 1 —
and the problem goes around in circles, without equilibrium.

Guessing (ending the game early) only becomes a viable option, when Nature
is restricted to playing a subset of the possible structures. The mixed strategy
of the Scientist is a Bayes solution, since it is a best response to the uniform
distribution over structures. This is not the case for a fixed strategy with two
experiments: There is no distribution over structures (degenerate or otherwise)
which Nature might play such that the two-experiment-fixed-strategy (single in-
terventions) constitutes the best response for the Scientist. The Scientist must

use a mixed strategy to be Bayes. Or, from Nature’s perspective: Nature cannot
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force the Scientist to the fixed strategy bound in expectation.

Interestingly, this last point does not apply in the case of three variable graphs.
In the case of three variables, the game is substantially more complicated. There
are 25 pure strategies for Nature (all DAGs over three variables) and well over
100 pure strategies for the Scientist (including all the early stops by guessing).
We computed a Nash equilibrium that determines the solution of 2 for the
game: The worst case expected number of experiments necessary and sufficient
to determine the causal graph over three variables is two. That is, in the case
of three variables, Nature can force the Scientist to the fixed strategy bound
(N —1 = 2) even in expectation, by placing a uniform distribution over the set
of 10 graphs represented by the following three types of structures: one empty
graph, three graphs with colliders and six complete graphs.

|

Intuitively one can see the reason for this result: If the Scientist does not inter-

L] [ ] <0 e——————>eo

vene at all in the first experiment, then she will require between two and three
experiments for the complete graphs (depending on where the intervention oc-
curs in the second experiment) and only one for the common effects and the
empty graph. In total the average is two experiments. If she intervenes on one
variable in the first experiment, then — depending on the true graph — one of
three possibilities occurs: (i) she cannot distinguish the common effect graph
from the empty graph or (ii) she cannot distinguish the common effect graph
from a complete graph or (iii) she cannot distinguish two complete graphs. In
any case, she needs a second experiment. Intervening on two variables simul-
taneously would necessarily at least require two experiments, since the causal
relation between the two intervened variables cannot be determined in the first
experiment. We know from the results on fixed strategies that any combination
of two different experiments involving single interventions resolves the graph
over three variables. This distribution of graphs implies that these fixed (pure)
strategies are best responses. Clearly, since they are fixed, and necessarily re-
solve the graph, they are also equalizers (same pay-off, no matter which graph

is true). If we consider mixed strategies, they will not fare any better against
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this distribution by Nature (otherwise the pure strategies would not be best
responses), but they are not all equalizers. For example, if the passive observa-
tion is included as a possible first experiment in the mixed strategy, then the
mixed strategy is no longer an equalizer: 2/5 of the time it finds the graph in
one experiment and 3/5 of the time it requires 8/3 experiments (i.e. two ex-
periments on average overall). If the mixed strategy is restriced to experiments
with interventions, then the mixed strategy is also an equalizer.

The Nash equilibrium is not unique even with regard to the mixtures Nature
can play. But we conjecture that on three variables every mixed strategy for
Nature that forms a Nash equilibrium, has support over at least some of the
complete graphs. Obviously, no pure strategy for Nature is Nash, since guessing

would then be optimal for the Scientist.

The two examples illustrate how the discovery problem is framed as a sequential
game and how an analysis can proceed to obtain a worst case expected number
of experiments. We proceed with more general results for mixed strategies on

sets of variables with arbitrary size.

4.2 General Mixed Strategy Results

4.2.1 Single Interventions per Experiment

For single interventions per experiment, the three variable game is unique: For
no other number of variables can Nature force the Scientist to the fixed strategy
bound. In other words, only for three variables does the fixed strategy bound
provide a Bayes solution (or a rationalizable strategy). The general result for
mixed strategies using single interventions per experiment is given by the fol-
lowing theorem. It specifies the worst case expected length of the sequences of
experiments necessary and sufficient to discover the causal structure among a
set of NV causally sufficient variables. It shows that single-intervention mixed
strategies provide substantial improvement on their pure (fixed or adaptive)

strategy counterparts.

Theorem 4.2.1: (mixed strategy) Single Structural Interventions, Causally
Sufficient
Given a set of N > 3 causally sufficient variables, the worst case expected num-

ber of experiments necessary and sufficient to discover the causal structure is
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%N — % experiments if only one variable can be subject to a structural inter-

vention per experiment.

This bound is the value of a Nash equilibrium of the game: Nature plays a
mixed strategy that is uniform over the complete graphs over N variables, and

the Scientist uses the following strategy:

Strategy 4.2.2: (mixed) Single Structural Interventions, Causally Suf-
ficient

Given N causally sufficient variables X, ..., X, let each experiment &; in the
sequence have S; = {X;}, where X, is selected uniformly from the variables

that have not yet been subject to an intervention.

For any single intervention on a vertex in a complete graph, the intervention
determines all outgoing edges from the intervened variable, it determines all
edges incident on the intervened variable (since, given that the graph is com-
plete, any independence with the intervened variable is an indication of an in-
coming edge), and it determines all edges that go between any ancestor and any
descendent of the intervened variable (since the intervention breakes incoming
edges, it creates unshielded colliders that can be discovered). Intuitively then,
any single variable intervention cuts an undirected clique into two undirected
sub-cliques by resolving all the edges that go between the two sub-cliques. De-
pending on which variable is subject to intervention, the two sub-cliques have
different sizes. For example, suppose the true graph over four variables is given
on the left, then the following four graphs are the post-manipulation graphs for

every possible single intervention.

J l

X14>X4 X14>X4 X14>X4 X14>X4 X14>X4

X2*>X3 X2 X3 XQHX?, X2*>X3 X2

f f

Depending on the location of the single intervention, the remaining indirected

X3

cliques vary in size between two and three. Since any variable is equally likely
to be subject to an intervention, all cuts are equally likely. The bound for the
mixed strategy is therefore based on a recursion of these cuts, assuming each is

equally likely.
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From Nature’s perspective, there is no advantage in considering incomplete
causal structures, since for N > 3 variables, two single interventions have to
be performed anyway, and in those two experiments any missing edge would be
detected.

4.2.2 Multiple Simultaneous Interventions per Experiment

For multiple simultaneous interventions the case is more complicated. Incom-
plete graphs do become relevant again and as a result the problem of determining
the intervention set for the first experiment (see discussion of this problem in
the section on adaptive strategies) returns. Furthermore, the space of possibil-
ities that needs to be considered now pushes the boundaries of what becomes
computationally feasible and so we resort to simulations to estimate the precise
answer.

In the case of single interventions per experiment, for N > 3, at least two
experiments are necessary anyway just to determine orientation information.
Consequently, adjancency information can be established “for free” along the
way, and hence there is no benefit to Nature in having any support over non-
complete graphs (since a non-adjacency would amount to giving an orientation
problem away for free). However, in the case of multiple simultaneous interven-
tions, lack of support on the non-complete graphs is relevant to the Scientist’s
strategy. If Nature only had support over complete graphs, then the Scientist
is able to infer the existence of an incoming edge into the intervened variable
from an independence between an intervened and a non-intervened variable.
For multiple simultaneous interventions adjacency information is lost between
two intervened variables. So any multiple intervention search strategy must en-
sure it performs sufficient experiments to determine the adjanceny information.
From Nature’s perspective, to preserve maximum uncertainty about adjacency
for the Scientist, Nature’s graph distribution must have support over both the
complete and some incomplete graphs.

A simple example will illustrate the point and be useful for the further
discussion. Suppose the first of the graphs below over three variables is the

true graph. The second graph shows the knowledge graph after a structural
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intervention on Y:

Y —Y
7
v
7
s
v
v
X —7 X —7

If it is known that the distribution of possible graphs only has support on
complete graphs, or if it is known that it has no support on complete graphs,
then the post-manipulation graph after an intervention on Y is sufficient to
resolve the structure uniquely, to a complete graph or an unshielded collider,
respectively. If there is support both over the graph that has an unshielded
collider at Z and the graph that is complete, then a further experiment must
be performed to distinguish the two.

If the true graph can be incomplete, then, as in the adaptive case, it is not
clear from the outset, what the optimal size for the first intervention set is.
But in comparison to the adaptive case this problem is aggravated, since in
addition to the fact that the true causal structure may not be complete, the
analysis of mixed strategies occurs in terms of the worst case expected number
of experiments, and hence any bound on the number of experiments must take
“lucky” choices of the intervention set into account. (The absolute worst case
number of experiments is, of course, for mixed strategies the same as for fixed
strategies.) Consequently, the choice of the size of the first intervention set
is very sensitive to the distribution over possible graphs. If the distribution
contains many or mainly sparse graphs, small intervention sets are better, since
then non-adjacencies can be located and determined quickly; if graphs are near
complete, larger intervention sets are better to efficiently resolve orientations. In
general, the only heuristic one can recommend is that interventions sets should
be slightly smaller than for fixed strategies, since not all graphs will be worst
case graphs.

We do not know a closed form for the optimal size for the first intervention
set for any distribution over graphs, and the problem is computationally not
feasible using standard Nash equilibrium solvers. So we approach the problem
by giving upper and lower bounds. Below we provide two sizes for the inter-
vention set in a first experiment that are optimal for two scenarios that are
relevant to determining the worst case expected number of experiments: If the

true graph over N variables is complete and that information is known (to the
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Scientist) and used to infer causal structure then the first row applies: MixCom-
pleteKnown. If the true graph is some complete graph over the N variables,
but its completeness is not known and not used in the inferences of the mixed
strategy, the second row gives the optimal size (with regard to the expected
number of experiments in the sequence) of the intervention set for the first ex-
periment: mixCompleteUnknown. In some cases, as for N = 7, the difference
between starting with two and starting with three variables in the first exper-
iment is minimal. We only list the one best value, without making any claims
about how detrimental a different choice would be to the expected number of
experiments.

All the results are established on the basis of simulations sampling complete
graphs (1,000 graphs for N < 10, 100 graphs for 10 < N < 12 and 10 graphs
above). The structure search in the simulations is performed using an indepen-
dence oracle. We contrast the values for the mixed strategies with the minimum
size of the intervention set of the first experiment of a fixed strategy that would
still satisfy the logy(N) + 1 bound (Theorem 3.3.4) for multiple simultaneous

interventions (third row):

N (3]4a|s|6|7]s]ofro]mm|12][13]14]15]16]
Mixed Complete Known |1 |2 2|2 |2 ]2]2] 2

Mixed Complete Unknown | 1 [ 1|1 |23 |3 [4| 4| 3 | 3
Fixed Strategy 110(1]2(3|0|1] 2|3 ]4]|5 |67

On the basis of these sizes for the first intervention set, we can specify a mixed

search strategy for complete graphs:

Strategy 4.2.3: (mixed) Multiple Structural Interventions, Causally
Sufficient

Given N causally sufficient variables, let the first experiment be a structural
intervention on k variables selected uniformly from the N variables, where k
corresponds to the appropriate entry in the above table. For every further
experiment, the intervention set is selected by OPTINTER, where step 10 is
a random sample among admissible vertices that are tied with regard to the

number of their clique memberships, and step 12 is included.

The k variables can be sampled uniformly, since the space of complete graphs

is symmetric with regard to every variable.

Despite the specification of a strategy (albeit mixed) for the Scientist, and
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thereby making the problem (from Naure’s perspective) more decision theoretic
than game theoretic, we do not yet have any closed form solutions to report
on the worst case expected number of experiments when multiple simultaneous
interventions are permitted in each experiment. The space of possibilities for
Nature is still too large to compute with standard machinery. So even if we
hypothesize that the above strategy is the Nash strategy for the Scientist, we
are unable to compute the exact Nash equilibrium even for a particular N > 3.
Instead, we compute upper and lower bounds of the exact worst case expected
number of experiments and do so for N up to 13.

The upper and lower bounds on the exact worst case expectation are based
on a conjecture that (a) the above strategy is the Nash strategy for the Scientist,
and (b) that graphs sampled from a uniform distribution over complete graphs
maximize the expectation of the length of the sequence of experiments, when
no distributional information and no information other than Assumptions 1.2.1
to 3.2.6 and the knowledge graphs resulting from each of the experiments in a
sequence are used to infer the true causal structure. That is discovery requires
the most experiments if inferences are prohibited from an independence between
X and Y when X is subject to an intervention and Y is not, to a direct cause
Y —- X.

Intuitively, the upper and lower bound are constructed by not using all in-
formation (upper), or by using more information than is available in the exact
game (lower). Complete graphs are the most difficult to resolve in terms of
orientation, but to ensure that the determination of adjacency information is
non-trivial, incomplete graphs must occur with some positive probability. To
determine a lower bound on the exact solution, we use a uniform distribution
that is restricted to complete graphs. Such a distribution is still going to sup-
ply a relatively high expected number of experiments, since all the orientation
information must be resolved, but it is a strict lower bound since there is no
support on incomplete graphs and hence the adjacency information is given by
default. Consequently, some orientations can be resolved more easily (thanks
to the inference from an independence between X and Y if X is subject to an
intervention and Y is not, to a direct cause ¥ — X).

In constrast, for the upper bound we take the opposite approach: We use
the same distribution of graphs (uniform on complete graphs), but allow no
distributional information into the structure search process, i.e. an adjacency
may only be determined if the appropriate experiment(s) have been performed.

This will provide an upper bound on the true worst case expectation since the
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entire adjacency information must be determined as if it were a distribution
over all possible graphs, even though the actual distribution is restricted. In
other words, Nature gets to play the most difficult graphs for search, but does
not have to pay the price for having such narrow support. The Scientist, on the
other hand, is up against the worst case graphs and does not get the occasional
gain of a simpler graph, that would normally have to occur to prevent her from
fast-tracking inferences to causal structure.

In order to compute both the upper and lower bound, we use the appropriate
row from the earlier table (before Strategy 4.2.3) for the size of the first inter-
vention set, and then simulate the search with an independence oracle. A full
enumeration of all the possible ways that a complete graph could be subject to
all the possible sequences of interventions is computationally not feasible even
for fairly small N. We simulate the bounds by sampling for each N random
complete graphs over N variables and then test the mixed strategy 4.2.3 given
above, once with and once without the extra distributional information. For
the lower bound the mixed strategy is supplemented with the information that
the graph is complete by initializing it with a complete undirected knowledge
graph, for the upper bound the mixed strategy is run without such information,
i.e. initializing it with a knowledge graph containing only no-knowledge-edges.

For each N < 10 we performed 1,000 iterations, for 10 < N < 12 we per-
formed 100 iterations and for N = 13 only 10 iterations returned in reasonable
time. We computed the average number of experiments over the iterations.

Figure 4.2 shows the log,(N) +1 bound of fixed Strategy 3.3.5 with multiple
simultaneous interventions as dots. The two lines show the simulated upper and
lower bounds on the worst case expected number of experiments for a mixed
strategy using multiple simultaneous interventions per experiment. The figure
shows that for multiple simultaneous interventions the fixed strategy is remark-
ably close to the worst case expected number of experiments, assuming that the
simulated bounds are indicative of the true value. It appears that against the
worst case distribution over graphs, mixed strategies cannot be expected to do
much better than fixed strategies (and they are much harder to compute). The
lines are not entirely smooth since there are various effects resulting from the
discrete nature of the problem (discrete intervention sets, discrete numbers of

experiments, etc.).

While the difference in the number of experiments between fixed and mixed

strategies might not be so great, the table (before Strategy 4.2.3) of interven-
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Upper and Lower Bounds on Mixed Strategy with Multiple Interventions
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Figure 4.2: Bounds for the worst case expected number of experiments for differ-
ent N. The lower line is based on a uniform distribution over complete graphs,
where knowledge of the distribution is used in the structure search. The up-
per line is based on the same distribution, but where the knowledge is not used.
The dots indicate the logs(N) + 1 bound of fized Strategy 3.3.5 with multiple
stmultaneous interventions.

tion set sizes for the first experiment shows that mixed strategies may provide
enormous savings in the number of variables that are subject to intervention.
The upper and lower bound do not differ much in the number of variables sub-
ject to intervention in the first experiment, but there is a significant difference
to the minimum number of variables necessary for the fixed strategy. This stark
difference results from the fact that in the case of the mixed strategy, the search
algorithm benefits if the root and the sink of the graph are not subject to in-
tervention, and instead some variables evenly distributed across the interior of
the tier-ordering of the graph are manipulated (as in the case of the middle
variable of the three variable example earlier). Under such circumstances addi-
tional acyclicity constraints aid the search and allow recovery of more structure.
In contrast, the fixed strategy always considers the worst case selection of vari-
ables for intervention, which generally includes variables at the extremes of the

tier-ordering.
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A simple example over six variables will help illustrate the point: Let the
true graph be a complete graph over six variables, with a tier-ordering X; >
. >~ Xg, i.e. X; is the root and Xg is the sink. If it is known that the graph
is complete, a fixed strategy using multiple simultaneous interventions per ex-
periment will still take three experiments, since it must ensure against unlucky
choices of intervention sets, such as S; = {X4, X5, Xs},S2 = {X3, X6} and
Ss = {X1,X4}. But a mixed strategy, will select with probability p = 1/(})
the intervetion set S; = {Xo, X4}, which will resolve the graph in two experi-
ments. The figure below shows the knowledge graph after the first experiment
for the fixed strategy, with S; = {X4, X5, X}, on the left. Semi-directed edges
are dashed, absence of edges indicates no-knowledge edges. Of course, since it
is known that the graph is complete, no-knowledge edges really represent undi-
rected edges here, and semi-directed edges can be resolved to directed edges.
But we use this representation, so that it is clear what information has been
established in the first experiment. The knowledge graph after the second exper-
iment, combining the new information with the previous experiment is shown

on the right.

X2:7777%7777>X
\\< 0 ﬂ\ \ /
/2T N\

> X4 <= ©X34>X4

While the semi-directed edges can be resolved with the help of background
knowledge (it is a complete graph), the undirected edges between X, X and
X4, X5 make the third experiment necessary. In contrast, for the mixed strat-
egy, the knowledge graph after an intervention on S; = {Xs, X4} in the first
experiment is shown on the left below and on the right after all semi-directed

edges are resolved with the background knowledge.

X, — X,
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ﬂ\i% W

Xz———>Xy<= X34>X4
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In this case some remaining edges can be oriented due to acyclicity constraints:
Since the graph is known to be complete, there must be a Xo — Xy -edge, and
since there is a path X5 — X3 — X4, that missing edge must be oriented away
from the cycle, i.e. X9 — X4. That leaves only the X5 Xg-edge to be resolved in
the next experiment.? With just two experiments and subjecting three variables
to interventions, the mixed strategy is able to recover the graph. The point is
that mixed search strategies may turn out to be very useful across a variety of

cost measures.

4.3 Discussion: Mixed Strategies

We presented results on mixed strategies with single interventions and gave an
account of how these strategies could be understood in game theoretic terms.
Figure 4.3 differences between the different search strategies.®> On the horizontal
axis we have all possible distributions over graphs with N variables for some
specific value of N.* The vertical axis shows the pay-off to Nature. The pay-
off is infinite near the intersection of the axes and zero at the top. The only
reason for the inverted axis is to ensure that up is better for the Scientist in the
diagram, i.e. zero pay-off to Nature (zero experiments) is the best the Scientist
can achieve.

The figure shows how fixed Strategy 3.3.2 provides a maxi-min guarantee of
N — 1 experiments, no matter what the true graph is, and since it is fixed, it
is independent of the outcome of particular experiments. But it never touches
the best response surface. For any distribution over graphs it is strictly domi-
nated by an adaptive or mixed strategy. However, as discussed in the section on
adaptive strategies, any particular adaptive strategy touches the fixed strategy
bound in the worst case, i.e. only weakly dominates the N — 1-fixed strategy.
Mixed strategies lie between the best response surface and the lower bounds of
the pure adaptive strategies, since mixed strategies contain the adaptive com-

ponent and only randomize over indifferent intervention sets.® 2/3N — 1/3 is

2If the mixed strategy had had an intervention set of size three in the first experiment,
an intervention on {X2, X4, X¢} would have resolved the graph in one experiment. But on
average across complete graphs, an initial intervention set size of three is suboptimal.

3] am very grateful to Teddy Seidenfeld for repeatedly in different contexts pointing me to
the importance of understanding game strategies in terms of this diagram. The figure is his,
just adapted for my purposes and results.

4Since the diagram is only schematic, it is irrelevant whether one can actually arrange all
distributions in one dimension.

5Mixed strategies touch the best response surface more often than is indicated in the
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Figure 4.3: Mized, fized and adaptive strategies using single structural interven-
tions.

the maxi-min for mixed strategies. It is the worst case expected number of
experiments for any distribution over graphs. It is the best any mixed strategy
can do in expectation against an adversarial opponent in this game; it specifies
the security for the game. And since it is a zero-sum game, it is also a Nash
equilibrium against a strategy by Nature that uses a uniform distribution over
complete graphs. Mixed Strategy 4.2.2 attains this bound. Strategy 4.2.2 is
a Bayes solution, since it touches the best response surface for a uniform dis-
tribution over complete graphs, which is the worst case prior for Nature. But
Strategy 4.2.2 is not an equalizer, since for some graphs it can perform better
and for some worse than 2/3N — 1/3 (obviously, since experiments are counted
discretely). The best response surface is not covered entirely by adaptive or
mixed strategies. For particular (extreme) distributions over graphs there are
fixed strategies that provide the best response, e.g. annoucing (guessing) graph
G without any experiment when Nature has a degenerate distribution over the

graph G only. But clearly, this strategy is an abismal candidate if the distri-

diagram here, especially for non-trivial distributions over graphs. But they do not touch the
best response surface for all distributions (unless one considers pure strategies to be a subset
of mixed strategies).
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bution over graphs is not degenerate, and disastrous if the distribution has no
support on the guessed graph, i.e. the strategy is not Nash. For N = 3, the
worst case mixed strategy bound drops to the N — 1 = 2 fixed strategy bound.

The diagram is similar for multiple simultaneous interventions, only that the
vertical separation of the different strategies (number of experiments) is much
smaller. Since we do not have full results for mixed strategies involving multiple
simultaneous interventions, we could only provide preliminary analyses giving

upper and lower bounds for N < 13.

There is another way to frame the analysis of mixed strategies that removes the
difference between single and multiple interventions. So far we considered the
pay-off structure purely in terms of the number of experiments. However, if the
pay-off structure were determined by the number of different variables that are
subject to an intervention® throughout a sequence of experiments, then there
is — at least for the worst case distribution — no difference between strategies
that only intervene on a single variable per experiment and those that inter-
vene on multiple simultaneously. In both cases, the same number of different
variables have to be subject to an intervention at some point in the sequence.
Consequently, all the bounds we gave so far for mixed strategies using single in-
terventions can also be read as describing the relationship between the number
of variables in the graph and the cost of causal structure search if the cost is

measured in terms of the number of different variables subject to intervention.”

Before turning to search algorithms, there is a different way of framing the case
for fixed strategies in game theoretic terms. Following Wald’s [48] approach
we framed the search for causal structure as a game between Nature and the
Scientist. Nature gets the first move to determine the graph after which the
Scientist has free reign. Nature is left to reveal whatever the experiments of
the Scientist demand given the initial choice. But there is a different way of
thinking that does not take Nature to be the “constant gardener”, stuck within
the constraints set by the initial choice. Nature might be just as devious as

the Scientist and change her mind about the true underlying structure in light

SNote the emphasis on different variables. If the same variable is subject to an intervention
in two different experiments, that would still count as one unit of cost. In most cases this
is presumably an inadequate measure of cost. If a variable is subject to intervention in
two different experiments, then the cost is generally not the same as when it is subject to
intervention in just one experiment.

7T am grateful to Teddy Seidenfeld for alerting me to this connection.
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of the experiment the Scientist proposes. On this view, the game alternates
at each move between Nature and Scientist. But to keep the game interesting
earlier choices must be respected. That is, Nature cannot pick a graph that
is inconsistent with the information that was revealed in previous experiments.
Nature is constrained to the equivalence class of graphs that each imply all the
independence constraints revealed in the previous experiments.

In such a game, the worst case analysis reverts to the fixed strategy bounds.
Since Nature can choose to rotate the true graph at each step in such a way that
the Scientist’s proposed experiment results in the least desirable intervention set,
Nature can force the Scientist to perform N —1 or log,(N)+1 experiments even
in expectation, depending on whether multiple simultaneous interventions are
permitted. Analyses of adaptive or mixed strategies become redundant, since —
if Nature is paying attention to the game — there is no hope of hitting a lucky
intervention set.

Lastly, there is a third way of framing the game between the Scientist and
Nature that we do not discuss here. Rather than Nature not being able to
adapt at all after the first choice (our first analysis) or being able to adapt in
light of the experiment proposed by the Scientist (the last analysis mentioned),
Nature and the Scientist may adapt after each experiment, but without knowing
what the next proposed experiment is — an intermediary view. So rather than
being an alternating sequential game, we would have a sequence of games in
which both players have to announce their move simultaneously (and, of course,

Nature must remain consistent with the sequence of experiments so far).
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Chapter 5

Search Algorithms

The bounds and strategies of the previous two chapters specify sequences of
experiments that are sufficient and for some worst case necessary to recover the
causal structure among a set of N variables. That is, these sequences of ex-
periments guarantee under the specified assumptions that sufficient constraints
can be recovered to uniquely identify the true causal graph. These constraints
come in the form of independence constraints or in terms of constraints on dif-
ferences in correlations generated by the different experiments in a sequence. In
this chapter we supply the algorithms that peform the inference to the causal
structure from the constraints generated over the sequence of experiments. We
separate the discussion of algorithms into algorithms based on independence
constraints and those based on differences in correlations, and among those
based on independence constraints we distinguish posthoc and online algo-
rithms. Posthoc algorithms are used for fixed strategies with pre-determined
sequences of experiments. The algorithms are run after all experiments have
been performed. Online algorithms are run after each experiment for in adap-

tive and mixed search strategies.

5.1 Posthoc Algorithms based on Independence

Constraints

On a high level, structure search algorithms using independence relations have

three components:

1. A stage that determines the information relevant to the structure search
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from the experimental set-up. This is computed easily from the interven-

tion set.

2. A structure search that incorporates knowledge of the experimental set-up

and searches for the manipulated causal structure in one experiment.

3. A combining algorithm, that combines manipulated structures from dif-

ferent experiments to form one structure.

All of the algorithms we present here concentrate on the last point, the combi-
nation. For the first two parts we rely on existing structure search algorithms
that can be supplemented with knowledge about the experimental set-up. All
of the following algorithms are designed on the basis of the PC-algorithm [43].
But in principle any structure search algorithm with the appropriate guaran-
tees could be substituted in the second stage. For the simulation studies in the
next chapter we also tested the more cautious cPC-algorithm [33] and the score-
based GES-algorithm [5]. All the bounds for search based on independence tests
(Theorems 3.3.1, 3.3.4, 3.3.6, 3.3.8 and 3.3.9) are agnostic with regard to the
specific structure search algorithm employed on the data of each experiment,
as long as the structure search recovers the equivalence class of graphs whose
manipulated structures given the experimental intervention(s) imply all and
only the independence relations true in the manipulated distribution. For the
PC-algorithm, and the cPC-algorithm, whose structure search is based explic-
itly on independence constraints, and for the GES-algorithm such guarantees
are known for the large sample limit. Although originally designed for structure
search in passive observational data, these algorithms can be supplemented with
additional knowledge that allows search for structure in data that derives from
a distribution subject to interventions.

In the case of sequences of experiments information about the true underly-
ing structure has to be combined from different experiments. Some information
about the causal structure can be obtained in different ways and consequently,
decisions have to be made about how the overall search algorithm determines
such information. For example, information about the orientation of edges can
be obtained in several ways. The PC-algorithm performs an adjacency search
in its first stage and determines orientations, where possible, in a second step
on the basis of unshielded colliders and the further edge-orientations these im-
ply (see section on the PC-algorithm). But orientation information can also

be obtained from interventions: Structural interventions destroy all incoming
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causal arrows and leave only the outgoing ones. Parametric interventions cre-
ate collider tests. In addition, edge-orientation can also be obtained from the
combination of different experiments. For example, if there is a (causally suf-
ficient) set of two variables X and Y and the first experiment is a structural
intervention on X and the second a passive observation of both variables, then
if the first experiment returns the variables to be independent, and the second
shows an adjacency between the two, then one can infer from the combination,
that the true graph must be Y — X. In general, these different ways in which
orientation is determined will have an implication on how many experiments are
required to recover a particular graph. Under the idealizing assumption that
an experiment returns the independencies true in the (manipulated) population,
different approaches to resolving orientation do not conflict. But once statistical
variability is considered, these different approaches might have quite different
reliability and lead to a variety of different conflicts.

For the worst case bounds of fixed strategies we cannot count on the discov-
ery of unshielded colliders (unless they are created by parametric interventions),
since the worst case graphs are complete and therefore shield all their colliders.
There is no way of ensuring that a structural intervention is placed in such a
way that shields are guaranteed to be broken. Consequently, fixed strategies
must ensure that they create sufficient constraints on the distributions that
the combining algorithms can discover the causal structure no matter what it
is. We consider the strategies in the order of the complexity of the combining

algorithm.

5.1.1 Multiple Parametric Interventions: One Experiment

For the one experiment necessary and sufficient for causal discovery when multi-
ple simultaneous parametric interventions are possible (Theorem 3.3.9), the se-
lection of the intervention set is already given, namely all but one variable, and
since there is only one experiment, no combining stage is needed. Consequently,
any passive observational search algorithms only needs to be supplemented with
the knowledge of which IV — 1 variables in V are subject to a parametric inter-
vention. An intervention variable is added to these variables that is uncaused
and that has a single direct edge into the intervened variable. That is, the set of
variables V is augmented by the set on intervention variables Pol and all edges
between intervention variables, and from any variable in V to any variable in

Pol are excluded, as are all edges from intervention variables to variables in V
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other than one edge from each intervention variable to its intervened variable,
which is forced. On the basis of this augmented set of variables and this back-
ground knowledge, any standard passive observational search algorithm can be
applied.

If the intervention variables have no marginal distribution and only a joint
distribution over V conditional on states of the intervention variables is given,
then tests for differences in conditional probability are required, independence

tests are insufficient.

5.1.2 Single Parametric Interventions: N —1 Experiments

The structure search using single parametric interventions (Theorem 3.3.8) is —
like the case for multiple parametric interventions — based on creating collider
tests. The intervention set is a single variable in each experiment. Which
one, or in which order does not matter, as long as it is a different one each
time. The structure search for a single experiment proceeds as in the previous
case by augmenting the set of variables by — this time — a single intervention
variable with a forced direct edge into the variable it intervenes upon. Edges
into the intervention variable are excluded, as are all other edges from the
intervention variable to other variables in V. The results of the collider tests

must be combinined from different experiments.

Algorithm 5.1.1: Combining - Single Parametric Interventions

Assuming all experiments have been performed:

1. Initialize the algorithm with the N — 1 knowledge graphs Ki,..., Kn_1,
each K; resulting from experiment &;, in which variable X; was subject

to a parametric intervention.

2. For each structure K;, let K; determine all edges (adjacency and direc-
tion), if any, into X; and the edge, if it exists, between X; and Xy, where
X is the variable that was never subject to a parametric intervention in

any of the experiments in the sequence.

3. If the addition of any edge creates a directed cycle, we have a conflict, and

an error is returned.

The combining algorithm for single paramentric interventions ignores in the
knowledge graphs K; from each experiment all edges other than those found by
a collider test at the intervened variable (and the edge into Xy). Of course,
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information about other edges might be useful (e.g. to resolve conflicts), once
statistical variability is taken into account, but under the ideal assumptions of
an independence oracle it is redundant and in principle the structure search

could be restricted to search for only these edges in each experiment.

5.1.3 Structural Interventions: Linear or Logarithmic Num-

ber of Experiments

For fixed strategies using single or multiple structural interventions, the inter-
vention set is again already pre-determined by the strategies (Strategies 3.3.2
and 3.3.5) or the OPTINTER algorithm (Strategy 3.3.28). The structure search
algorithms are supplemented with slightly different information than in the para-
metric intervention case. There is no need to augment the set of variables. Only
knowledge about the manipulated structure needs to be added, that is: For each
intervened variable X € S, all edges into X from any other variable in V are
excluded. The structure search algorithms for each experiment need not re-
cover any orientation information. Adjacency information is sufficient as edge
orientations can be inferred from the combinations of experiments or the exper-
imental set-up. If structure search in each experiment is limited to adjacency
search, the PC- and cPC-algorithms can be terminated before entering the ori-
entation stage. (Again, it may be useful to nevertheless determine orientation
information in multiple ways to help resolve conflicts.)

If one takes the experimental set-up into account, the structure search in

each experiment returns a knowledge graph with

1. No-knowlegde edges between all pairs of variables X,Y, where X,Y € S.
We say that X and Y were subject to a structural zero-information test

in this experiment.

2. Adjancency edges between all pairs of variables X,Y, where X,Y € U.
We say that X and Y were subject to a structural adjacency test in this

experiment.

3. Semi-directed edges between all pairs of variables X,Y, where (i) X € S
and Y € U and (ii) X1LY|C for some conditioning set C. We say that X

and Y were subject to a structural X -orientation test in this experiment.

4. Direct cause edge between all pairs of variables X, Y, where (i) X € S and
Y € U and (ii) X)L Y|C for all conditioning sets C. Again, we say that X
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and Y were subject to a structural X -orientation test in this experiment,
but this time with a different outcome than the previous one (dependence

instead of independence).

After all experiments are completed, the combining algorithm (for structural
interventions) infers the orientation of an edge from the combination of different

conditions that a pair of variables is subject to in the sequence of experiments.

Algorithm 5.1.2: Combining - Structural Interventions

Assuming all experiments have been performed:

1. For each pair of variables X,Y € V| select all the experiments in which it
is not the case that both X,Y € S.

2. Output a directed edge X — Y in the final output graph if all of the
following hold:

(a) In all experiments in which only X (of the pair) is subject to a struc-
tural intervention, X and Y are found to be adjacent.

(b) In all experiments in which only Y is subject to a structural inter-

vention, X and Y appear non-adjacent.
(¢) In all experiments in which X and Y are passively observed, they

appear adjacent.

Analagously, if X and Y are switched. If the addition of any directed edge

creats a cycle, then we have a conflict and report an error.

3. The pair of variables are determined to be non-adjacent in the final output

graph if all of the following hold.
(a) X and Y appear non-adjacent in all the experiments in which only
X (of the two) is subject to a structural intervention.

(b) X and Y appear non-adjacent in all experiments in which only Y (of

the two) is subject to a structural intervention.

(¢) X and Y appear non-adjacent in all experiments in which they are

both passively observed.

4. In all other cases, there is a conflict between the results of the individual

experiments and an error is reported.
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5.1.4 Multiple Structural Interventions, Causally Insuffi-

cient: N Experiments

For multiple simultaneous interventions on a causally insufficient set of variables
(Theorem 3.3.6), the fixed strategy algorithm is trivial — none of the standard
structure search algorithms are needed, since all but one variable are subject to
a structural intervention in each experiment. One simply has to determine in
each experiment whether the non-intervened variable covaries with any of the
intervened variables. If it does, one adds an edge from the intervened variable
to the non-intervened one. It is a simple procedure of multiple linear regression

in each experiment.

5.2 Online Algorithms based on Independence

Constraints

For adaptive and mixed strategies that consider the outcome of each experiment,
intervention sets can no longer be pre-determined, but are contingent on the
information gained from previous experiments.

A combining algorithm for adaptive and mixed strategies starts with a knowl-
edge graph with no-knowledge edges between every pair of variables and then
updates the knowledge graph after each experiment, making use of all the ori-

entation information that can be gained.

Algorithm 5.2.1: Adaptive Combining - Structural Interventions

Initialize a knowledge graph K with no-knowledge edges between each pair of
variables in V. For each experiment perform a structure search using the infor-
mation about the experimental set-up (forced and prohibited edges). Perform

the following update of the knowledge graph after each experiment:

1. For each new experiment determine the post-manipulation graph M (with
all orientation information that can be determined). Add no-knowledge
edges between all pairs of variables X,Y, where both X and Y are in S.
Add semi-directed edges from X to Y if X e Uand Y € S.

2. For each pair of variables X and Y in V consider their connection in the
knowledge graph K and the post-manipulation graph M. If X and Y are

connected by a directed edge or are known to be non-adjacent in K, then
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they are known. If the edge between X and Y is unknown, then there are

17 cases:
(a) X —7—Y in K and X ——Y in M: Do nothing.
(b) X —7—Y in K and X —Y in M: Substitute X —7Y in

K. If it creates a cycle of directed edges, there is a conflict and an

error is reported. Similarly, if X and Y are switched.
(¢c) X——Y inKand X —Y in M: Substitute X — Y in K.

(d) X ——Y in K and X——>Y in M: Substitute X ——>Y in
K. Similarly if X and Y are switched.
() X ——Y inKand X Y in M: Substitute X Y in K.
(f)
g) X—Y in Kand X ——Y in M: Do nothing.
)

(
(h

X—Y in Kand X ——Y in M: Do nothing.

X—Y in K and X —=Y in M: Substitute X —=Y in
K. If it creates a cycle of directed edges, there is a conflict and an
error is reported. Similarly, if X and Y are switched.

(i) X—Y in K and X——>Y in M: Substitute X —=Y in
K. If it creates a cycle of directed edges, there is a conflict and an
error is reported. Similarly, if X and Y are switched.

()) X—Y in K and X Y in M: There is a conflict and an
error is reported.

(k) X—->Y in K and X —7—Y in M: Do nothing. Similarly, if X
and Y are switched.

() X-->Y in K and X ——>Y in M: Do nothing. Similarly, if X
and Y are switched.

(m) X——>Y in K and X=<—-Y in M: Substitute X Y in
K. Similarly, if X and Y are switched.

(n) X-—>Y in K and X —=Y in M: Substitute X —=Y in
K. If it creates a cycle of directed edges, there is a conflict and an
error is reported. Similarly, if X and Y are switched.

(0) X-->Y in K and X<—Y in M: There is a conflict and an
error is reported. Similarly, if X and Y are switched.

(p) X——>Y in K and X —Y in M: Substitute X —Y in

K. If it creates a cycle of directed edges, there is a conflict and an

error is reported. Similarly, if X and Y are switched.
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() X-->Y in K and X Y in M: Substitute X Y in
K. Similarly, if X and Y are switched.

3. Infer all implied orientations of edges using the Meek Rules [23] and one
additional rule: For any directed path from X — ... — Y in knowledge
graph K, if X <——Y in K, then resolve the XY-edge as non-adjacent
in K.1

4. If all edges in K are known, end the sequence of experiments, otherwise

perform the next experiment.

The algorithm is greedy in the sense that it does not reconsider edges it has
previously resolved. If we have an independence oracle, this is not a problem,
since the oracle supplies the independence relations true for the manipulated
distribution and so no errors, and hence no conflicts occur. We discuss in the
next chapter what can be done when conflicts do occur.

In the case of mixed strategies, the analysis in combining the information
from the sequence of experiments is the same as in the adaptive case. The
random component of the mixed strategy is restricted to the selection of the
intervention set prior to the experiment. There is no random component in the

analysis.

5.3 Posthoc Algorithms based on Correlation-

Tests: Structural Interventions

Causal structure search on the basis of differences in correlation becomes par-
ticularly relevant when causal sufficiency of the set of variables can no longer be
guaranteed. Structural interventions make the intervened variable independent
of its causes, latent or measured, while parametric interventions do not. Con-
sequently, the search algorithms based on differences in correlations differ with
regard to the type of intervention. We also separate the algorithm that searches
for causal structure among the observed variables from the algorithm that then
searches for latent variables given the structure over the observed variables.
We use a particular partial order over variables and paths such that connec-
tions between variables closely related in the tier ordering are considered before

those that span several levels of the tier ordering:

11t is not known whether these rules are complete in the sense that they resolve all implied
edges that sequences of experiments could give rise to in knowledge graphs. Probably not.
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Definition 5.3.1: Partial Order over Variables: O(V,>)

Given a set of N experiments on a set of N (causally insufficient) variables V
such that each experiment &; is a structural intervention on a different single
variable X;, define a partial oder (=) over the set of variables V, such that
X; = X; if and only if Xl X; in &;.

Definition 5.3.2: Partial Order over Paths: O(P, <)

Given a set P of directed paths, define a partial order over paths in P such
that for any two paths p; = X1 — ... = X, and po = Y] — ... — Y, with
p1,p2 € Pand Xy,..., X, Y],...Y, € V| p; < po if and only if there exists a
path ps € P, such that p; C p3 and p3 =Y; — ... = Y, (i.e. py is contained in

p3 and the endpoints of p3 are the same as those of ps).2

Definition 5.3.3: Manipulated Knowledge Graph

Given a knowledge graph K = (V,E) and an experiment € in which aset S C'V
of variables is subject to a structural intervention, the manipulated knowledge
graph of K is the graph where all edges incident on any intervened variable
(X € 8), all no-knowledge edges, all undirected edges and all semi-directed
edges are removed. We will refer to the manipulated knowledge graph of K as
MK(K|E). It is a DAG.

We can now specify the algorithm:?

Algorithm 5.3.4: Single Structural Interventions and Correlation-Tests:
Observed Structure

The algorithm assumes that N experiments, each involving a structural inter-
vention on a single variable (Strategy 3.3.16) have been performed and that the
model is a linear structural equation model. All correlations are assumed to be

appropriately normalized so as to be interchangable with edge coefficients.

1. Initialize a knowledge graph K over the variables in V, where each pair

of variables is connected by a no-knowledge edge.

2. Given the N experiments, sort the variables in V according to the partial

order O(V, =) over variables.

2p; and pa are not ordered when both their endpoints coincide, i.e. X7 = Y7 and X, = Y.
But they are ordered if p3 starts or ends with p1, i.e. when p; and ps share one endpoint and
there is a path p3 containing p; and connecting the endpoints of pa.

3Following the defense of this thesis, Patrik Hoyer and the author developed a simpler
implementation of this algorithm using matrix algebra. Incidentally, the revised version of
the algorithm can also be used for the discovery of cyclic causal structures. Anyone inter-
ested should search for the appropriate publication before implementing this version of the
algorithm.
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3. For each pair of variables X, Y such that X > Y and for which there is no
other variable Z € V such that X = Z > Y, substitute an edge X — Y
in K and determine the correlation pxy from the experiment where X is

subject to an intervention. Let exy = pxy and associate exy with the
directed edge X — Y.

4. Sort all directed paths in K of length greater than two into a partial order
over paths O(P, <).

5. For each path p with endpoints X and Y in O(P, <), starting from the
smallest ones in the order, compute the total correlation pxy between X
and Y from the experiment where X was subject to a structural interven-

tion.

6. Let Py be the set of all (unconditionally) active paths between X and
Y in MK(K|Ex), where Ex is the experiment in which X was subject to

a structural intervention.

7. Test whether the total correlation pxy between the endpoints X and Y
in €x can be accounted for in terms of the correlation due to the paths in
Py alone, ie. if pxy = ZPGT}Y He,;ep e;, where e; is an edge coefficient
of an edge on one such path. If so, X and Y are determined to be non-
adjacent in K. If not, substitute an edge X — Y in K and associate the

difference in correlation exy = pxy — >, e; with that edge.

pEPL HeiEp

8. Paths created by the addition of the new edge are NOT included in
O(P, <), i.e. the partial ordering over paths is not recomputed.

After all paths in O are considered and the appropriate edges added, the
causal structure (and the edge coefficients) among the observed variables are
established. The knowledge graph over the observed variables is a DAG. We

can now turn to the latent variables.

Algorithm 5.3.5: Single (Structural) Interventions and Correlation-Tests:
Latent Variables

Given the knowledge graph K determined by the previous algorithm with edge
coefficients over the observed variables, let T(V,>7) =Ty >7 ... =7 T\, be a
tier ordering over the variables in K with w tiers.

For 4 from 1 to w (in that order),
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1. For all pairs of variables X,Y € T;, choose an experiment € xy in which

X and Y are passively observed.

2. Compare the known correlation 74, due to the paths in P%, with the
total passive correlation 7xy measured in Exy . If TQY = Txy, then
there is no latent common cause of X and Y. If not, then add a latent
common cause X «— L — Y to the knowledge graph K and associate the

difference between the correlations with the path X «— L — Y.
3. For j in i + 1 to w, while 7 < 7,

(a) For all pairs of variables X,Y such that X € T; and Y € T} choose

an experiment &€ xy in which X and Y are passively observed.

(b) Let P%y be the set of all (unconditionally) active paths between X
and Y in MK(K|Exy).

(c) Compare the correlation 7%, due to the paths in P with the total
passive correlation T7xy measured in €xy . If 7%y = 7xv, then there
is no latent common cause of X and Y. If not, then add a latent
common cause X « L — Y to the knowledge graph K and associate

the difference between the correlations with the path X «— L — Y.

Return K with all the latent common causes and all its edge coefficients (or

correlations due to the latent common cause).

Care must be taken when determining the active paths in a particular ex-
periment. The comparisons are easier when one can test against an experiment
in which all variables are passively observed, but such an experiment is not
necessary. In some cases, reducing the number of active paths by interventions
will make the test for comparison simpler and more reliable.

One of the major advantages of these two algorithms is that correlations
can be computed on the basis of the entire data set of an experiment and so
the algorithm does not run the risk of any conditional independence tests that
— if the conditioning set is large — are impossible, because there is insufficient
data. The real work is done in accounting for and testing differences between
correlations due to different sets of pathways. These can be intricate tests, since
the difference in correlation that a long pathway adds, might be very small. This
is less of a problem in the first stage of the algorithm — the search for structure
among the observed variables — since here the long paths are built up piece

by piece and the test is whether an additional short direct path exists, which
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would presumably make a significant difference to the total correlation. So the
problem of weak correlations due to long pathways mainly bites in the search
for the presence of latent variables.

The algorithm adds a latent common cause only for pairs of variables. Con-
sequently, if there is (in fact) one latent common cause of three variables, the
algorithm will render this as three pair-wise common causes. However, we con-
jecture, that in certain circumstances we can recover such structure and struc-
ture among latent variables by applying the Build-Pure-Clusters-algorithm [42].
We have not implemented such a move, but there are two approaches one could
take:

1. Initialize the BPC-algorithm with the known structure and edge coefhi-

cients over the observed variables.

2. Or, remove the correlation due to the observed structure from the overall
correlations between variables and run the BPC algorithm on the residual

correlations.

In the case of multiple simultaneous interventions the analysis of the data is
largely similar. However, there are two advantages: First, one can establish
the tier ordering in fewer experiments — O(log,(N)) experiments instead of N
experiments — and second, more direct connections between variables can be
read off immediately since any indirect path in one experiment can be at most
as long as the number of variables not simultaneously subject to an intervention.
We only show the steps that change in comparison to the single intervention

algorithm:

Algorithm 5.3.6: Multiple Structural Interventions and Correlation
Test: Observed Variables:

Step 2: Sort the variables in V into a partial ordering, where X > Y if X} YV
in some experiment in which X is subject to a structural intervention and

Y is passively observed.

Step 5: For each path p with endpoints X and Y in O(P, <), starting from the
smallest ones in the order, compute the total correlation pxy between X
and Y in an experiment £* where X € S and Y € U. Choose £* such that

the largest number of known active paths between X and Y are broken.

Step 6: Let P%, be the set of all (unconditionally) active paths between X
and Y in MK (K|&").
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Step 7: Test whether the total correlation pxy between the endpoints X and
Y in €* can be accounted for in terms of the correlation due to the paths in
P%y alone, ie. if pxy = Zpe?;(y [1.,ep €i> where e; is an edge coefficient
of an edge on one such path. If so, X and Y are determined to be non-
adjacent in K. If not, substitute an edge X — Y in K and associate the

difference in correlation exy = pxy — Y. e; with that edge.

pEP%y Hei €p

There is no difference in the search for latent variables. One must only ensure
that there is an experiment from which the appropriate passive observational
correlations can be determined (which is not guaranteed automatically, unlike

the single intervention case).

Example

Let the true graph among seven observed variables Xi,..., X7 be the graph

below, with the edge coefficients specified as small letters.

X, — X, —4 > X,
dc
b e
X, —1 - x, h Xe X7

X7 is disconnected from the causal structure among the observed variables. But,
assume that for each pair off variables there is a latent common cause resulting
in an additional correlation between the pair of variables specified by the fol-

lowing table:
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Pair Latent | Correlation due Pair Latent | Correlation due

to Latent to Latent
(X1, X2) Ly 01 (X3, X4) Lio 012
(X1, X3) Lo 02 (X3, X5) L3 13
(X1, Xy4) L 3 (X3, X6) Ly 014
(X1, X5) Ly 04 (X3, X7) Lis 015
(X1, Xs) Ls Js5 (X4, X5) Lig 16
(X1, X7) Lg 6 (X4, X6) L7 017
(X2, X3) L 7 (X4, X7) L1 18
(X2, X4) Lg g (X5, X6) Lig 19
(X2, X5) Ly d9 (X5, X7) Lo d20
(X2, X¢) L1g d10 (X6, X7) Loy 021
(X2, X7) L1 011

With passive observational data alone, the FCI-algorithm [43] would even in

the large sample limit only recover a complete graph of non-directed edges.

We will use the algorithm for the single intervention case (Algorithms 5.3.4

and 5.3.5). Suppose we have N experiments €, ...,Ey such that each &; is a

structural intervention on X;. In Step 2 of the algorithm we find that

Xl { X2, X3, X5, X6}
Xoll { X3, X6}

Xall X

Xy { X3, X5, X6}
Xsll { X3, X}

Xell 0

XL 0

and
and
and
and
and
and

and

XuL{Xy, X7} in &
Xall{X1, X4, X5, X7} in €

X3l { X1, Xo, Xy, X5, X7} in €3
X4lL{X1, Xo, X7} in &4
X5lL{X1, X, X4, X7} in &5
Xell{X1, Xo, X3, X4, X5, X7} in
XAL{X1, Xa, X3, X1, X5, X¢} in &

From this information, we can generate a partial order: X; > {Xo, X5} > X5 >~
X6 and X4 >~ X5 = X3 > Xg.
graph (POG), shown below, and according to the POG, we can obtain the edge

This can be used to build a partial order

coefficients for an edge X — Y in the POG by determining the correlation

between X and Y in the experiment in which X was subject to a structural

126




intervention.

X Xo X3
g
b e
f
X, —— X5 X6 X7

In the POG there are 8 directed paths of length greater than one:

X5 — X3 — X;
Xo — X3 — X5
X, — X9 — X3
X1 — X5 — X3
X4 — X5 — X3
X1 — X9 — X3 — X5
X1 — X5 — X3 — X5
X4 — X5 — X3 — X

If they are sorted according to the partial ordering of paths described earlier,
one order is given in the above list. We now consider the paths in that order to
identify additional edges. We will use pxy to refer to the unconditional corre-
lation between X and Y in the experiment where X was subject to a structural
intervention. We assume that the correlations are appropriately normalized so
that pxy = Zp Hiep e;, where p are the active paths between X and Y in the
experiment where X is subject to a structural intervention and e; is an edge

coefficient of an edge on an active path p:

1. Since px,x, # ge, a directed edge X5 — Xg is added with an edge coef-
ficient h = px,x, — ge. Note that h corresponds to the edge in the true
graph, since we know all paths other than the direct one that are active
between X5 and X in the experiment where X5 is subject to a structural
intervention. The added edge will be taken into account in the following

tests.
2. Since px,x, = de, no direct edge is added between X, and Xg.

3. Since px,x, = ad + bg, no direct edge is added between X; and Xs.
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4. X; and X3 have already been considered for a direct connection, hence

this path can be skipped.
5. Since px,x, = fg, no direct edge is added between X4 and Xsj.

6. Since px,x, # ade + bge + bh, a direct edge X; — X is added with an
edge coeflicient ¢ = px, x, — (ade + bge + bh).

7. The X7 Xg-connection has already been considered. Skip.
8. Since px,x, = fge + fh, no direct edge is added between X, and Xg.

At this point, the causal structure among the observed variables has been es-
tablished. We now proceeed to search for latent variables. We use 7xy to
refer to the passive observational correlation between X and Y. In general, the
algorithm only requires that X and Y are passively observed when they are
considered for latent confounding. Other variables may be subject to an inter-
vention, since the relevant active paths can be computed given the intervention
sets, so that the total correlation can be adjusted accordingly. But we will as-
sume for simplicity of reference that 7xy refers to an experiment in which all
variables are passively observed.

The tier ordering of the variables given the causal structure among the ob-

served variables is
{X1, Xy, X7} = {Xo, X5} = {X3} = { X6}

First, all pairs within the top tier are considered, then all pairs with one variable
in the first and one variable in the second tier, then pairs of one and three, and
only after all pairs of one and four (the lowest tier) have been considered, do

pairs within tier two follow.

1. Since 7x, x, # 0, alatent common cause L3 is added and a correlation d3 =
Tx,x, due to L3 is associated with the latent variable. The correlation

due to this latent path is taken into account in the further tests.

2. Since 7x,x, # 0, a latent common cause L¢ is added and a correlation

d¢ = Tx,x, due to Lg is associated with the latent variable.

3. Since 7x,x, # 0, a latent common cause L;g is added and a correlation

018 = Tx,x, due to Lig is associated with the latent variable.
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10.

11.

12.

13.

Since 7x,x, # a, a latent common cause L; is added and a correlation

01 = Tx, x, — a due to L; is associated with the latent variable.

Since 7x, x; # b+ fds, alatent common cause Ly is added and a correlation

04 = Tx,x; — (b+ fd3) due to Ly is associated with the latent variable.

Since Tx,x, # ads, a latent common cause Lg is added and a correlation

ds = Tx,x, — ads due to Lg is associated with the latent variable.

Since Tx,x, # f + bds, a latent common cause L5 is added and a cor-

relation d16 = 7x,x, — (f + bd3) due to L is associated with the latent

5

variable.

Since Tx,x, 7 ads, a latent common cause L1, is added and a correlation

011 = Tx,x, — adg due to Li; is associated with the latent variable.

Since 7x,x, # bds + fdis, a latent common cause Loy is added and a
correlation d20 = Tx,x; — (bds + fo1g) due to Lgg is associated with the
latent variable.

Since Tx,x, # ad + bg + dd1 + gds + fgds, a latent common cause Lo is
added and a correlation d2 = 7x, x, — (ad + bg + dd1 + gds + fgds) due to
Lo is associated with the latent variable.

Since Tx,x, # fg + gd16 + dds + (bg + ad)ds, a latent common cause L1
is added and a correlation 12 = Tx,x, — (fg + gd16 + dds + (bg + ad)d3)
due to Lo is associated with the latent variable.

Since Tx,x, # dd11 + (ad + bg)ds + gdao + fgdis, a latent common cause

Lq5 is added and a correlation
015 = Tx, x5 — (d011 + (ad + bg)ds + gdao + fgd1s)

due to Lq5 is associated with the latent variable.

Since Tx, x, # ade + bge + bh + ¢ + dedy + eda + (ge + h)ds + (ge + h) f 03,

a latent common cause Ls is added and a correlation
d5 = Tx,x, — (ade + bge 4+ bh + ¢ + dedy + edy + (ge + h)ds + (ge + h) f03)

is associated with the latent variable.
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14.

15.

16.

17.

18.

19.

Since 7x,x, # fge+ fh+ (ge+ h)d16 +dedsg +ed1a + (bge + ade + bh + ¢)ds,
a latent common cause L7 is added and a correlation

o7 = Tx,xs — (fge+ fh+ (ge+h)d16 +deds + ed12 + (bge + ade + bh + ¢)d3)

due to L7 is associated with the latent variable.

Since 7x,x, # €d15+ded11+(ade+c+bge+bh)ds+(ge+h))da0+(ge+h) fos,
a latent common cause Lo is added and a correlation

d21 = Tx,x, —(ed15+ded11+(ade+c+bge+bh)ds+(ge+h))da0+(ge+h) fd1s)

due to Loj is associated with the latent variable.

Since 7x,x, # ab+ ads + b1 + afds + fds, a latent common cause Ly is
added and a correlation dg = Tx,x, — (ab+ ads + bd1 + afds + fds) due

to Lg is associated with the latent variable.

Since Tx,x, # d+abg+bgd; + ads +afgds +agds, a latent common cause

L~ is added and a correlation
07 = Tx, x5 — (d+ abg + bgdy + ada + afgds + agds)

due to L7 is associated with the latent variable.

Sil’lCG TX5X3 7& g + abd + db51 + (Ld(54 + adf63 —+ d(Sg —+ -I-fdég + b52 + f512,

a latent common cause L3 is added and a correlation
013 = TX5X3 — (g + abd + dbdy + addy + Cldf53 + ddg + —|—fd5g + bdy + f(512)

due to L3 is associated with the latent variable.

Since Tx,x, # de+ ac+ ab(h + ge) + ed7 + (¢ + bh + bge)d; + aeds + (ge +
h)ady + ads + (ge + h)aféz + (ge + h)dg + (ge + h) fds, a latent common

cause Lqg is added and a correlation

d10 = Tx,xs — (de+ ac+ ab(h + ge) + ed7 + (¢ + bh + bge)d1 + aeds +
(ge + h)ady + ads + (ge + h)afds + (ge + h)dg + (ge + h) fds)

due to Ly is associated with the latent variable.
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20. Since

TxX.Xs 7 N+ ge+be+ bade+ dbedy + beds + (ade + ¢) fos + (ade + ¢)da
+b05 4+ defog + dedg + fedio + ed13 + fo17

a latent common cause L9 is added and a correlation

d19 = Tx;xe — [P+ ge+ be+ bade + dbedy + beds + (ade + ¢) fo5 + (ade + ¢)d4
+b05 + de fos + dedg + fedra + eb13 + f617]
due to L9 is associated with the latent variable.
21. Since
TxXsXes # €+ adc+ gh+ adbh + (bh + ¢)ddy + (bh + ¢)d2 + (had + gc) fo3 +

(adh + 90)54 + (ad + bg)55 + dfhdg + dhdg + dd1o + fho12
+ho12 + fgo17 + go19

a latent common cause L4 is added and a correlation

e = Txixs — e+ adc+ gh+ adbh + (bh + ¢)ddy + (bh + ¢)d2 + (had + gc) fds +
(adh + gc)64 + (ad + bg)55 + dfhdg + dhég + dd1o + fhoi2
+hé12 + fgd17 + gdio]

due to L4 is associated with the latent variable.

At this point all latent variables have been discovered. The algorithm outputs
a latent variable for every pair of variables even if in fact there may be latent
variables that cause more than two of the observed variables. Discovering this
structure among the latent variables has to be determined in a further step,
using something like the BPC-Algorithm [42].

5.4 Posthoc Algorithms based on Correlation-

Tests: Parametric Interventions

If the sequence of experiments involves parametric interventions, then the algo-

rithms of the previous section are inadequate since the correlation due to latent
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variables is never broken to reveal the structure among the observed variables.
However, as in the causally sufficient case, we can adapt the algorithm here to
take the intervention variables into consideration. Under the assumption that
the intervention variables are not counfounded with any other variable in V
and that no variable in V is a cause of any of the intervention variables, we can
re-analyze on the basis of differences in correlation the single experiment where
each variable is subject to a parametric intervention. The procedure is largely
the same as the algorithm for structural interventions, only that this time one
does not test the correlation between the intervened variable and some other
variable, but between the intervention variable and some other variable. Again
we separate the algorithm into two stages: the stage for structure search among
observable variables and the stage for search for latent variables, but since the
latent variable search matches the algorithm for structural interventions, we

only describe the search for observable structure:

Algorithm 5.4.1: Parametric Interventions and Correlation-Tests: Ob-
servable Structure

The algorithm assumes that the set of variables V is causally insufficient, that
one experiment € involving a parametric intervention on each variable in V has

been performed and that the model is linear.

1. Initialize a knowledge graph K over the variables in V and their inter-
vention variables in Pol, where each pair of variables in V is connected
by a no-knowledge edge and each intervention variable in Pol has a di-
rected edge into the variable it intervenes on and is otherwise considered

non-adjacent to any other variable in K.

2. Sort the variables in V into a partial ordering, where X > Y iff IxJl YV in
the experiment. (Note that the independence check is against the inter-

vention variable Iy and not against the intervened variable X.)

3. For each X in V, determine the correlation pr, x between X and Iy and

associate er, x = pr,,x with the edge Ix — X.

4. For each pair of variables X, Y such that X > Y and for which there is no
other variable Z € V such that X >~ Z > Y, substitute an edge X — Y
in K and determine the edge-coefficient by dividing the total correlation
between Ix and Y by the edge coefficient e;, x, i.e. exy = pry.v/ery,x-
Associate exy with the directed edge X — Y.
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5. Sort all directed paths in K of length greater than two into a partial order
over paths O(P, <) (see Algorithm 5.3.4).

6. For each path p with endpoints X and Y in O(P, <), starting from the
smallest ones in the order, compute the total correlation pxy between X

and Y by pxy = pre.v/ere,x-

7. Let P%y be the set of all (unconditionally) active paths between X and
Y in the knowledge graph K*

8. Test whether the total correlation pxy between the endpoints X and Y in
€ can be accounted for in terms of the correlation due to the paths in P%
alone, i.e. if pxy = Zpeﬂ’}}y Heiep e;, where e; is an edge coefficient of an
edge on one such path. If so, X and Y are determined to be non-adjacent
in K. If not, substitute an edge X — Y in K and associate the difference

in correlation exy = pxy — Zpeij“, Heiep e; with that edge.

9. Paths created by the addition of the new edge are NOT included in

O(P, <), i.e. the partial ordering over paths is not recomputed.

After all paths in O are considered and the appropriate edges added, the
causal structure (and the edge coefficients) among the observed variables are
established. The knowledge graph over the observed variables is a DAG. The
search for latent variables proceeds in exactly the same way as for structural
interventions.

The search algorithm depends on a joint distribution over the variables of
interest, V, and the set of intervention variables Pol. It is an open question
whether tests of differences in correlations could be replaced with tests of differ-
ences in the conditional probability distribution P(V|Pol). It is also important
to note that the parametric intervention may not influence the edge coefficients
of the causal relations between variables under consideration. This is guaran-
teed in a linear model, in which the parametric intervention simply adds a linear

factor, but it need not hold for general parametric interventions.

4No need to consider a manipulated knowledge graph here since the interventions are only
parametric. The active paths are determined relative to the directed edges in the knowledge
graph.
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Chapter 6

Statistical Variability

I Throughout the entire thesis so far we have assumed that we are able to resort
to an oracle that returns true responses to our tests for constraints. This sepa-
ration allowed us to consider the combinatorics of the experiments for discovery
independently of statistical variability. Before we turn to simulation results in
the next chapter we discuss in this chapter some of the additional issues that
arise when the search strategies must take statistical variability into account.
We already indicated in describing the algorithms where issues resulting from

statistical variability enter.

6.1 Conflicts

In search for the causal structure among a set of variables based on independence
tests the absence of a particular causal arrow between X and Y is determined
by the existence of some conditioning set that makes the two variables inde-
pendent. However, the presence of an edge implies that the two variables in
question remain dependent for all possible conditioning sets. In large dense
networks the search may require a very large number of conditioning sets to
determine adjacency. Consequently, the likelihood of all independence tests re-
turning the correct result decreases as the number of tests increases. This is
exaggerated by the fact that the available number of data points for a particular
independence test gets smaller as the conditioning sets increase. In some cases

we are able to detect errors. In sequences of experiments, results from many

IThis section contains verbatum text and results from [9].
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different experiments have to be combined. Some experiments can be used with-
out additional cost in the number of experiments to repeat statistical tests while
others provide constraints on the causal structure that are only consistent with
particular results from other experiments.

We have a conflict if the results from different constraint tests are incon-
sistent with any causal structure that — appropriately manipulated given the
interventions of the specific experiment — is assumed to generate the data in the
different experiments. For example, one of the simplest conflicts occurs if we
have two variables X and Y and collect two separate data-sets in which both
variables are passively observed, but in one data-set they appear dependent
(suggesting a causal connection), while they are determined to be independent
in the other. No single causal structure among the two variables is consistent
with these results. In this case possible resolutions seem obvious (e.g. pooling
the data), but the problem is more general:

Conflicts can arise for a variety of reasons in an inference process. As in
the example above, we can test for the same independence constraint when the
distribution over the relevant variables is the same and we nevertheless may
obtain conflicting results because of sample variability. Such a conflict may
arise when one experiment is repeated or when two different experiments have
the same marginal distribution with regard to the variables being tested. We
refer to this as a within constraint within distribution conflict. A second type
of conflict may arise when the constraint being tested is the same in two cases,
but the (marginal) distribution over the relevant variables is different as a result
of different intervention sets in different experiments. A conflict occurs when
the test results are not consistent with one generating structure appropriately

2 We refer to this type of conflict as

manipulated for the two experiments.
a within constraint across distribution conflict. It can only occur across two
different experiments. Lastly, conflicts may arise as a result of tests on different
constraints that cannot be combined consistently. This may occur within one
or across several experiments. We refer to this type of conflict as a within-
or across experiment across constraint conflict. In particular it may be the
case that the constraints within one experiment can be combined consistently,
i.e. that the constraints from each experiment are individually consistent with a

(equivalence class of ) generating graph(s), but that the sets of generating graphs

2In principle a conflict might occur under these circumstances even if the sampled data
is exactly the same in both cases, since the different distributions might draw inconsistent
conclusions with regard to the same constraint on the same data.
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have an empty intersection, which implies an inconsistency across experiments.

We will not address conflicts here that arise within one experiment, since
with regard this thesis these conflicts are handled entirely by the structure
search algorithm within on experiment.? Different structure search algorithms
might handle conflicts of this type differently. Most efficient constraint based
algorithms do not consider all possible independence tests, but infer structure
on the basis of the least possible number of independence tests. However, the
cPC-algorithm distinguishes itself from the PC-algorithm in being particularly
sensitive to conflicts arising from tests for colliders.

We will restrict the discussion here to combinatorial conflicts that occur
when equivalence classes of graphs from different experiments are combined. If
the combining algorithm is greedy, then — as in the case of structure search
for a single experiment — conflicts may not occur as often since resolved pairs
of variables are not reconsidered. But if accuracy of the output graph is the
aim and additional information is available, being greedy might not be the best
approach.

Let X and Y refer to some pair of variables in V and let &; refer to some
experiment in the sequence of experiments, different indices indicate different
experiments. If only adjacencies are determined in each experiment (and direc-
tionality is inferred by combining experiments), as is the case in the combining
algorithm for structural interventions (Algorithm 5.1.2), then a conflict occurs

in the following situations:

1. X and Y are passively observed in £; and &;, but &, indicates they are

non-adjacent, whereas £; indicates they are adjacent.

2. X is subject to a structural intervention in £, and found to be adjacent
to Y (in fact one would conclude that it is a direct cause of Y), but in &,

both variables are passively observed and found to be non-adjacent.

3. X is subject to a structural intervention in € and found to be a direct
cause of Y, and Y is subject to a structural intervention in €; and found

to be a direct cause of X (a conflict, since we assume acyclicity).

4. X and Y are passively observed in £, and found to be adjacent, but X is

subject to a structural intervention in &; and not found to be adjacent to

3Given a sequence of experiments it may be of interest at a later stage to reconsider
whether this approach can be improved, i.e. whether one can do better by considering con-
straints generated by a sequence of experiments all together, rather than for each experiment
individually.
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Y, and Y is subject to a structural intervention in &,, and not found to
be adjacent to X.

There are many cases where orientations of edges can be determined within a

single experiment as well:

1. If an adjacency is found between an (structurally) intervened variable and
any other variable in the system, then the orientation of the edge is out

of the intervened variable.

2. If three passively observed variables X,Y, Z form an unshielded collider
in the post-manipulation graph then the collider can be discovered due to

the particular independence relations it implies.

3. There are a few cases where the discovery of some edge orientations imply
others (e.g. orienting away from an unshielded collider, orientation to

avoid a violation of acyclicity etc.).

If these techniques to determine direction are included in the structure search
algorithm for a particular experiment, as is the case for the adaptive search
algorithm (Algorithm 5.2.1), a variety of further conflicts can arise pertaining

to orientation information:

1. X,Y e U; and X,Y € Uj, &; indicates that X — Y whereas €; indicates
X Y.

2. &; indicates that X — Y, but &; indicates that the two variables are only
adjacent although €; should have discovered the orientation if, in fact, it
is the case that X — Y. This type of situation occurs if the directionality
of the edge is determined by an unshielded collider and this unshielded

collider would be present in both experiments &; and &;.

3. If the directed edges from individual experiments combine to form a cycle
which is not present in any of the individual results, then we have a further
conflict (similar to the first bullet in this list, although several variables

may be involved).

Conflicts may also arise from a failure of the basic assumptions, such as acyclic-
ity, Markov or faithfulness, or a failure of causal sufficiency when it is assumed.
In this case different solution approaches then the ones discussed here may be

required. We will not address this point here.
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6.2 Conflict Resolution

Under what circumstances is it possible to resolve the above conflicts? Of course
one could re-run one of the experiments, possibly with a larger sample size,
pool the data from the original and the repeated experiment and perform the
crucial independence tests again, now with a larger sample. This is a simple
but possibly expensive solution. One may also consider introducing some type
of reliability hierarchy of tests. It is not clear how such a hierarchy might work.
A simple approach may be that tests with smaller conditioning sets are more
reliable. But this only provides a partial order over the tests and each of the
conflicts can occur with conditioning sets of the same size in the conflicting

tests. Something more sophisticated is needed.

Simple Pooling:

One cannot simply pool the data relevant to a particular independence test from
two experiments, because different experiments in a sequence have different joint
distributions over the variables resulting from the different interventions. If dif-
ferent variables are subject to interventions, this implies different manipulated
graphs over the variables, representing the different joint distributions. Pooling
data from different distributions may lead to spurious changes in correlations.
The change can go either way. Depending on how data is pooled from exper-
iments with different interventions, a spurious dependence may arise between
variables that are in fact causally separated, or a spurious independence may
arise between variables that are causally connected. Straight-forward pooling of

data is therefore not a solution to conflicts that arise from statistical variation.

Voting:

One may attempt to divise some voting procedure to resolve conflicts without
re-doing one of the experiments. For example, given an independence test on X
and Y, select from a sequence of experiments those that do not simultaneously
intervene on both X and Y, i.e. those experiments that are informative about
X and Y. Among these experiments let a simple vote decide whether X — Y,
X «— Y or X and Y are non-adjacent. Unfortunately it is not that simple:
Although there are three possibilities for the true structure between a pair of
variables, the tests are only binary. An independence test on a pair of variables,

where one is subject to an intervention, can decide whether there is an edge from
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the intervened variable to the other variable, but cannot distinguish between
an edge incident on the intervened variable and no edge at all. Similarly, an
independence test where both variables are passively observed can tell whether
there is an edge at all, but is unable to distinguish directions. It seems therefore,
that the vote of a particular test should be evenly split between the options it
cannot distinguish. That is, if after an intervention on X we find X and Y to
be independent, then both non-adjacency and X <+ Y should receive half a vote
each.

This approach does not yet take into account that votes from different ex-
periments are votes from different joint distributions, which may make the dis-
covery of a particular (in)dependence harder or easier. In order to reflect the
significance of the result from any particular experiment, the decision could
be a function of the p-values of the independence tests they represent, e.g. a
threshold of the average p-value. But now we run into trouble with the asym-
metry of the search procedure: In order to discover a mon-adjacency we have
to find one conditioning set that makes the two variables independent. The
PC-algorithm iterates through the independence tests in order of complexity
(size of the conditioning set), so that there always is a well-defined indepen-
dence test that determines non-adjacency. The p-value from this test could
be used to determine the weight of the vote from this particular experiment.
However, adjacency is established if there is no conditioning set that makes the
variables independent, i.e. all the independence tests fail. Consequently there is
no unique priviledged p-value to contribute to the decision. Further, there is no
guarantee that there is a corresponding independence test in each experiment
so that one could reduce the conflict to a set of independence tests. And even if
there were, then one would be aggregating p-values from different distributions.
It is not clear what the justification for such a procedure would be.

Quite apart from the above matters, issues of judgment aggregation arise.
Since the combination of independence relations imply other (in particular,
higher order) independence relations, the outcome of a voting procedure de-
pends on how votes are aggregated and it is not clear at all, how an aggregation
procedure here would have to be designed to be in some sense “truth tracking”,
i.e. that we could have any hope that using some voting method will get us

closer to the true graph.*

4In [2] Bradley et al. suggest a method for aggregating causal graphs that conflict. How-
ever, their method is not truth tracking, nor is it sensitive to the incoherencies of the different
causal graphs that are aggregated. It is not clear at all, what the aggregated graph represents
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The bottom line is that voting may well work as a useful heuristic to resolve
conflicts, but the worry is that the ad hoc decisions made in order to have a
well-defined voting procedure destroy the consistency guarantees of the overall

search algorithm.

6.2.1 A sufficient Condition for Conflict Resolution

The key difficulty in resolving conflicts is to figure out how and when the pooling
of data from different joint distributions affects the independence tests relevant
to a conflict. Failure to identify these cases can lead to spurious correlations
or independencies when data is pooled. However, if one can ensure that the
distribution relevant to the conditional independence test in question is the
same in the conflicting experiments, then the data can be pooled to obtain an
independence test with a larger sample size. A larger sample size can be used to
increase the power, to lower the significance level of the test while maintaining
the same power, or some improvement of both.

For example, suppose two variables X and Y, whose independence is in
question, are graphically disconnected, i.e. causally separate, from the other
variables W1, ..., W, in the causal structure. If there are two experiments,
one which is an intervention on W; and another with an intervention on Wj,
then clearly the changes in the interventions will have no effect on the marginal
distribution over X and Y and the data from the experiment can be pooled for
the independence tests on X and Y. Causal separation is a very strong condition
to ensure the validity of pooling, but we show that it can be weakened.

The basic idea is that we track the interventions that differ between the
experiments whose data we want to pool for a particular independence test, and
ensure that these “changing interventions” are screened off in each experiment
from the variables whose independence we are testing. If that is the case, we
can pool the data and perform an independence test with larger sample size.

Consider two experiments &; and &;, whose data we intend to pool for the

conditional independence test T of X,Y|C. Let Pol;* contain all the interven-

and why it should be considered informative about the true causal structure. All it offers is an
aggregation of opinions about causal structure that respects certain desirable features of judg-
ment aggregation. But these features (e.g. Pareto) are only preserved with regard to certain
aspects of the causal structure (e.g. faithfulness is neglected). The solution they provide is
unsatisfactory for causal models, which presumably are supposed to represent something true
about the world. If judgments of causal relations are incosistent and one can perform tests to
resolve the inconsistency before aggregation then surely they should not just be aggregated.
Furthermore, it might be beneficial to consider the aggregation procedure at the constraint
level as opposed to the level of causal structure.
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tion variables in &; that differ with respect to those in €; and let Pol;" contain
all the intervention variables in &; that differ with respect to those in &;.> We

then have the following theorem:

Theorem 6.2.1: Pooling under d-separation

If the set of variables {X,Y} is d-separated from the set of changing interven-
tion variables Pol;* given the conditioning set C in the manipulated graph of
experiment &; and if the set of variables {X,Y} is d-separated from the set of
changing intervention variables Pol;* given the conditioning set C in the manip-
ulated graph of experiment €, then the distributions relevant for independence
test T'x,y|c are invariant across experiments &; and &; and the data relevant to

the test can be pooled.

This theorem specifies a sufficient condition that allows for pooling of data.
A simple example will illustrate the main claim. Suppose the left graph below

specifies the true causal structure.

X X

S /

W——Y Iy —W ——Y

Consider two experiments, one a passive observation and one an intervention
on W (right graph above). The theorem says that we cannot straightforwardly
pool data for the (unconditional) test Tx,y (whether X is independent of V),
because Iy is not d-separated from {X,Y} in the second experiment. But we
can pool for the test T'x y | (whether X and Y are independent conditional on
W), since the conditioning set {W} d-separates the changing intervention Iy
from {X,Y}. Consequently, if we had a conflict regarding the X, Y -connection,
we could now at least perform a test T'x y| with larger sample size.

The theorem does not specify a necessary condition, since the intervention
distributions in different experiments can be tweaked in such ways as to preserve
the invariance properties of the distributions relevant to the independence test
even if the d-separation condition is not satisfied. Trivially, this can be done if
the intervention distribution of a variable is essentially the same as the passive

observational distribution for that variable.

5See detail and proof in appendix.

141



6.2.2 Discussion of Conflict Resolution

While the above theorem specifies a sufficient condition for pooling which might
resolve some conflicts in sequences of experiments, it requires substantial knowl-
edge about the causal structure. Whether or not one can pool for a particular
independence test depends on whether the variables subject to the test are
d-separated from the changing interventions. But if one is trying to discover
the causal structure, one will rarely know whether the relevant d-separation is
satisfied. The theorem appears to be of little help in our circumstances.

The situation is not quite so bad: Given a (sub-)sequence of experiments,
the theorem specifies for any possible causal structure invariance conditions
for certain marginal and conditional distributions. These can be used. One can
check the likelihood of the observed invariances over the sequence of experiments
for any possible graph G over V. Invariances that are implied but not observed
or observed but not implied then reduce the set of possible graphs and resolve
previous conflicts. This may turn out to be a computational nightmare, but at
least progress can be made.

Such a likelihood based approach extracts from the Bayesian approach the
key feature that resolves conflicts. For a Bayesian, conflicts of the type described
above do not arise explicitly. A strictly Bayesian approach would place a prior
over all possible structures and all possible parameterizations of those structures.
Evidence from the experiments is integrated by an updating procedure involving
the likelihood. Conflicts are thereby taken care of implicitly in the update. The
computation is expensive and without obvious short-cuts. Priors are not going
to be simple after the first experiment and it is not going to be sufficient to
just keep track of the most likely graph(s). Nevertheless, it is another way of
achieving a solution to the problem.

In very sparse graphs, or if only very few conflicts occur in a sequence of
experiments, one may be able to determine directly whether the d-separation
condition is satisfied in particular cases. However, even here, the theorem re-
quires the search algorithm to store information about which independence test
determined a non-adjacency in each experiment, so that the problematic test
can be identified for possible conflict resolution later (or one has to find it again).

The theorem applies generally as it is not specific to particular families of
distributions. It is therefore more generally relevant to techniques in meta-
analysis. In particular, if the d-separation relation is known to hold, — say, the

causal structure is known — then parameter estimates can be obtained by com-
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bining data from different experiments whose manipulated joint distributions
are known to differ.

While the theorem provides a start of a solution to conflicts in some cases,
the feasibility of its application is not entirely clear. In general, we consider the
efficient resolution of conflicts one of the main open problems for search with

sequences of experiments.
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Chapter 7

Testing

Given the entire account so far we could test many different variations of set-
up, assumptions and strategies in simulations. We can vary the background
assumptions, the model space assumptions (discrete, continuous), causal suf-
ficiency, the type of search strategy, the type of interventions, the number of
interventions per experiment, the structure search algorithms that are used in
each experiment, the parameters of the combining algorithms (greediness, res-
olution of orientation, etc.), the way conflicts are resolved, sample size and a
whole slew of conditions pertaining to the graphs, e.g. number of variables,
sparsity, parameterization etc. There is no way we would have been able to
consider a set of simulations that could be deemed representative of the space
these dimensions span. However, we have set up a simulation suite building on
the TETRAD program!® that can be used to test a large variety of combinations
of the above assumptions and algorithms. We have only explored a relatively
small part of the space and we show results here of a representative subset of
that small part.

In [8] we simulated the fixed search strategies with single and multiple si-
multaneous interventions (Strategies 3.3.2 and 3.3.5). We performed N — 1 or
log,(N)+1 experiments, respectively, on sets with different numbers of (causally
sufficient) variables, with true graphs of different sparsity, under the assumption
that the causal model was a discrete binary model. Orientation information was
only determined by the combining algorithm given the different experimental

set-ups, i.e. the structure search algorithms in each experiment only returned

Thttp:/ /www.phil.cmu.edu/projects/tetrad/
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adjacency information. If conflicts occurred, no effort was made to resolve the
conflict and an error was output for the conflicted pair of variables. Accuracy
of the search procedure was measured in terms of the percentage of pairs of
variables whose direct connection or non-connection was determined exactly
correctly. The direct connection between a pair of variables X and Y is discov-
ered exactly correctly if (i) X — Y in Gypye if and only if X — Y in Gourpue; (ii)
X «— Y in Gyrye if and only if X «— Y in Goyipue; and (iil) X Y in Gy if and
only if X Y in Goytpur. We used the PC-algorithm to determined adjacency
in each experiment, and we varied across sequences of experiments the sample
per experiment from 100 to 10,000 samples. If a fixed sequence of experiments
did not complete the discovery within the allocated number of experiments,
unresolved edges were determined to be errors.

Apart from the more intuitive and obvious connections between sample
size and accuracy, the interesting result of that simulation study was that the
fixed strategy using multiple simultaneous interventions per experiment was
much more accurate than its single intervention counterpart. That is, in fewer
(log(N) + 1 as opposed to N — 1) experiments, and consequently with much
fewer samples (since samples were allocated at a fixed rate per experiment),
these strategies provided more accurate results. This difference, however, dis-
appeared when the analysis was restricted to outputs that did not contain any
conflicted pairs of variables. We took those studies to provide some support for
the idea that single intervention search strategies create many conflicts between
experiments that jeopardize the output accuracy.? The conclusion is, of course,
not that single intervention search strategies are necessarily less accurate even
with larger sample sizes. It may well be the case that once a good way has been
found to resolve conflicted pairs of variables, the accuracy of single intervention
strategies will be boosted to the level of multiple intervention strategies. The
need for a good conflict resolution technique was a general conclusion of that
study. Among the searches for which no conflicts occurred, accuracy of output
was around 90% (exactly correctly resolved pairs of variables) at only 1,000

samples per experiment.

2The intuition is that since each experiment considers the causal relations of all pairs of
variables, unreliable conclusions are drawn (about, for example, pairs of variables not closely
connected to the intervened variable). A single intervention experiment on a set of variables
makes, so to speak, claims about causal connections it does not really know much about.
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7.1 Simulations

In the simulations presented here we focus exclusively on mixed strategies with
structural interventions. This is the most plausible approach one would use in
an actual search for causal structure if there are no restrictions on which vari-
ables can be subject to intervention. Furthermore, mixed strategies provide the
most interesting case since they imply the tightest theoretical bounds and they
generate — in contrast to fixed strategies — a unique output: A mixed strategy
stops its search when it has discovered a directed acyclic graph among the set
of variables under consideration. For a fixed strategy, the set of experiments
is fixed a priori and so the output might still contain pairs of variables whose
connection is not yet resolved. (Adaptive strategies share this early stopping
aspect with mixed strategies, but have none of the other features.)

We do not consider parametric interventions since the search for structure
using parametric interventions is very similar to structure search in passive
observational data once the set of variables has been augumented by the inter-
vention variables and their edges into the intervened variables. The main issue
with parametric interventions is the reliability of collider tests, for which the
cPC-algorithm provides some additional guarantees.

Throughout the simulations, all the following assumptions are made:
1. Causal Markov

2. Causal Faithfulness

3. Acyclicity of true causal structure

4. Causal Sufficiency of the set of variables?

5. Interventions are structural, uncaused and not confounding

In addition, a whole list of pragmatic decisions had to be made to get the
simulations up and running:

We used different algorithms for structure search in each experiment. The
structure search algorithm in each experiment uses a knowledge graph for that
experiment. The knowledge graph includes knowledge about the experimental
set-up: No-knowledge edges are placed between variables that have both been

subject to an intervention, directed edges are placed where an adjacency is found

3Simulations on causally insufficient sets of variables, or where other background assump-
tions fail, would be most interesting, but some of us would like to graduate first.
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between an intervened and a non-intervened variable, and semi-directed edges
into the intervened variable are placed if an intervened and a non-intervened
variable are found to be non-adjacent. All other edges are determined by the
structure search algorithm. Some of the algorithms return bi-directed edges
(representing independence constraints indicative of latent variables). Since
we are only considering causally sufficient sets of variables, these bi-directed
edges must result from a statistical test being subject to error. These edges
are treated as conflicts within one experiment and are removed and replaced by
no-knowledge edges.

No matter what information the structure search algorithm returns in the
knowledge graph, the algorithm combining knowledge graphs from different ex-
periments (Algorithm 5.2.1) is greedy, i.e. it only consider edges that have not
been resolved by previous experiments. However, for any unresolved edge, the
combining algorithm will use all orientation information that a structure search
algorithm discovers in a single experiment. We thus avoid, by not reconsidering
a resolved edge, conflicts for edges that are already resolved, but that would, if
reconsidered in light of the current experiment, be considered conflicted.* On
the other hand, conflicts may arise that would have been avoided if we only had
taken adjacency information from each experiment into account.

Conflicts between experiments are resolved by...not resolving them: The
conflicted edge in the knowledge graph is replaced with a no-knowledge edge,
thereby voiding the conflict and trying again. Subsequently, only findings from
experiments performed after occurrence of the conflict are considered for the
resolution of this edge. If the conflict is due to a cycle that would be created if
an edge were added, then all edges in the smallest cycle that would be created
are replaced with no-knowledge edges and are reconsidered only in terms of the
experiments that follow.> Needless to say that this form of conflict resolution
is not really a form of resolution but rather a form of restarting the search with
regard to a subset of the edges. All the information from previous experiments

regarding the conflicted edges is wasted. It was a decision that was made for

4The only exception to this is when a resolved edge forms part of a potential cycle. Then
all edges of the cycle are removed.

5For example, if the knowledge graph contains a path X — Y — Z and also a path X —
W — Y, and the latest experiment suggests adding an edge Z — X, then that would create
two cycles, {X,Y,Z},{X,W,Y, Z}, which would be recognized as a conflict. The suggested
resolution here is that all edges in the {X,Y, Z}-cycle are removed and replaced with no-
knowledge edges in the knowledge graph, while the XWY -path is left intact. There is no
more principled reason for this resolution other than that it is a minimal change that resolves
the conflict without picking out one individual edge.
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computational efficiency, since no computationally feasible solution for a more
principled conflict resolution was available.

As the discussion of mixed strategies using multiple simultaneous interven-
tions indicated, there is no obvious choice for the size of the intervention set of
the first experiment. One does not want to include too many variables, since
then information about causal structure among the intervened variables would
be lost. But one also does not want to intervene on too few (at least, if one is
— as we are here — concerned with minimizing the number of experiments), in
case the true graph is very dense. In Section 4.2.2 we listed the optimal sizes for
the first intervention set when (a) the true graph is complete and it is known
that the true graph is complete, and (b) the true graph is complete but it is
not known whether the true graph is complete. Both cases were subject to the
assumption that one had an independence oracle. In the following simulations
of the mixed strategy with multiple simultaneous interventions graphs are not
complete, nor do we have an independence oracle. We do not know what the
optimal size for the first intervention set is under these circumstances, but we
use the intervention set sizes we established for the (b) case. We do not yet
have a good sense of the impact of this choice.

Directed acyclic graphs over N variables are sampled randomly by using
the Tetrad-implementation of an MCMC-algorithm described in [27]. The
parametrization is also determined by the default Tetrad implementations, which
in the case of linear models bounds the edge-coefficients away from zero. The
PC- and the cPC-algorithm use a x2-test in the discrete case and Fisher’s Z-test
in the linear case with a significance level of & = 0.05. The GES-algorithm is
initialized with a flat prior over structures. We performed simulations for each

combination of items from the following categories:
Causal Model: discrete (binary) or linear normal

Structure Search Algorithm in each Experiment: PC-Algorithm, con-

servative PC-Algorithm or GES-algorithm
Interventions: Single or Multiple simultaneous interventions

Sample Size per Experiment: 100, 1,000 or 10,000 samples in each exper-

iment in a sequence

Number of Variables: The number of variables is varied between 4 and 10.
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Graph Density: Graph density was varied by changing the maximum degree
of any node in the graph.

Number of Nodes | Maximum Node Degrees Considered
{3}
{34}
{3,5}
{3,6}
{3,5,7}
{3,5,8}
10 {3,6,9}

© 00 N O Ot =~

We allocate a fixed sample size per experiment, independent of the number
of experiments in a sequence. In general, one could use many other ways of
allocating samples. Our choice implies that if the sequence of experiments is
longer, then the result graph is based on a larger overall sample.6

Graph density can also be determined by several other measures. We use
maximum node-degree, but one could also restrict the degree to in- or out-
degree, or one could limit the total number of edges in the graph. Maximum
node-degree seemed to work well in our case and is reasonably closely related to
the total number of edges in the graph (see discussion on graph density in [8]).
In summary, then, we have the following simulations:

Overview:

1. For a discrete binary or a linear normal causal model,

2. using one of the three search algorithms (call it SA)

w

. using a single or multiple intervention search strategy
(call it Strat), do:
For the number N of nodes, from N = 4 to N=10{
For each maximum node degree d for N{
For each sample size in (100, 1000, 10000){

For 100 iterations{

0w N o O b

Sample a directed acyclic graph G uniformly from DAGs with N
variables and max degree d and parameterize it with a random
parameterization that is Markov and faithful to the causal model.

9. Initialize strategy Strat for the graph.

60mne could also fix the overall sample, but would then have to decide how it is divided
up among experiments in a sequence that varies in length. Or one could sample variables
selectively.
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10.

Perform experiment E determined by OPTINTER for

mixed strategies.

11. Use SA supplemented with knowledge about the experimental
set-up to determine the knowledge graph for E.

12. Use Adaptive Combining Algorithm for structural interventions
to determine knowledge graph K for the sequence of experiments
performed so far.

13. If there is a conflict, replace the conflicted (or cycle-)
edges with no-knowledge edges and note which experiments
may not be considered for the resolution of the conflicted edges.

14. If K is not a resolved acyclic causal structure, return to
10., otherwise output K.

15. Measure the accuracy of K compared to G.

}r1r3

We measure the accuracy of the output graph Goytpys in two different ways:
First, we count the number of times out of the 100 iterations that the search
algorithm discovered the true graph Gy exactly correctly. That is, there are
no false positive and no false negative edges and no incorrect edge-endpoints in
the output; the output is — in qualitative terms — perfect. Second, we measure
the percentage of pairs of variables whose direct connection (or non-connection)
is discovered exactly correctly. We introduced this second measure because we
found that for larger graphs it was very rare that the graph could be recovered
exactly correctly with any of the search algorithms and strategies we considered,
despite the fact that a decent portion of the graph had been recovered correctly.
This was a pragmatic decision to render a simple intuitive qualitative measures

of accuracy. We discuss some alternatives in the section on future research.

7.2 Results

We do not present the full output, but representative cases:

1. Figure 7.1 shows simulation results, when the true graph is a linear nor-
mal causal model over 4 variables with maximum node-degree equal to 3
(i.e. all DAGs over 4 variables). The graph shows the average number of
experiments that were required to recover a DAG, for each of the three

search algorithms combined with a mixed strategy using either single or
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multiple interventions per experiment. The second graph shows the num-
ber (out of 100) of graphs that were determined exactly correctly for each

of the different search strategies.

. Figure 7.2 shows the same results as the previous figure (N = 4, maxzDegree =

3), just for discrete binary models.

. Figure 7.3 shows the same type of results for linear normal models over 6

variables with maximum node-degree of 5 (i.e. all DAGs over 6 variables).

. Figure 7.4 shows the same results as the previous figure (N = 6, maxDegree =

5), just for discrete binary models.

. Figure 7.5 |, Figure 7.6 and Figure 7.7 show results for linear normal mod-
els over 10 variables. However, here we vary the graph density across
the figures. For Figure 7.5 , we have (N = 10,maxDegree = 3), i.e.
sparse graphs only, in Figure 7.6 , we have (N = 10, maxzDegree = 6),
i.e. sparse and medium dense graphs only, and in Figure 7.7 , we have
(N = 10, maxDegree = 9), i.e. all graphs over 10 variables. Again we
show the average number of experiments for the six types of searches (three
structure search algorithms crossed with two strategy types: single and
multiple interventions per experiment). Instead of a count of exactly cor-
rect graphs, we show the average (over 100 iterations) of the percentage

of pairs of nodes (out of (120) = 45) that were resolved exactly correctly.
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Figure 7.1: Linear Normal Models (Var 4, MaxDeg 3): Graphs over 4
variables with mazimum node-degree 3. Average number of experiments (over
100 iterations) to discover a causal graph for single and multiple interventions
per experiment with the PC-, ¢cPC- or GES-algorithm for structure search (top).
Number (out of 100) of graphs that were discovered exactly correctly, for different
seach strategies and sample sizes (bottom,).
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Figure 7.2: Discrete Binary Models (Var 4, MaxDeg 3): Graphs over 4
variables with mazimum node-degree 3. Average number of experiments (over
100 iterations) to discover a causal graph for single and multiple interventions
per experiment with the PC-, ¢cPC- or GES-algorithm for structure search (top).
Number (out of 100) of graphs that were discovered exactly correctly, for different
seach strategies and sample sizes (bottom,).
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Figure 7.3: Linear Normal Models (Var 6, MaxDeg 5): Graphs over 6
variables with mazimum node-degree 5. Average number of experiments (over
100 iterations) to discover a causal graph for single and multiple interventions
per experiment with the PC-, ¢cPC- or GES-algorithm for structure search (top).
Number (out of 100) of graphs that were discovered exactly correctly, for different
seach strategies and sample sizes (bottom,).
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Figure 7.4: Discrete Binary Models (Var 6, MaxDeg 5): Graphs over 6
variables with mazimum node-degree 5. Average number of experiments (over
100 iterations) to discover a causal graph for single and multiple interventions
per experiment with the PC-, ¢cPC- or GES-algorithm for structure search (top).
Number (out of 100) of graphs that were discovered exactly correctly, for different
seach strategies and sample sizes (bottom,).
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Figure 7.5: Linear Normal Models (Var 10, MaxDeg 3): Graphs over
10 wvariables with mazimum node-degree 3. Average number of experiments
(over 100 iterations) to discover a causal graph for single and multiple interven-
tions per experiment with the PC-, cPC- or GES-algorithm for structure search
(top). Percentage of pairs of nodes (of 45 possible pairs), whose direct (or non-
)connection was discovered exactly correctly, for different seach strategies and
sample sizes (bottom,).
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Figure 7.6: Linear Normal Models (Var 10, MaxDeg 6): Graphs over
10 wvariables with mazimum node-degree 6. Average number of experiments
(over 100 iterations) to discover a causal graph for single and multiple interven-
tions per experiment with the PC-, cPC- or GES-algorithm for structure search
(top). Percentage of pairs of nodes (of 45 possible pairs), whose direct (or non-
)connection was discovered exactly correctly, for different seach strategies and
sample sizes (bottom,).

157



10 Vars, MaxDeg 9

(V)] 5.6 T T LENLELELELIL | T T T T T 11T
()
£
g
x PC(mult) —+—
4 : cPC(mult) ---x---
° 46 . GES(mult) ---%---
3 L PC(single) &
E 4.4 - /,//"" cPC(single) —-—=-
5 42F- T T GES(single) ---6--
=z 4 g o i
" -
§ 38F -7 e s
@ 36 T
= 3.4 ' ——
100 1000 10000
Samples per Experiment
Exactly Correct Pairs

0-8 T T T Illll| T T T Illll/g
4 0.75 X
‘<
o
g 0.7 A PC(mult) —+—
= cPC(mult) ---x---
o 065 . GES(mult) ------
5 PC(single) -
N 0.6 I cPC(single) ——=--
5 ' GES(single) --© -
X 055K i

0.5 ol e

100 1000 10000

Samples per Experiment

Figure 7.7: Linear Normal Models (Var 10, MaxDeg 9): Graphs over
10 wariables with mazimum node-degree 9. Average number of experiments
(over 100 iterations) to discover a causal graph for single and multiple interven-
tions per experiment with the PC-, cPC- or GES-algorithm for structure search
(top). Percentage of pairs of nodes (of 45 possible pairs), whose direct (or non-
)connection was discovered exactly correctly, for different seach strategies and
sample sizes (bottom,).
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The plots do not include error bars to preserve clarity. Assuming that 100
iterations are sufficient to make the distribution of the averages more or less
normal, we found that for the linear normal models a 95% confidence interval
of the average number of experiments is a band of between £0.2 and +0.3 units
around the average values shown in the plots. The width of the band was
largely independent of the structure search algorithm or search strategy used.
But, as sample size per experiment went up, the confidence interval got slightly
smaller (unsurprisingly). As the graph density increased (greater maximum
node-degree), the confidence interval also increased slightly. A 95% confidence
interval for the average number of exactly correct edges (shown here only for
N = 10) covers a band of between £1% and +2% around the mean values in
the plots. The confidence interval is smaller for sparse graphs.

The results shown in the graphs are representative of the other values we con-
sidered for the simulations. Many of the results are unsurprising: The accuracy,
in the two measures we considered, goes up as the sample size per experiment
increases. The accuracy decreases as graph density and number of variables
increases. At least for many of the linear normal models, the number of exper-
iments descreases as the sample size per experiment increases. The accuracy
with linear normal models is much higher than with discrete binary models.

The more interesting results are in the contrast of single and multiple inter-
vention search strategies. While search strategies that employ single interven-
tions per experiment return a causal structure in about the same or less number
of experiments (depending on the structure search algorithm) than their multi-
ple intervention counterparts, the causal structure they return has many more
errors: Up to 10% more pairs of variables are resolved exactly correctly (or up
to 10% more graphs are resolved exactly correctly) with the multiple interven-
tion strategies. This can be seen most vividly for larger numbers of variables,
dense graphs and linear normal models (Figures 7.3, 7.6 and 7.7). 7.2). This
provides an interesting extension of the results we found in the simulation study
on fixed strategies [8], discussed above. There we found the multiple simultane-
ous intervention strategies to be much more accurate, even though their overall
sample size (in the sequence of experiments) was much smaller than the sin-
gle intervention case (due to only log,(N) + 1 experiments instead of N — 1).
Here, with mixed strategies, we find the opposite: Single intervention mixed
strategies find a causal structure in the same number of or fewer experiments
than their multiple intervention counterparts, but the causal structure has more

errors. Since a mixed strategy can return after any number of experiments and
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need not wait for some fixed length sequence of experiments to complete, the
single intervention mixed strategy returns too early (presumably also due to
the greedy search) with an incorrect graph. A mixed strategy with multiple
simultaneous interventions performs slightly longer sequences of experiments,
but then appears to have fewer errors in the output. While it would be far too
strong to draw a general conclusion, we do think this is evidence for a point
indicated already in the discussion of the simulation study in [8]: Search strate-
gies using multiple simultaneous interventions seem to strike a better balance
between output accuracy and search investment (in the sense of sample size or

7 This suggested result is not the same as a perhaps

number of experiments).
more well known, or to some people, more obvious conclusion that in any one
experiment, if we are just interested in the effect of a set of treatment variables
on a set of outcome variables, then accuracy of the result can be increased by
intervening on other variables as well (e.g. by clamping them to a particular
value). The proposal we are making is that with regard to learning about the
entire structure among a set of variables, sequences of experiments with multiple

interventions, are better in output accuracy than those with single interventions.

In all the previous chapters our results concerned some kind of worst case anal-
ysis: absolute worst case or average worst case. However, we did not consider
statistical variability. Here in the simulations we consider a much broader class
of graphs than the worst case. In fact, when we bound above the maximum
node-degree by some value smaller than NV — 1, where N is the number of vari-
ables in the graph, we are explicitly bounding ourselves away from the worst
case. Instead of the worst case graphs, statistical errors now cause problems.
It turns out that in the grand scheme of things, the number of experiments the
mixed search strategies perform in the simulations are in the same ball-park of
the worst case bound for a given number of variables and a given graph density,
no matter what the structure search algorithm is in each experiment and no
matter whether the true model is discrete or continuous. Furthermore, log(N),
where N is the number of variables, seems to be a decent rough guide of how
many experiments are required. The point here is again not a formal one, but

a suggestion that despite their worst case nature, the bounds, especially the

"Please note the caution in the statement. No-one said that there was a proof for this
statement in this thesis. No-one said that the graphs show this result without any doubt. Nor
did anyone say that there cannot be other reasons why this difference came about. It is, to
use someone else’s infamous term, a little corroboration.
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tighter ones using multiple simultaneous interventions, give an idea of what to
expect from a sequence of experiments.

There are many other points these simulations raise, but which we do not
have a good explanation for or where we lack confidence in the results of the
simulation. Much more careful analysis needs to be done to tease out the dif-
ferences resulting from the structure search algorithms. Much more analysis
could be done on the nature and occurrence of conflicts and how best orienta-
tion information should be determined. We have not done more analysis here,
since we believe that there are many more theoretical issues to sort out before
a proper practical analysis is worth the time and effort. At this point there are
still too many ad hoc choices in the implementation of the algorithms that, if
they had been made otherwise, might yield different results. As a reminder, a
short list of the most important concerns: the size of the first experiment, the
different options to resolve orientations of edges, resolution of conflicted edges
and cycles, greedy search or reconsideration of already resolved edges in later
experiments and the allocation of samples to the sequence of experiments.

Consequently, it is not clear how representative the simulations are of how
the theoretical results spell out in practise. Many of the results from earlier
chapters are possibility or impossibility results and as such, are not practical
benchmarks. The implemented algorithms are not tuned to optimize the com-
putation involved and several decisions were taken to make the test of a rea-
sonable space of graphs feasible. As a result of these decisions, the algorithms
are at times wasteful with information that is or may be available in the data.
Nevertheless, we think the simulations show some broad differences between ap-
proaches and are indicative of the additional problems that arise when sample
variability is taken into account. So in summary, we recommend the results of

this section with a grain of salt and a PG rating: parental guidance suggested.
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Chapter 8

Conclusion

This thesis project set out to analyze causal discovery using interventions. The
ailm was to look beyond a single experiment to sequences of experiments and
provide guidelines of how sequences of experiments should be performed. How
should intervention sets be chosen if the aim is to discover the entire causal
network among a potentially large set of variables? Under what circumstances
can such discovery be successful in one experiment and what should be done if
a single experiment is insufficient?

The guidelines we provided in this thesis are worst case bounds on the num-
ber of experiments sufficient (and sometimes necessary) to discover the causal
structure. We provide bounds under a variety of different model space assump-
tions and for several search strategies and types of interventions. For each bound
we supply at least one search strategy that guarantees (given the appropriate
oracle) discovery of the causal structure within that bound, and we provide al-
gorithms that compute the intervention sets and combine results from different
experiments to yield the search result. The bounds apply to the worst case
or worst case expectation, but the adaptation to more benevolent situations is
obvious and the adaptive and mixed strategies are sensitive to such cases. In
some cases, as with the algorithms based on the differences in correlation, the
algorithms push the limits of what can be learned into the space of unmea-
sured variables and connections are indicated to algorithms for structure search
among latent variables. We framed the entire discussion of search procedures
in a language that has a straightforward game-theoretic interpretation and con-
sequently, many of the discovery problems can be understood as searches for

solutions of a particular game. Such a game-theoretic framework also supplies
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a much more general approach to cost of discovery, which here has almost ex-
clusively been considered in terms of the number of experiments. Thus, the
guidelines we provide are not heuristics of what should be done in particular
circumstances, but guidelines to what is possible given a set of circumstances
and assumptions.

The bounds on the number of experiments derive from the combinatorics
of experiments. Since the bounds are based on oracles that report the appro-
priate independence or correlation information in each experiment, the bounds
are insensitive to structure search algorithms that have the same asymptotic
properties. That is, one can plug any of a variety of constraint or score based
algorithms into the structure search stage for any one experiment. As long as
the algorithms have the same asymptotic properties, such as discovery of the
Markov equivalence class, the same bound applies. Of course, the convergence
rate may not be the same. Certain structure search algorithms might be bet-
ter or worse on particular structures or for particular sample sizes and so any
actual sequence of experiments may be shorter or longer or return more or less
accurate results for different algorithms. For algorithms with different asymp-
totic properties, different bounds apply. For example, ICA-based procedures
can, under a non-normality assumption recover the exact causal structure with-
out performing a single intervention, while the PC-algorithm is limited to the
Markov equivalence class of causal structures. By contrasting algorithms based
on independence tests with those based on differences in correlation, we showed
how the discovery bounds change under otherwise the same assumptions.

In the simulations and discussion of conflicts in sequences of experiments
we dipped into issues relating to statistical variability. This can only be seen
as the snowflake on the tip of an iceberg. Quite apart from convergence rates
of different search procedures, the entire discovery problem is ultimately much
more general than we have presented it here, just in terms of the right sequence
of experiments. The optimization ranges over the cost of different experiments,
the allocation of samples in experiments and which variables to measure in which
experiments. So perhaps this thesis raises more questions than it answers. But
then, after all, it was a thesis submitted in a philosophy department.

We leave the reader with a short list of some of the issues and ideas we
consider important or interesting, but are still underdeveloped and left for future
research, which — as is usual in these cases — may never be done, or turn out

quite differently.
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8.1 Future Research

The closer the thesis has come to completion the more unfinished it appeared
to become. Several ideas that were originally going to be considered more
thoroughly have not even been touched properly yet, because there was plenty
of work to be done before. In the meantime many new ideas and problems have
arisen and so we summarize just a few. All of the following sections are to be
taken as indicators of future plans only. We have not had the time to consider
any of them more carefully and they are — more so than the previous chapters

— prone to errors and misguided thoughts.

8.1.1 Measure of Accuracy for Causal Structure

In our simulations we measured the accuracy of the output of the search proce-
dure in terms of the number of exactly correctly discovered graphs in 100 trials
or the average percentage of exactly correctly resolved pairs of variables in each
graph in 100 trials. These are straightforward qualitative measures of the cor-
rectness of the output. They are coarse functions of more detailed qualitative
accuracy measures that report false positive and false negative edges and/or
edge endpoints. On these qualitative measures, each edge is treated equally.
However, unless the score is perfect, the score may not reflect what one cares
about in discovering the causal structure. A highly-accurate output may not
correspond to a highly-useful tool for policy making.

Generally one cares about causal structure in cases of prediction under in-
tervention and for the estimation of counterfactual states. We have focused on
discovery of the entire causal structure among a set of variables, not just on
particular connections. Knowledge of the entire causal structures might be of
interest as a compact representation of knowledge, in some sense like a statis-
tic, when the particular prediction or estimation task is not known in advance:
Ship the causal graph to the policy maker when it is not known what policy
decisions the policy maker will be considering. Ship the causal graph to the
Mars Rover if you do not know what it might bump into. In these cases the
aim is to provide with the causal graph the best guide for predictions under
interventions, when the prediction query is not known. Consequently, the rel-
evant measure of accuracy of the causal graph should account for the result of

possible interventions.
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Qualitative Measures of Accuracy

Given that the discussion within this thesis has concentrated for the most part
on the discovery of the causal structure, the measure of accuracy should reflect
the accuracy of this qualitative aspect of the causal model under interventions,
i.e. the accuracy of the post-manipulation graphs for different interventions.
One way to think qualitatively about the accuracy of a prediction of the effect
of an intervention is whether the post manipulation graph correctly represents
all and only the paths connecting intervened variables to their — direct or in-
direct — effects.! Intuitively, what we care about in a prediction of the effect
of an intervention is that we know how the intervention affects other variables.
Pathways constitute a qualitative component of this knowledge.

Obviously, the primitive measures of accuracy we used in the simulations are
not independent of this proposed measure of accuracy of the post-manipulation
graphs, but they are not fully indicative of it either. Missed edges that are part
of many pathways in the true graph weigh more heavily in the error suggested
here than missed edges that only feature in a few paths between variables.
Each missed edge is treated equally in the measure we used in the main part
of the thesis. Given these considerations, the qualitative measure of output
accuracy should ideally measure the number of false positive and false negative
paths between intervened and non-intervened variables given by the 2V post-
manipulation graphs resulting from all possible interventions on N variables
(interventions on all possible subsets of N variables) in the output graph.

Consideration of 2V post-manipulation graphs obviously makes this effort
untenable very quickly. Even restricting ourselves to N single variable interven-
tions and determining for each of the non-intervened variables the pathways to
the intervened variable in the appropriate post-manipulation graph is a signifi-

cant task if one intends to consider decent sized simulations.?

LOf course, there are other ways to consider the qualitative effect of an intervention. One
could consider the accuracy of the separation into effects and non-effects of the intervened
variables, one could restrict consideration to direct cause-effect relations only or to the inde-
pendencies created by the intervention (if it is structural), or one of many other ways. If the
aim is to ensure that the discovered causal graph corresponds to the true causal graph then
the measure of accuracy should not incentivize search algorithms that output graphs with
excellent scores, but that do not represent the true causal relations. It is an open question
whether the suggested qualitative measure entails such incentives.

2There are ways to record pathways dynamically during the search procedure that can
then be easily checked for a particular intervention set. This would prevent re-computing
connections after the entire graph has been determined.
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Quantitative Measures of Accuracy

3 More generally, the policy maker is not only concerned with the qualitative
information of the kind described above. It is not sufficient to know that a
certain intervention will affect some other variable via particular causal con-
nections. How strong the effect will be matters just as much: Quantitative
information is relevant. Missing a weak causal link is less of a worry than miss-
ing a strong one. The notion of weak and strong causal links is not defined easily
for an individual causal connection in a discrete model. But for linear models
with edge coefficients, accuracy can be measured by associating two values with
each pair of variables, one value for the edge coefficient in each direction. That
is, a directed edge X — Y is associated with a value for the XY -direction that
corresponds to the edge coefficient and a zero for the Y X-direction, since there
is no edge. For non-adjacent pairs of variables, both values are zero. The mea-
sure of accuracy then compares the squared difference of each value with the
corresponding value in the true model. However, it is not clear how to aggregate
these measures, since the sums of squares are not independent.

This concern applies more generally: For any one parameterized output,
there is a long list of standard accuracy scores one could apply (AIC, BIC,
Kullbach-Leibler distance, y2-distance etc.), each with their own pros and cons.
But the more general difficulty for the circumstances considered in this thesis
is to ensure that (i) the accuracy measure is sensitive to the particular features
relevant to a causal model, i.e. the accuracy of the manipulated model, (ii) it
is computationally feasible, and (iii) the accuracy measure is a metric. It is not
clear how one could aggregate accuracy measures from the different manipulated
distributions into one value that would provide an overall score. The problem
is illustrated by the following example:

Cooper and Yoo [6] consider accuracy measures for models estimated on the
basis of observational and experimental data. Their framework adds an addi-
tional variable E specifying the experimental state of the model. The variable
functions as a switch that changes the state of the causal model from a passive
observational state to a particular manipulated state. They define conditional
probability distributions P(V|E) over the set of variables V conditional on the
state of the variable F, where E can either take the value “observational” or

“manipulate X” for some variable X € V. That is, E specifies whether the joint

3] am very grateful to Peter Spirtes for discussions and ideas I got from him on this topic.
Only the errors in this section are purely mine.
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distribution over the variables of interest is passive observational or whether it
is manipulated by an intervention on one particular variable. Cooper and Yoo
then define an observational error rate as the expected prediction error of one
variable given the state of another (averaged over all pairs) based on the ob-
servational distribution. Similarly, for an error rate based on a manipulated
distribution. The observational and manipulated error measures are not com-
bined, since they are based on different conditional distributions.

However, if we were able to turn the conditional distribution P(V|E) into a
joint distribution P(V|E)P(E), then accuracy measures from different experi-
ments could be aggregated, the overall error rate would be defined on the basis
of the joint distribution P(V, E). The main problem with such an account is
to justify a particular distribution P(E) over experiments. It is not clear under
what circumstances one could consider such a marginal distribution or what its
support would be.

For the circumstances we have been considering in the thesis, accuracy mea-
sures based on the parameterized models bring their own separate problems: So
far we have only given an account of structure search, we have not made any

suggestions about how to recover the parameterization.

8.1.2 Information Theoretic Measures and VC-Dimension

In information theory entropy is used as a measure of uncertainty about the

value of a particular quantity [40]. It is defined as:
H(X)=-> p(X = ;) logp(X = ;)
i

Reduction in entropy corresponds to a reduction in uncertainty. The termi-
nology can be directly applied to the circumstances considered here. Initially,
before any experiment is performed, we do not know which graph G is the true
graph over N variables. If we let G be a random variable over graphs, then the
entropy is initially maximal at H(G) = log,(Dy), where Dy is the number of
DAGs over N variables. Given an experiment, the uncertainty is reduced since
the experiment determines (assuming an oracle) the Markov equivalence class of
graphs for the manipulated distribution, which for most experiments, contains
a subset of the original graphs. The information gain due to the experiment &
is defined as
IG(G|&) = H(G) — H(G|E)

167



where the conditional entropy H(G|E) = >, p(€ = MME;)H(G|E = MME;)
and M M F; is a particular manipulated Markov equivalence class. So the infor-
mation gain of one experiment is to be understood as the reduction in entropy
from the initial set of possible graphs to the average entropy in each Markov
equivalence class of the manipulated distribution generated by the experiment.
This notion can be extended easily to sequences of experiments. A sequence
of experiments uniquely discovers a graph when the information gain of the
sequence of experiments is equal to the initial entropy, i.e. all uncertainty is
resolved. A sequence of experiments that has an information gain equal to the
initial entropy need not be made up of experiments that maximize information
gain at each step in the sequence. This is another way of saying that a search
using sequences of experiments need not be greedy.

For example, there are 25 DAGs over three variables, so the initial entropy
is Hy = log,(25) = 4.644. The following table shows the number of equivalence
classes created by an experiment involving either a passive observation, an inter-
vention on a single variable, an intervention on two variables or an intervention
on three variables simultaneously, and its corresponding information gain. All

interventions are assumed to be structural.

Experiment # of Markov Equiv. Classes | Information Gain
Passive Observation 11 3.70
Single Intervention 10 3.64
Double Intervention 4 2.19
Triple Intervention 1 0

The passive observation has the highest information gain, but we know from
earlier results that any combination of two different single intervention experi-
ments is sufficient to recover the true causal graph over 3 variables, so a passive
observation (with its maximum information gain) is unnecessary for best worst
case discovery.

Computing the information gain of a sequence of experiments amounts to
determining the Markov equivalence classes of causal graphs that for each ex-
periment in the sequence imply the same conditional independence relations. In
contrast to common Bayesian uses of information gain in graph search, which
generally apply information gain to the probability distribution over graphs,
the proposed use of information gain here is based on the qualitative features

relevant to constraint based search. The computations involved to determine
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the equivalence classes of graphs are non-trivial and so we are not sure how
fruitful this approach may be, but it seemed worth making the connection and

adaptation to this area of learning theory.

In 1971 Vapnik and Chervonenkis defined the VC-dimension [45] as a measure
of the capacity of a classification algorithm. The VC-dimension is defined as the
cardinality of the largest set of points the classification algorithm can shatter, i.e.
classify correctly, no matter how the points are arranged in space or how they
are assigned to classes. For example, a classifier that amounts to a straight line
in two dimensional space has a VC-dimension of three, since it can shatter three
points that are not colinear, but cannot shatter all (non-colinear) arrangements
of four points.

It seems intuitive that a similar measure of capacity should apply to search
strategies using sequences of experiments. Essentially, the sequences of exper-
iments shatter the space of graphs over N variables. No matter which graph
is the true graph, the search strategy must be able to separate it out from the
others. The classification problem is slightly different than the original case the
VC-dimension was designed for, since in our case there is only one point, the true
graph, that must be separated from the others, as opposed to separating two
sets of points. Nevertheless, it seems that one could adapt the VC-dimension

accordingly.

8.1.3 Cost of Discovery

Within this thesis the cost of discovery was only considered in terms of the
number of experiments. We only briefly indicated that other measures of cost
are not minimized by the sequences of experiments proposed here. In particular,
we mentioned that if we aim to minimize the total number of different variables
subject to an intervention over the sequence of experiments, then the distinction
between the multiple simultaneous and single intervention strategies disappears.
And if the aim is to minimize the number of variables subject to interventions
over the sequence of experiments, then the single intervention strategies are
superior to those with multiple simultaneous interventions. But of course, cost
of discovery can take many more forms. Not every variable is equally easy to
subject to an intervention. In some cases it might be impossible or unethical to
perform a randomized trial on a certain variable. Cost can also be a function

of sample size.
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The game theoretic interpretation that we gave of the discovery problem
lends itself quite naturally to a more detailed and differentiated consideration
of the cost of discovery. While such an effort was originally going to form part
of this thesis, too many other issues arose for the simple case of cost in terms
of number of experiments already, so that a more detailed analysis of costs of
experiments has been relegated to future research. We can here only give a brief

introduction and indicate some of the difficulties.

Meganck et al. [26] assume that we are given a Markov Equivalence class of
graphs and that the aim is to determine the next best intervention (on a sin-
gle variable X;) given some utility function. This follows closely the set-up by
Tong and Koller [44] and Murphy [29], only that Meganck et al. consider the ap-
proach in a constraint based framework. They present various utility functions
that essentially determine the best next intervention by how many edges the
experiment resolves (at best, at least or expected). Consequently, their problem
has the following form: Find the variable Y such that

Y = arg)r(ng;\(/U(Xi €s)

where X; is some variable and U(X; € S) is the utility of intervening on X; in

the next experiment. The utility is given as

gain(X; € S)
cost(X; € S) 4 cost(M(Ne(X;)))

U(X1€S):

where the gain() is a function specifying the best/worst/expected number of
edges (depending on the function) inferred by intervening on X;, cost(X € S)
is the cost of performing the intervention and cost(M (Ne(X))) is the cost of
measuring the neighbors of X;.

Meganck et al. only consider a single structural intervention per experiment,
but their utility functions could easily be extended to include multiple struc-
tural interventions per experiment. More importantly, however, their optimiza-
tion only considers the next experiment. It is a greedy approach to discovery
and it is not clear why a repeated optimization of utility for the next experi-
ment would be optimal for the overall sequence of experiments — in particular
if the framework were extended to multiple simultaneous experiments. But in
any case, it presents the basic framework to address questions of utility in the

search procedure.
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The advantage of placing the issue of a more general cost structure in a game-
theoretic framework, as we have suggested here, is that it straightfowardly en-
ables the representation of different distributions over possible graphs and that
many computational techniques for solving the optimization are already avail-
able. We think this is going to be one of the most interesting further extensions

of the work presented in this thesis.
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Appendix A

Proofs

The proofs are sorted according to the order they appear in the chapters of the
main text. The theorems are repeated here with the original reference number.
In many cases the proofs of theorems are preceded by some lemmas that are

needed in the proof of the theorem.

A.1 Fixed Strategies

A.1.1 Structural Interventions

Lemma A.1.1:

If G is a causal graph over a set of variables V, and G’ the manipulated graph
resulting from a structural intervention on a set of variables S C V| then for all
pairs of variables X, Y ¢ S, X and Y are d-separated by some set C C V\{X, Y}
in G if and only if X and Y are d-separated by some C' C V\ {X,Y} in G’.

Proof. G’ is identical to G except that all edges into variables in S in G do not
occur in G'.

LTR: First assume X and Y are d-separated by some C C V\ {X,Y} in G.
Then no undirected path between X and Y in G d-connects those variables
relative to C. Suppose for reductio that X and Y are not d-separated by C
in G’. Then some path between X and Y in G’ must be active, i.e., there is a
d-connection. The paths between X and Y in G’ are a subset of those in G.
Thus some path between X and Y that was inactive in G must now be active in
G'. Thus all nodes on such a path that were inactive in G must now be active

in G’. But a node that is inactive on a path relative to C in G cannot become
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active on the same path relative to C in G’ when G’ has fewer edges than G.
Any inactive node must remain inactive and consequently no d-connection can
arise. Consequently, X and Y are d-separated by C’' = C in G".

RTL: Assume that X and Y are not d-separated by any C C V \ {X,Y} in
@G, that is, they are d-connected by every C in G. Then X and Y are adjacent
in G, and an intervention on the variables in S does not remove this adjacency
(since it does not contain X or Y'), thus they are still adjacent in G’ and thus

d-connected by every C in G’. O

Lemma A.1.2:

If G is a causal graph over a set of variables V, and G’ the manipulated graph
resulting from a structural intervention on a set of variables S C V, then for
all pairs of variables X, Y with X € Sand Y ¢ S, X and Y are d-separated
by some set C C V\ {X,Y} in G’ if and only if X and Y are non-adjacent or
Y - X in G.

Proof. LTR: Suppose that X — Y in G, then X and Y remain adjacent in G’
and consequently d-connected for all C C V\ {X,Y}.

RTL: If Y — X in G then there cannot be any directed path from X to Y
(acyclicity) and all incoming arrows on X, including this direct one are removed
by the structural intervention on X, so there is no causal connection, so X and Y
are d-separated for the empty set in G'. If X and Y are non-adjacent in G, then
any d-connection in G’ must be due to indirect paths. It can be proved that
any set of indirect paths between two non-adjacent variables can be blocked
with some conditioning set C C V \ {X,Y} to d-separate the variables (see
foundation for PC-algorithm in [43]). O

Definition A.1.3: Structural Tests

We say an experiment on a set of causally sufficient set of variables is a structural
X -orientation test for variables X, Y, if X but not Y is subject to a structural
intervention. It is a structural adjacency test for X, Y if neither is subject to
an intervention. The experiment is a structural zero information test for X, Y
if both are subject to a structural intervention simultaneously. Two structural
orientation tests for X, Y, are opposing if one is an X-orientation test and the

other is a Y-orientation test.

Lemma A.1.4:
For discovery of the causal structure among any pair of variables X and Y

either (i) a structural orientation test and a structural adjacency test or (ii)
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two opposing structural orientation tests are sufficient and in the worst case

necessary.

Proof. Sufficient (i): If a structural adjacency test determines X and Y to be d-
separated for some conditioning set, then by Lemma A.1.1 they are determined
to be non-adjacent, and we are done. If the adjacency test determines X and Y
are d-connected for all conditioning sets, then they are, by Lemma A.1.1, adja-
cent and we require further test. If the structural X -orientation test determines
X and Y are d-separated for some conditioning set, then by Lemma A.1.2, X
and Y are either non-adjacent or X < Y. Combined with the information from
the adjacency test, this implies that X « Y. If a structural X-orientation test
determines X and Y are d-connected for all conditioning sets, then by Lemma
A.1.2, X — Y. This covers the three possible structures over two variables.
Similarly for an orientation test with an intervention on Y.

Sufficient (ii): If a structural X-orientation test determines X and Y are d-
connected for all conditioning sets, then X — Y and we are done, as in the
previous case. Similarly for an intervention on Y. If a structural X-orientation
test determines d-separation for some conditioning set then X and Y are non-
adjacent or Y — X, and a further test is needed. If a structural Y-orientation
test also determines d-separation, then it implies the analogous disjunction with
X and Y switched, and the combination of the results implies that X and Y
are non-adjacent.

Necessary (i): Suppose the true graph is X — Y, then an adjacency test alone
is insufficient to determine the causal structure.

Necessary (ii): Suppose X and Y are non-adjacent in the true graph, then
either structural orientation test is insufficient to determine the causal structure

alone. 0

Lemma A.1.5:
Let G = (V;E) be a graph on N vertices and let € be an experiment on G
consisting of a simultaneous intervention on K < N variables. Let S C V

be the set of variables subject to a structural intervention, i.e. |S| = K, and
U=V\S. Then

1. &€ is a orientation test for K(N — K) pairs of variables, namely all pairs
X,Y where X e Sand Y € U.

2. & is an adjacency test for (N ;K ) pairs of variables, namely all pairs X,Y €
U
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3. € is a zero-information test for (12() pairs of variables, namely all pairs
X, YeS.

Note that the number of pairs for which € is an orientation test is maximized
at K = %

Theorem: (fixed strategy) Single Structural Interventions, Causally
Sufficient (3.3.1)

N —1 experiments are sufficient and in the worst case necessary to determine the
causal graph among N > 2 variables’ when only a single structural intervention

is allowed in each experiment.

Proof. Sufficient: Consider N — 1 experiments, each intervening structurally on
a different variable. In each experiment &; where X, is subject to a structural
intervention all N —1 pairs of variables (X;,Y) for some Y € V\{X;} are subject
to a structural orientation test. By the end of the sequence of experiments every
pair of variables has been subject to a structural intervention test. Except for all
N —1 pairs of variables (Y, X ), where X is the variable that is never subject to
an intervention in the sequence and Y € V\{Xxy}, all other pairs have also been
subject to an opposing orientation tests. However, each of the (Y, Xx) pairs
was subject to an adjacency test by the time the second experiment completed
(as were all other pairs). Hence, by Lemma A.1.4 the causal structure among
each pair of variables can be uniquely determined, and hence the whole graph
is discovered.

Necessary: Suppose only N — 2 experiments were performed, one each on
X7 to Xny—2. Suppose that in the true underlying causal graph Xy_; and
Xn happen to both be (direct) causes of each X;, where 1 < i < N — 2
and that Xy_1 and Xy are adjacent. Without loss of generality, assume that
Xn — Xn_1. In this case all of the interventions on X1, ..., Xy_o will indicate
that there is an edge between Xy and Xxy_1, but none are able to supply

orientation information. Hence, an (N — 1)th experiment is required. O

Theorem: (fixed strategy) Single Structural Intervention, Causally
Insufficient (3.3.3)

Given a causally insufficient set of variables, no sequence of experiments is
sufficient to determine the worst case causal graph among N variables when

only a single structural intervention is permitted in each experiment.

IFor N = 2, two experiments are sufficient and in the worst case necessary.
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Proof. There is a very simple counter-example. Consider the following two

graphs over three variables with two latent variables L and Ls:

|

If X is subject to a structural intervention, the manipulated distribution over

X—— X——Y

Ll L2 Ll A L2

the observed variables contains no independence constraints in either graph. For
a structural intervention on Y only XY but again for both graphs. Similarly
for a structural intervention on Z, we only find that ZIL{X,Y}, but again for
both graphs. No independence constraints obtain in the passive observational
distribution. Consequently, the two graphs cannot be distinguished. The graphs
can be embedded as subgraphs in cases where there N > 3 As long as X,Y, Z
are either all common causes or all common effects of all other variables in the

larger graph, the problem still occurs. O

Lemma A.1.6:
[logy(N)] experiments are sufficient to subject all pairs of variables in a causal

graph among N variables to a structural orientation test.

Proof. For N = 2 and for N = 3, one and two experiments, respectively, are
sufficient to subject all pairs of variables to a structural orientation test, satis-
fying the Lemma. In each case the experiment consists of an intervention on a
single variable. Now suppose that the theorem holds for all N < r. Then for
N =7+ 1 let the first experiment €; consist of an intervention on K = % |
variables. It follows from Lemma A.1.5, that &; is a structural orientation test
for the L%J * [%] pairs of variables with one variable in S and the other in
U. Now, [S| = |¥] and |U| = [4]. Since the structural orientation tests for
pairs of variables within S and U are independent of each other, we can perform
them simultaneously. Hence, we need only worry about how many experiments
it requires to resolve the larger one, U. By the induction hypothesis we know
that for N = [Z7, [log,(N’)] experiments are sufficient to subject all pairs in
a causal graph among N’ variables to a structural orientation test. Then adding

the one experiment we started off with, we have
, N N
[logy (N')] +1 = [logy ([ 1)1 +1 = [log,(2[ - 1)] = [logy(NV)]
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and so all pairs of variables in G are subject to a structural orientation test. [

Lemma A.1.7:
|logo(N)| + 1 experiments are sufficient to determine the causal graph among

N variables.

Proof. Construct the sequence of experiments as follows:

# of variables | # of experiments || variable | €&, &3 &3 &4 &
1 1 X1 0 0 0 0 0
2 2 X5 1 0 0 0 0
3 2 X3 0 1 0 0 0
4 3 Xy 1 1 0 0 0
5 3 X5 0 0 1 0 0
6 3 X6 1 0 1 0 0
7 3 X7 0 1 1 0 0
8 4 Xy 1 1 1 0 0
9 4 X9 0 0 0 1 0
10 4 X10 1 0 0 1 0
11 4 X1 0 1 0 1 0
12 4 X12 1 1 0 1 0
13 4 X13 0 0 1 1 0
14 4 X4 1 0 1 1 0
15 4 X5 0 1 1 1 0
16 5 Xi6 1 1 1 1 0
17 5

The first column specifies the number of variables N, the second column speci-
fies how many experiments are appropriate for that number of variables and the
third column lists the names of the IV variables. The fourth column alternates
1s and Os, and for each subsequent column, 1s and Os alternate with half the
frequency of the previous column. The table can then be read as follows: For
any N and corresponding number of experiments k, columns €1 to £, read from
to row 1 to N specify the intervention sets of the k experiments. A 1 means
that the variable is included in the intervention set, a 0 means that is is not.
For example, for N = 7, three experiments are necessary. So the entries up

to row 7 and column &3 of the table are relevant. The three columns specify
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the three intervention sets: S; = {Xs, X4, Xs}, So = {X3, X4, X7} and S3 =
{ X5, X6, X7}

From Lemma A.1.4 we know that two opposing structural orientation tests
or one orientation and one adjacency test are sufficient to determine the causal
structure between two variables. Consequently, to prove that the sequence of
experiments constructed as above is sufficient to discover the causal graph we
show that for each pair of variables Lemma A.1.4 is satisfied. That is, for any
number of variables IV consider a pair of variables X;, X; with 4,7 < N. Each
variable is associated with a sequence of 1s and 0Os of length & (correponding to
the appropriate number of experiments) given in the row of the variable in the
table. Lemma A.1.4 can be satisfied if in these two sequences of length k there
is one index such that both sequences are 0 at that index and one index where
one is zero and the other 1 (i.e. an adjacency test and an orientation test) or
there is one index where one sequence is 0 and the other 1, and another index
where the first is 1 and the other 0 (i.e. two opposing orientation tests).

If N is a power of 2, this is trivially satisfied, since the kth column is always
filled with Os (hence an adjacency test), and for any two variables X, X; with
1,7 < N the sequences of length k always must differ for at least one index,
since the rows are binary expansions of different integers by construction (hence
an orientation test) .

When N is not a power of 2, suppose Lemma A.1.4 were not satisfied for
all pairs of variables, i.e. it is not the case that for all pairs of variables, their
two sequences (a) have an index where they are both 0 and (b) another index
where one is 1 and the other 0; or (c) they have an index where one is 1 and the
other 0, and another index where the former is 0 and the latter is 1. Passing
the negation through, this implies that there is a pair of variables such that not
(a) and not (c), or not (b) and not (c), which simplifies to (i) not (a) and not
(c), or (ii) not (b), i.e. (i) there is no index for which both sequences are 0 and
there are no two indices in which the two sequences differ in opposite ways, or
(ii) there is no index for which the two sequences differ.

Note that (ii) leads to a contradiction because sequences from two different
variables necessarily differ by construction (as in the case when N is a power of
2).

Consider (i) and suppose without loss of generality that the sequence for X;
is of the form 11001001 . ... If there are no indices in which both sequences are
0, then the sequence for X; must have 1s in all the places that the sequence of

X; has Os, i.e. zzllxllx..., where x just means that the value is undetermined.
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Now, since the sequences can also not have two indices in which they differ in
opposite ways, none of the x’s can be 0’s. Hence they must all be 1’s. But in
that case the sequence of X; consists entirely of 1s, in which case j = N and NV
is a power of 2, which is a contradiction. Hence (ii) is impossible. It follows that
all pairs of variables are subject to a pair of tests that satisfy Lemma A.1.4, and
therefore the causal graph can be discovered.

O

Note, that the construction of the intervention sets given in the table is not
unique, and that, depending on the value of N, even different sizes of interven-
tion sets are possible without increasing the number of experiments, but this
is not true in general. In the case of N = 7 we indicated for Strategy 3.3.5
that the bound of three experiments cannot be achieved when we intervene on 4
variables in one experiment. Whether or not it is necessary to intervene on the
floor depends on how far N is from the closest power of 2. See the discussion

of flexibility in the main text following Strategy 3.3.5.

Lemma A.1.8:
[logy(N)] experiments are in the worst case necessary to subject all pairs in a

causal graph among N variables to a structural orientation test.

Proof. Tt can easily be shown that for NV = 2,3,4 the numbers of experiments
necessary to subject all pairs to a structural orientation test are 1, 2 and 2
respectively, satisfying the above bound.

Suppose the theorem holds for all N < r. Then let N = r + 1. Consider
all possibilities for the first experiment £;. It can consist of an intervention
on K variables, where 0 < K < N = r + 1. This implies that £; subjects
K (N — K) pairs of variables to a orientation test. If the underlying true graph
is complete and the choice of intervention set the least fortunate, €; results
in a complete undirected graph among the (N — K) variables that were not
subject to an intervention and constitutes a zero information test for all (I;)
pairs of variables in the intervened set S. Note that [S| = K < N =r+1
and |[U = N — K < N =r+ 1. Hence, we know by the inductive hypothesis
that [logy(max(K, N — K))] experiments are necessary to test the remaining
subgraphs among variables in U and among variables in S . Counting &;, it
follows that the total number of experiments necessary to subject all pairs in a

causal graph among N variables to an orientation test is given by:
Ttotal = 1+ [logy(max(K,N — K))]
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14 [logy(N/2)]
1+ [logy(N)] -1
= [logy(N)]

since max(K, N — K) is minimized at K = N/2. If N is odd, we intervene
on K = %, since this maximizes the number of orientation tests and also
subjects ((N;K)) pairs to adjacency tests, but the above result still holds, since
if N is odd, [log,(N)] = [logy(N + 1)]. O

Lemma A.1.9:
|logy(N)| + 1 experiments are in the worst case necessary to determine the

causal graph among N variables.

Proof. If N is not a power of two, then |log,(N)]| +1 = [log,(N)] and we know
from Lemma A.1.8 that [logy(IN)] experiments are necessary to subject each
pair of variables to an orientation test, which is in the worst case necessary to
discover the causal graph (see proof of Theorem 3.3.1). When N is a power of 2,
consider the rows of 1s and Os in the construction of the intervention sets in the
table of Lemma A.1.8 . Since each pair of variables must have a sequence such
that they differ for at least one index (one orientation test), the sequence must
be at least of length log,(N). But if the sequence for each variable is only of
length log, (), then there one variable, say W, that is subject to an intervention
in every experiment. Unless one further experiment is performed, any pair of
variables W)Y for some Y € V \ {W} is only subject to a W-orientation test.

A further experiment is necessary to determine the causal graph. O

Theorem: (fixed strategy) Multiple Structural Interventions, Causally
Sufficient (3.3.4)

|logy (V)] + 1 experiments are sufficient and in the worst case necessary to de-
termine the causal graph among N variables when multiple simultaneous and

independent structural interventions are allowed in each experiment.
Proof. By combining Lemma A.1.7 and A.1.9. O

Lemma A.1.10:
Two variables X and Y in a possibly causally insufficient set of variables V are
unconditionally dependent in a structural X-orientation test in an experiment

€ if and only if all paths connecting the variables are directed from X to Y.
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(Note that this implies that the d-connecting paths therefore do not involve

latent variables, nor other variables in S.)

Proof. If X and Y are connected by a path directed from X to Y in the manip-
ulated distribution of experiment &, then by the faithfulness condition, they will
be dependent. If X and Y are unconditionally dependent in the manipulated
distribution, then they are d-connected (by the Markov assumption), but the d-
connection cannot be due to a path from Y to X, nor due to a (latent) common
cause of Y and X, since all incoming arrows on X are broken by the structural
intervention. Consequently, the d-connection must be due to paths (among the
observed variables, excluding other variables in S, since their incoming arrows
would also be broken) from X to Y. O

Theorem: (fixed strategy) Multiple Structural Interventions, Causally
Insufficient (3.3.6)

Given a causally insufficient set of variables, N experiments are sufficient and
in the worst case necessary to discover the causal structure among the N ob-
served variables if multiple variables can be subject to a structural intervention

simultaneously and independently in each experiment.

Proof. In N experiments where each experiment consists of an intervention on
all but one variable, while a different one is left out each time, unconditional
independence tests imply that each pair of variables is subject to two opposing
orientation tests. Since all other variables are subject to intervention, uncondi-
tional dependence implies by Lemma A.1.10 a direct edge. All ordered pairs of
variables are tested. O

A.1.2 Parametric Interventions

Theorem: (fixed strategy) Single Parametric Intervention, Causally
Sufficient (3.3.8)

N — 1 experiments are sufficient and in the worst case necessary to determine
the causal graph among N variables when only a single parametric intervention

is allowed in each experiment.

Proof. Any experiment involving only parametric interventions is sufficient to
establish adjacency information. Let each of the N — 1 experiments &;, with
0 < ¢ < N consist of a parametric intervention on X;. We need to show how

these experiments are sufficient to determine all orientation information. In
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each case, the intervention variable I; forms an unshielded collider with any
cause of X;. Hence, for any variable Y, where Y and I; are unconditionally
independent, but dependent conditional on C U {Y} for all conditioning sets
C, we know that Y is a cause of X;. Further, in each experiment we check
whether X; and Xy (which is not subject to an intervention) are dependent
for all conditioning sets. If so, and if I;, X; and Xy do not form an unshielded
collider, then X; is a cause of Xy. Since we perform a parametric intervention
on N — 1 variables, all causes of these N — 1 variables can be discovered, and
since we check for each variable whether it is a cause of Xy, all of Xn’s causes
are determined as well. Hence, N — 1 experiments are sufficient to discover
the causal structure. N — 1 experiments are in the worst case necessary, since
N — 2 parametric interventions would imply that two variables, say X; and X5
are not subject to an intervention. If all other variables are common causes of
X7 and X5 and X; and X, are adjacent then it is impossible to determine the

orientation of the edge between them. O

This proof depends on a faithful distribution over the variables V and the
intervention variables. But this can be weakened (see [31]). If only a conditional
distribution over the observed variables given the intervention variables is avail-
able then one can check for each triple Ix, X,Y, where X and Y are known to
be adjacent, whether Ix and Y covary for all conditioning sets C\ {X}. If they
do, orient the edge X — Y, otherwise orient X « Y. This latter strategy does
not depend on distributions over the intervention variables since in principle
these correlation checks can be based on changes in the conditional probability
P(Y|Ix,C).

Theorem: (fixed strategy) Multiple Parametric Interventions, Causally
Sufficient (3.3.9)

One experiment is necessary and sufficient to determine the causal graph among
N variables when multiple simultaneous parametric interventions are allowed in

each experiment.

Proof. Since the parametric interventions described in the proof of the previous
theorem do not interfere with each other, they can be performed all at the same
time. That is, in a single experiment N — 1 variables are subject to a parametric
intervention and the causal structure is discovered all in one go. One experiment
is obviously necessary and a passive observation is insufficient under the given

assumptions. N — 1 simultaneous parametric interventions are necessary. O
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The theorem also follows directly from a theorem on rigid indistinguishability
([43], Theorem 4.6, Chapter 4). The same considerations as in the previous
proof with regard to faithfulness and distributions over the intervention variables
apply. Furthermore, it should be noted that — as the name suggests — parametric
interventions interfere with the parameterization. The proofs here apply only

to discovery of the causal structure, not to discovery of the parameterization.

Theorem: (fixed strategy) Parametric Interventions, Causally Insuf-
ficient (3.3.11)

No sequence of experiments is sufficient to determine the worst case causal graph
among N causally insufficient variables if only parametric interventions (single

or multiple) are allowed in the experiments.

Proof. A counter-example is shown in Figure 3.2. No independence constraints
among the observed and intervention variables distinguish the first two graphs
in the figure. Since the number of independence constraints is enormous, we do
not include them here. They were automatically checked by the Causality Lab

Program.? O

Theorem: Parametric Interventions and Inducing Paths (3.3.13)

Let G be a graph over a set of variables V and let O be a subset of V containing
the observed variables. Let G4, be the graph G where each variable X € O is
extended with an intervention variable Ix — X. The subgraph Go of G over
the observed variables can be uniquely determined by parametric interventions
on each variable in O if and only if for each pair of variables X, Y € O that are
non-adjacent in G, there is no inducing path between Ix and Y and no inducing
path between Iy and X relative to VU {Ix|X € O} in Gyan-

Proof. LTR: If there is some pair of variables X, Y € O that are non-adjacent
in G, there is an inducing path between Iy and Y and there is an inducing path
between Iy and X relative to VU{Ix|X € O} in G4y then by Theorem 6.1 in
[43] Ix and Y are not d-separated by any subset of (VU{Iw |W € O})\{Ix,Y}.
Similarly, for Iy and X. If neither Iy and X nor I'x and Y can be d-separated,
then the existence of an edge between X and Y cannot be determined from
independence constraints, since they are the same, if the edge exists or not. So
the subgraph Go over the observed variables cannot be determined uniquely.
RTL: Suppose the graph over the N variables cannot be uniquely determined.

Then there are two graphs G1,Go that — despite any number of parametric

2http://www.phil.cmu.edu/projects/causality-lab/
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interventions — imply the same conditional independence contraints. G; and
G4 can differ in several different ways: (i) in one graph two nodes are adjacent,
which are non-adjacent in the other, or (ii) in one graph an edge between two
variables is oriented in the opposite direction of the other. Suppose that (i)
is the case, and without loss of generality, assume that variables X and Y are
adjancent with X — Y in (G; and non-adjacent in G5. If the two graphs cannot
be distinguished, then they must imply the same independence constraints, i.e.
in this case Ix and Y must be d-connected for all conditioning sets for both
graphs. By Theorem 6.1 in [43] it follows that if [x and Y cannot be d-separated
in G5, and there must be an inducing path between them. Similarly for Iy and
X. If (ii) is the case, and X — Y in G; and Y — X in Gs, then Iy and X
must be d-connected in G; and Ix and Y in Gs. Again, from Theorem 6.1 in

[43] it follows that there must be the appropriate inducing paths. O

A.1.3 Correlation Tests

Definition A.1.11: Partial Order Graph (POG)

Given a set of experiments on a set of (causally insufficient) variables V such
that for each pair of variables X;, X; in V there is an experiment &; with X; € S;
and X; € Uj and an experiment &; with X; € U; and X; € S;, let O be a
partial order over the set of variables V, such that X; > X if and only if X, )l X
in €;. A partial order graph (POG) over variables V has an edge X; — X if
and only if X; = X; and there does not exist X, € V with X; >~ X, >~ Xj.

Lemma A.1.12:
A POG is a subgraph (not necessarily strict) of the true graph over the set of

observed variables V.

Proof. If there is an edge between X; and X in the POG, then Xl X; in
&, which implies by Lemma A.1.10 that they are d-connected via the observed
variables. But there cannot be any other variable Xj; on the path between
the two in the true graph, since then we would have found that Xl X in &;
and Xl X, in &€y, which would have resulted in X; >~ X >~ X},
explicitly excluded in the construction of the POG. Hence, every edge in the

which was

POG must be an edge in the true graph. O

Lemma A.1.13:
The POG connects each variable by an oriented path (possibly indirectly) to all
and only its descendents in the true graph.
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Proof. Since the POG is a subgraph (Lemma A.1.12) of the true graph it cannot
make a variable a descendent, if it is not a descendent in the true graph. Hence
the “only” part. For the “all”’-part, suppose for contradiction that there is a
variable X, that is a descendent of X; in the true graph but is not connected
to X; in the POG. If X, is a descendent, then there is a longest directed path
X; — Xiy1 — ... — X,, with all variables on the path in V in the true graph.
By the faithfulness condition, for all 0 < p < m, X;1, L X;1pt1 in €4, where
Xitp € S and X; 1541 € U. By Lemma A.1.10 and the definition of a POG
it follows that X;1, > Xiyp41 for all 0 < p < m. Hence, in the POG, each

variable must be connected to all its descendents in the true graph. O

Definition A.1.14: Partial Order over Paths: O(P, <)

Given a set P of directed paths, define a partial order over paths in P such
that for any two paths p; = X7 — ... —» X, and po = Y7 — ... — Y;, with
p1,p2 € Pand Xq,...,X,,Y1,...Ys; € V, p; < py if and only if there exists a
path p3 € P, such that p; C p3 and p3 =Y; — ... — Y; (i.e. pp is contained in

p3 and the endpoints of p3 are the same as those of py).?

Lemma A.1.15:
For all paths in the POG, with some start vertex X; and some end vertex X
in V, any direct edge between X; and X; that exists in the true graph, and its

correlation can be determined.

Proof. Induction over the partial order over paths O(P,<): Clearly, this is
trivially true for all the paths lowest in the partial order, since those are those
variables that are connected by a directed edge. Suppose it is true for all paths
in the partial order lower than some ordering rank k. Consider a path p with
the ordering rank k + 1 from some X; to some X; in the POG. The correlation
between X; and X; in €; where X; € S and X; € U, equals by Lemma A.1.10
the sum of all the directed paths between X; and X; among observed variables in
the true graph. By construction of the ordering, all directed connections between
variables on p are considered lower ordering rank than p and by the induction
hypothesis we know that all these direct connections and their correlations are
known. Consequently, all directed paths between X; and X; except for the
direct connection are known. Suppose all these paths add up to a correlation of

Prnown between X; and X;. If there is a direct edge X; — X in the true graph,

3p1 and po are not ordered when both their endpoints coincide, i.e. X1 = Y7 and X, = Ys.
But they are ordered if p3 starts or ends with p1, i.e. when p; and ps share one endpoint and
there is a path p3 containing p; and connecting the endpoints of pa.
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then the correlation between X; and X; in &; where X; € S and X; € U does
not equal the correlation due to the known paths, i.e. pPrnown 7 Protal, SINCE
the correlation due to the direct edge has not been accounted for in prpown-
Hence the direct edge, and the correlation associated with it (the difference of
the two values), is discovered. By induction all direct edges between any two
variables X; and X; connected by a path in the POG, and their correlations are

known. ]

Theorem: (fixed strategy) Single Structural Intervention, Correla-
tion-Test, Causally Insufficient (3.3.14)

Given a set of N causally insufficient variables, N experiments are sufficient
and in the worst case necessary to determine the causal graph among the ob-
served variables when only a single structural intervention is allowed in each

experiment and the model is linear.

Proof. If each experiment &; for 1 < ¢ < N is an experiment with a single
structural intervention on X;, a POG can be constructed. Algorithm 5.3.4 can
be used to determine the causal graph.

Suppose there is an edge X; — X; in the output of Algorithm 5.3.4 that
is not in the true graph. Then either it was in the POG initially. But that
is impossible, since the POG is a subgraph of the true graph (Lemma A.1.12).
Or it was added in the phase in which correlations were computed. In this
case there must be one or more indirect paths between X; and X;. Without
loss of generality, assume the indirect path is X; — ... — X} — ... — Xj.
Then by Lemma A.1.15 all direct connections between variables on the path,
except for the endpoints are known at the time the direct connection is added.
Consequently, the correlation between X; and X; in &; due to all indirect paths
is known: pgpown. If there is no edge X; — Xj, then the prnown = Protar and
no edge is added. At no other point in the algorithm is an edge between these
two variables added. So a false positive edge is impossible.

Suppose there is no edge X; — X in the output of Algorithm 5.3.4 although
there is an edge between the variables in the true graph. If there is no indi-
rect path between X; and X, then X; — X; is added in the POG, since the
POG connects each variables to its descendents (Lemma A.1.13 and X is not
a descendent of any variable that is a descendent of X;). If there is an indirect
path, then as in the previous case, by Lemma A.1.15 all indirect connections
between X; and X, are known when the direct connection is considered. But

since pPrnown 7 Ptotal, the direct edge X; — X is discovered. At no other point
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in the algorithm is this pair of variables considered for edge-addition. So a false
negative edge is impossible.

Hence, N experiments are sufficient. IV experiments are necessary, since if
only N — 1 experiments are performed, then one variable X is not subject to a
structural intervention. If there is a latent common cause of each variable and
Xn and no variable is a cause of X, then it is impossible to determine whether

X is a cause of the other observed variables or non-adjacent. O

Theorem: Search for Latent Common Causes: Single Structural In-
terventions (3.3.15)

Given a set of N causally insufficient variables and assuming the model is linear,
N experiments, with a single structural intervention only per experiment, are
sufficient and in the worst case necessary to determine for each pair of observed

variables, whether the pair is confounded by a latent common cause.

Proof. Necessary: If one variable is not subject to intervention, then one cannot
separate active from passive correlations, which implies that the correlation due
to the latent variable could not be distinguished from the correlation due the
paths among the observable variables. Since the structure among the observ-
ables could not be fully recovered, the latent variables cannot be identified.
Sufficient: Theorem 3.3.14 guarantees that one can discover the structure
and correlations due to the paths among observed variables. We show that all
latent common causes can be discovered by induction over the tier ordering of
the observed variables in the graph. Consider all the roots of the POG. For
any pair of root variables X, Y, any passively observed correlation must be due
to a latent common cause, since neither variable is a cause of the other and no
other observed variable is a cause of the root variables of the graph. Similarly,
for any nodes disconnected in the graph among observed variables. Suppose
all the latent common causes between roots and disconnected variables have
been discovered. Consider any pair of variables R;, X where R; is a root and
X is in the second tier of the tier ordering (since the roots are in the first
tier). Any correlation between such a pair of variables is due to the direct edge
R; — X (known), any confounder of R; and another root R that is connected by
a directed edge to X (known), or a confounder of the pair itself. The latter can
now be determined from the passive observational correlation by subtracting
out the other components. Now, suppose that for any variable X in tier r < k
for some k that is connected to any root R by a path, all latent common causes

of R and X are known. Now consider a variable Z in tier k£ connected to a root
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R; by a path of length & — 1. Any correlation between R; and Z is due to (i)
directed paths from R; to Z among the observed variables (known), (ii) paths
involving a latent common cause of a pair of variables R; and Y, where there is
a directed path from Y to Z (known by induction hypothesis), and (iii) a latent
common cause of R; and Z. Since (i) and (ii) are known, (iii) can be determined
and the residual correlation can be assigned to that latent common cause. Hence
all latent common causes of the root and any variable are discovered. Once the
latent common causes of the root and any other variable are determined, the
induction is repeated now starting with tier two. Consider a pair of variables
T1,T5 in tier two. Any passive observational correlation between those variables
is due to (i) confounders of the roots that are connected to T} and T3 by directed
paths among the observables (known), (ii) confounders of T; and a root that
is connected to T by a directed path (known from the first induction), (iii)
the same as (ii) with the indices switched (known), or (iv) a confounder of the
T, and T5, which can now be determined. The induction proceeds as before,
now holding one variable fixed in tier two while the other is moved down the
tier ordering. Similarly then for all tiers until all pairs of variables have been

checked in this top down manner. O

We do not give an argument here that all pairs of variables are passively
observed in the sequence of experiments, but it should be obvious for single
intervention experiments that this condition is satisfied after the second exper-
iment. In finding the appropriate experiment to determine the passive observa-
tional correlation between a pair of variables X,Y , one must take into account
which paths are broken by any other variable that may be subject to an inter-
vention in that experiment. We do not yet have any empirical data or further
formal results on which circumstances are desirable, but presumably it often
helps to choose experiments where the variance of the estimator of the residual

correlation is small.

Theorem: (fixed strategy) Multiple Structural Interventions, Corre-
lation-Test, Causally Insufficient (3.3.17)

2[log,(N)] experiments are sufficient to determine the causal graph among N
causally insufficient variables when multiple simultaneous structural interven-

tions can be performed in each experiment and the model is linear.

Proof. By using log,(N) intervention sets of different sets of N/2 variables (us-

ing the construction of a Cantor set outlined for various IV variables in Strategy
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3.3.5 or the table in the proof of Lemma A.1.7) and log,(N) intervention sets
that are the complements of those intervention sets, the total set of experiments
satisfies the conditions for construction of a POG. The remainder of the proof

then matches the sufficiency part of the proof of Theorem 3.3.14. O

Theorem: Search for Latent Common Causes: Multiple Structural
Interventions (3.3.18)

Given a set of N causally insufficient variables and assuming the model is linear,
2[log,(N)] + 1 experiments, with multiple simltaneous interventions per exper-
iment, are sufficient to determine for each pair of observed variables, whether

the pair is confounded by a latent common cause.

Proof. The proof is exactly analogous to the proof for Theorem 3.3.15. The
extra experiment, a passive observation, is just to trivially ensure that for each
pair of variables there is an experiment in which the pair is passively observed.

O

Theorem: (fixed strategy) Single Parametric Interventions, Correla-
tion-Test, Causally Insufficient (3.3.20)

N experiments are sufficient and in the worst case necessary to determine the
causal graph among N causally insufficient variables when only a single para-

metric intervention can be performed in each experiment and the model is linear.

Proof. The proof is analogous to the proof of Theorem 3.3.14 except that con-
struction of the partial order is now given by X > Y if and only if Ix/l Y in the
experiment in which X is subject to a parametric intervention. For details of

the computation of the correlations, see the corresponding Algorithm 5.4.1. O

Theorem: (fixed strategy) Multiple Parametric Interventions, Corre-
lation-Test, Causally Insufficient (3.3.21)

One experiment is sufficient and in the worst case necessary to determine the
causal graph among N causally insufficient variables when multiple simulta-
neous parametric interventions can be performed in each experiment and the

model is linear.

Proof. Since parametric interventions do not interfere with each other, they
can be combined in one experiment. Otherwise the proof follows the previous

theorem. 0
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Theorem: Search for Latent Common Causes: Multiple Parametric
Interventions (3.3.22)

Given a set of N causally insufficient variables and assuming the model is linear,
one experiment, with multiple simultaneous interventions per experiment, is
sufficient and in the worst case necessary to determine for each pair of observed

variables, whether the pair is confounded by a latent common cause.

Proof. The proof is exactly analogous to the proof for Theorem 3.3.15. O

A.1.4 Restrictions

Theorem: Limited Structural Intervention Set, Causally Sufficient
(3.3.29)
Given N causally sufficient variables, if the number of simultaneous structural

interventions is limited by kier < % in any one experiment, then

N

kmaa:

N
—-1)+ ST logy (kmaz)

(

experiments are sufficient to discover the causal graph.

Proof. Suppose without loss of generality that k4, divides N by some integer
p where p is an even number.* Divide the N variables into p disjoint subsets of
kmaz variables. Let the first p — 1 experiments each be a k,,..-interventions on
one of the p sets of variables. These p — 1 experiments will result in structural
orientation tests for all pairs of variables that go between the p sets, and in
structural adjacency tests for all pairs of variables in the graph. So after p — 1
experiments every pair of variables has been subject to one adjacency test and
only the pairs of variables within each of the p sets have not yet been subjected
to a orientation test. From Lemma A.1.6 it follows that log,(kmas) experiments
are sufficient to subject all pairs in a causal graph among k,,.., variables to a
structural orientation test. Since the maximum size of the intervention set used
in Lemma A.1.6 is (in our case here) k"ﬁ and since we are restricted in this
case by kjae as the maximum size of the intervention set, it follows that we

can perform interventions on two of the p sets concurrently in one experiment.

N
2kmax

to subject all the pairs of variables in the p sets to an orientation test. Once all

Consequently, £ = sequences of 1og, (kmaz ) experiments each are sufficient

41If not, then we do not have integer values for the bound, however the results still hold for
the ceiling of the resulting value.
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these experiments have been performed, every pair of variables in the N-graph
has been subject to an adjacency and an orientation test, which is sufficient to

determine the causal graph. O

The bound is not necessary, since, for example, in the case of 24 variables
and kpq = 4, the following 10 (instead of (6 — 1) + 3 %2 = 11 intervention sets

are sufficient:

{X17X27X37X4}7 {X57 X67X7; X8}7 {X97X107X117X12}7
{X13, X14, X15, X16}, { X7, X18, X109, Xoo}, { X1, X5, XoX13},
{X17, Xo1, Xo X6}, { X0, X4, X138 X0}, { X3, X7, X11 X145}, { X9, Xo3}

Not only are these fewer intervention sets, but the last one does not even contain
4 variables. For larger N and other values of k the discrepancy can be made

even larger.

Theorem: Limited Parametric Intervention Set, Causally Sufficient
(3.3.30)

Given N causally sufficient variables, if the number of simultaneous parametric
interventions is limited by kpax < N — 1 in any one experiment, (%] ex-
periments are sufficient and in the worst case necessary to discover the causal

graph.

Proof. Since parametric interventions can be combined independently, one only
needs to ensure that all but one variable are subject to a parametric intervention
and then the proof for necessity and sufficiency follows the proofs of Theorems
3.3.8 and 3.3.9. O

A.2 Adaptive Strategies

Theorem: Adaptive vs. Fixed Strategies (3.4.1)
Under the same assumptions, no adaptive strategy can improve on the worst
case bounds of theorems 3.3.1, 3.3.4, 3.3.6, 3.3.8 and 3.3.9 if the true graph is a

worst case graph.

Proof. The result should be obvious given that none of the proofs of the theo-
rems relied on the search strategy being fized. But the proofs can also be given
explicitly by describing the search for causal structure as a game between ex-

perimenter and nature, and by specifying an explicit strategy for nature such
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that an adaptive strategy by the scientist is no better than a fixed strategy:
The experimenter specifies an experiment and nature returns the independence
relations true of the graph, possibly modified by the experimental intervention.
At each point in the game, however, nature may return the independence re-
lations implied by the equivalence class of graphs that make discovery most
difficult (in terms of the number of experiments) but where all graphs in the
equivalence class are consistent with the independence relations supplied to the
experimenter in the previous experiments. The claim of the theorem amounts
then to the claim that there always exists a strategy for nature that ensures
that the experimenter requires the same number of experiments as in the fixed
strategy case to reduce the equivalence class of graphs over the IV variables to
one, i.e. to identify the underlying causal structure uniquely.

Nature’s strategy is as follows: Let X1,..., Xy be the variables the exper-
imenter can intervene upon. When the experimenter intervenes on the set of
variables S in the first experiment, nature maintains the equivalence class of
graphs that satisfy the following conditions: The class contains all the graphs
that have complete subgraphs among the non-intervened variables, and for all
X ¢ S, Xj is a direct cause of every variable in S. In other words, whichever
set of variables the experimenter intervenes upon, they are the common effects
of all the variables that have not been intervened upon.

Now consider the adaptive strategy of the experimenter trying to identify the
graph. After the first experiment, she has no information about the directions of
the edges among the non-intervened variables and consequently no information
to adapt the next intervention set.

For Theorems 3.3.1 and 3.3.8 that involve single interventions only, the game
just repeats from the sink of the graph upwards. After N — 2 experiments, the
scientist has no information on the orientation of the edge between X _; and
Xn. Hence an (N — 1)th experiment is required.

For Theorem 3.3.6 the scenario is similar, if the first variable to be left out
of the intervention set is the root Xy of the graph, and the game proceeds
down the graph-hierarchy, then one outgoing edge from X would be revealed
at a time. But after N — 1 experiments, the Xy to X; connection remains
unresolved, so an Nth experiment is required.

For Theorem 3.3.9 an adaptive strategy trivially cannot do better than the
fixed strategy, since even the fixed strategy only needs one experiment.

For Theorem 3.3.4 the proof follows from Lemm A.1.9, the necessary part
of Theorem 3.3.4. Nature’s strategy is a generalization of the strategy used
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in Theorem 3.3.1: Start with an equivalence class over all graphs (a complete
no-knowledge graph). Maintain for any pair of variables in U an undirected
edge, for any pair of variables in S no-knowledge edges, and for any pair of
variables with X € S and Y € U a semi-directed edge X <— — —Y . This
use of semi-directed edges implies that the first experiment with an intervention
set of size K splits the discovery problem among the N variables into two sub-
problems of size K and N — K, respectively. No inferences can be made from
the orientations in one subproblem to the orientations in the other if all the
semi-directed edges between the two sub-problems are resolved in the same way
(all non-adjacent, or all directed). That is, there is no adaptive advantage in the
subproblems. The remainder then follows the inductive proof of Lemma A.1.8

and the necessary part of Theorem 3.3.4. O

An example with N = 7 variables will illustrate the strategy: If there are 7
variables, then the experimenter must intervene on three variables to guarantee
to stay within the bound of three experiments, say she chooses { X1, Xo, X3}.
Nature can return a complete adjacency graph over the four non-intervened
variables with semi-directed edges into the each of the intervened ones. There
is no useful information in such a return that would improve an adaptive strat-
egy. So in the second experiment, the best the scientist can do is choose two
from the non-intervened set and one from the intervened set, say {X1, X4, X5}.
Again, nature can retain the adjacency between X5 and X4 and return an adja-
cency between X5 and X3 (the other edges are not relevant). The scientist still
has three edges whose orientation need to be resolved: (X4, X5) from the first
experiment, and (Xo, X3) and (X, X7) from the second experiment. A third
experiment with an intervention set of three variables cannot be avoided. There

was no information that could be used to adapt the sequence.

A.3 Mixed Strategies

Lemma A.3.1:
For N > 4 the worst case expected number of experiments necessary and suf-
ficient to uniquely determine the causal graph is greater than 2 if only single

interventions are permitted per experiment.

Proof. Even if it is known that the true graph is a complete graph over at

least four variables then the best case sequence of interventions does not resolve
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the orientations in less than two experiments. The worst case requires three

experiments, so the average case must be greater than two. O

Lemma A.3.2:
The uniform distribution over complete graphs of N variables maximizes the
expected number of experiments necessary and sufficient to discover the true

graph uniquely when only single intervention experiments are permitted.

Proof. Suppose the uniform over complete graphs is not a worst case distribu-
tion. Then there is a distribution that is non-uniform over complete graphs or
a distribution that has support over graphs that are not complete that implies
a higher expected number of experiments. Suppose there is a such a distri-
bution that has support on graphs that are not complete. But then, since by
Lemma A.3.1 at least two experiments each intervening on a single but different
variable are going to be performed, any missing edge of an incomplete graph
will be discovered in those first two experiments. Discovery of the same graph
with edges added to make it complete would take at least the same number of
experiments, possibly more, since the additional orientations would have to be
resolved. Since the graph is complete, the additional edges cannot make dis-
covery easier, since no unshielded colliders are created. Hence, all incomplete
graphs could be completed without increasing the average number of experi-
ments. Hence, there is a worst case distribution with support over complete
graphs only. Now suppose there is a worse distribution over complete graphs
that is non-uniform. There are two types of non-uniformity: First, the distribu-
tion may assign zero probability to some complete graphs, but maintain a subset
of graphs that is symmetric in the sense that each node is still equally likely
to occur at any position in the graph (e.g. graph rotations). In this case the
uniform distribution has a greater expected number of experiments since there
are simply more graphs to distinguish. Second, if the non-uniformity arises in
a way that makes a particular variable more likely to occur in the interior of
the graph (rather than the root or sink), then one can intervene with greater
probability on that variable. Whenever the intervened variable actually is in the
interior of the graph, additional acyclicity constraints are created that imply a
reduction in the number of experiments.® Since this happens more often in the
non-uniform distribution, the expectation cannot be higher than in the uniform

distribution over all complete graphs. O

5See the example Section 4.2.2 with an intervention on the middle variable of a complete
graph over three variables: the graph is resolved in one experiment, as opposed to two.
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Theorem: (mixed strategy) Single Structural Interventions, Causally
Sufficient (3.3.4)

Given a set of N > 3 causally sufficient variables, the worst case expected num-
ber of experiments necessary and sufficient to discover the causal structure is
%N — % experiments if only one variable can be subject to a structural inter-

vention per experiment.

Proof. By Lemma A.3.2, the uniform distribution over complete graphs is a
worst case distribution. If all complete graphs over N variables are equally
likely, then there is no priviledged node. Suppose without loss of generality
that the true complete graph over the variables X7i,..., Xy is such that for all

i < j, X; = X;. Under these circumstances an intervention on X is

1. uninformative with respect to edge-orientation about all pairs of variables
X, Xy with 5,k <.

2. uninformative with respect to edge-orientation about all pairs of variables
X;, Xy, with j, k > 1.

3. informative for the remaining edges: It resolves

(a) edges between variables X, Xj with j >4 >k
(b) outgoing edges from X; and,
(c) since it is known that the graph is complete (distribution is only

over complete graphs), all semi-directed edges can be resolved into

directed edges, and so all edges incident on X; are resolved.

In other words, an intervention on X; splits the discovery problem into two
subproblems, one with N — ¢ variables and the other with ¢ — 1 variables. The
intervention on X; is uninformative with regard to these subproblems.

Given the uniform distribution over complete graphs, the problem is entirely
symmetric in the sense that each node is equally likely to be at any of the
possible positions in a complete graph. With a uniform distribution selecting
among the unintervened variables, each variable is equally likely to be subject to
an intervention in the first experiment. Consequently, we can give the expected
number of experiments for this worst case distribution in terms of the numbers

required for the subproblems the intervention creates:

N

D (B(#E(i— 1))+ B(#E(N —i)) + 1)

i=1

BHEN) = -
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where E(#E&(N)) is the expected number of experiments required to discover
the true graph if the graph is sampled from a Uniform over complete graphs of
N variables, i.e. the expected number of experiments for N variables is one plus
the average of the sum of the number of experiments that it takes to resolve the
two subproblems of size N — ¢ and ¢ — 1, respectively. This can be simplified to
9 N
E#E(N)) =1+ 5 D E#E(i 1))

i=1

with initial values that can be determined by hand:

Number of Variables | E(#¢&) for complete Graphs
0 0
1 0
2 1
3 5/3

We claim that the sum is equal to:
2 1

It is certainly true for N = 2. Suppose it is true for all integers up to some
N — 1. Then

N
BHEN) = 1423 B@#EG - 1)
i=1

N
= 1y GE D

N
2N 4 .
- gy tay 2l
2 AN(N - 1)
S T T e A
3+ 6N
1 2
- -~ 4IN
3+3
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A.4 Conflicts

Definition A.4.1: Sets of Changing Interventions

For two experiments & = {S;,Uy,Pol;} and €3 = {Ss, Uy, Poly}. The two
sets of changing interventions between the two experiments are Poly* = Pol; \
Pol; and Poly* = Pol, \ Pol;.

Pol; " contains all policy variables that occur in €1, but not in €, and those
that occur in both experiments, but are different in each case, e.g. even though
variable Z may be subject to an intervention in both experiments, the type
of intervention may be different each time, i.e. Poly(Z) # Poly(Z). Similarly
for Poly™. Poly™ and Poly™ contain all the intervention variables that change

between the two experiments €, and &,.

Theorem: Pooling under d-separation (6.2.1)

If the set of variables {X,Y} is d-separated from the set of changing interven-
tion variables Pol;* given the conditioning set C in the manipulated graph of
experiment &; and if the set of variables {X,Y} is d-separated from the set of
changing intervention variables Pol;* given the conditioning set C in the manip-
ulated graph of experiment €, then the distributions relevant for independence
test T'x y|c are invariant across experiments &; and €; and the data relevant to

the test can be pooled.

Proof. Let P;(V) be the distribution over variables V in experiment &;, similarly
for P;(V) and &;. If {X,Y} is d-separated from the changing intervention
variables Pol;* in &; given C, and if {X,Y} is d-separated from the changing
intervention variables Pol;" in &; given C, then we have (following Theorem
7.1 in [43]):

P;(X,Y|C,Pol;) = P;(X,Y|C) = P;(X,Y|C) = P;(X,Y|C, Pol;)

The joint (conditional) distribution over X, Y|C is invariant to the changing in-
terventions in €; and &;. It follows as a trivial consequence that the marginals
P(X|C) and P(Y|C) are also invariant. Consequently, the independence test
Tx y|c is invariant to the distributions of both experiments and the data rel-
evant to this test can be pooled. Note, that the invariance is based on the
distribution conditional on the policy variables, so there is no commitment to a

marginal distribution over the intervention variables. O
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