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Abstract Bayesian models of human learning are becoming increasingly popular
in cognitive science. We argue that their purported confirmation largely relies on a
methodology that depends on premises that are inconsistent with the claim that
people are Bayesian about learning and inference. Bayesian models in cognitive
science derive their appeal from their normative claim that the modeled inference is
in some sense rational. Standard accounts of the rationality of Bayesian inference
imply predictions that an agent selects the option that maximizes the posterior
expected utility. Experimental confirmation of the models, however, has been
claimed because of groups of agents that ‘‘probability match’’ the posterior. Prob-
ability matching only constitutes support for the Bayesian claim if additional
unobvious and untested (but testable) assumptions are invoked. The alternative
strategy of weakening the underlying notion of rationality no longer distinguishes
the Bayesian model uniquely. A new account of rationality—either for inference or
for decision-making—is required to successfully confirm Bayesian models in cog-
nitive science.
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Introduction

The past 15 years have witnessed a dramatic growth in Bayesian models in
cognitive science, driven both by computational and algorithmic advances, as well
as experimental findings. Bayesian models of learning and inference have been
proposed for just about every major phenomenon in cognitive science.1 Although
directed towards different problems in each case, these models share a common
structure: each assumes that every individual has an initial (‘‘prior’’) probability
distribution over the space of possibilities. This prior is updated in response to new
data by conditionalization to yield new (‘‘posterior’’) probabilities for each
possibility. The computation, also known as Bayesian updating, uses Bayes
theorem to determine the probability of each hypothesis Hi in a set of mutually
exclusive and exhaustive hypotheses H1,…,Hn given the evidence E:

P HijEð Þ ¼ P EjHið ÞP Hið Þ
P Eð Þ

:

P(E | Hi) is the likelihood of observing evidence E if Hi really is true (often given
by a so-called generative distribution that is relatively easy to specify), while P(Hi)
is the prior probability distribution over the space of hypotheses. Their product is
divided by the a priori probability of the evidence, P(E), which essentially acts as a
normalization term.2 Despite their superficial simplicity, Bayesian models can
produce quite intricate behavior, depending on the particular likelihood functions
and prior probability distribution.

Bayesian models are appealing as models of human inference because they (1)
allow for the representation of prior beliefs in the prior probability distribution; (2)
represent differences in background beliefs through different prior distributions in
different individuals; (3) model the integration of new evidence with prior beliefs
through Bayesian updating; (4) explain gradual transitions in belief between various
hypotheses by the use of probabilities to represent degrees of belief; and (5) are
supported by arguments that Bayesianism is rational, and hence any learner that acts
in a Bayesian manner is rational as well.

Unlike the majority of models in cognitive science, Bayesian models are generally
not taken to provide a mechanistic explanation of how some cognition or behavior is
performed. That is, with a few exceptions,3 Bayesian models are understood to be
wholly agnostic about the neural or cognitive bases of the observed behaviors.
Instead, they are offered as rational analyses: computational level models (in contrast
to implementational or algorithmic level models) that explain the inferences they
describe as rational behavior in the given environment (Marr 1982; Anderson 1990;
Chater and Oaksford 2000; Chater et al. 2006; Oaksford and Chater 1998).4

1 For a partial list of phenomena and references see the ‘‘Appendix’’.
2 P(E) need not be computed if we are interested only in the relative probabilities of the various
hypotheses. It is necessary to model the impact of rare (i.e., surprising) data.
3 Examples of Bayesian models with mechanistic commitments include Rao (2005), Lee and Mumford
(2003), and Doya et al. (2007).
4 Bayesian models and rational analyses are not coextensive in principle (Danks 2008); there can be non-
Bayesian rational analyses and Bayesian models that are not rational analyses. For example, standard
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Confirmation of the claim that people are Bayesian with regard to learning and
inference depends on how the Bayesian belief update is expressed in measurable
behavior. Although not always explicitly stated, this connection is generally taken to
be provided by the principles of rational choice: namely, that an agent will select the
option that maximizes the (posterior) expected utility. Since experiments designed to
test Bayesian models are almost always designed to eliminate the effect of utilities on
the participant’s belief, any choice is taken to be indicative of the participant’s
posterior degree of belief. Thus, if experimental control of prior beliefs is successful,
we should expect participants within the same experimental condition to make the
same choices. This is not the case. Instead, the distribution of the participants’ choices
is found to resemble a random sample of themodel posterior distribution. Despite this
inconsistency with the rational choice predictions, the results are still taken to confirm
the Bayesian claim. In the following sections we attempt to reconstruct how such a
conclusion could be reached, starting in ‘‘Confirmation of Bayesian Models’’ with a
concrete example where such ‘‘probability matching’’ is used as confirmation.

If, as we suggest, no resolution of this deep tension is forthcoming without much
stronger commitments concerning the account of rationality, then we will have
successfully undermined the explanation of the observed behavior the Bayesian
account was supposed to provide: ‘‘(1) Behavior B is rational or optimal and (2)
there is some process—either ontogenetic or phylogenetic—that leads the individual
to engage in rational or optimal behavior. Therefore, the individual exhibits
behavior B.’’ The first necessary premise would no longer have a foundation.

Confirmation of Bayesian Models

In a standard experimental set-up used to confirm a Bayesian model, experimental
participants are provided with a cover story about the evidence they are about to see.
This cover story indicates (either implicitly or explicitly) the possible hypotheses that
could explain the forthcoming data. Either the cover story or pre-training is used to
induce in participants a prior probability distribution over this space. Eliciting
participants’ prior probabilities over various hypotheses is notoriously difficult, and so
the use of a novel cover story or pre-training helps ensure that every participant has the
same hypothesis space and nearly the same prior distribution. In addition, cover stories
are almost always designed so that each hypothesis has equal utility for the
participants, and so the participant should care only about the correctness of her
answer. In many experiments, an initial set of questions elicits the participant’s beliefs
to check whether she has extracted the appropriate information from the cover story.
Participants are then presented with evidence relevant to the hypotheses under
consideration. Typically, in at least one condition of the experiment, the evidence is

Footnote 4 continued
reinforcement learning models are generally not Bayesian, but are rational in a wide range of environ-
ments; Bayesian models using limited hypothesis spaces are (in the absence of arguments about memory
or computational limits) not necessarily rational. In practice, though, almost all Bayesian models are
rational analyses, and the nature of the normative claim of rationality in these models will turn out to be
one of the main sticking points for their confirmation.
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intended to make a subset of the hypotheses more likely than the remaining
hypotheses. After, or sometimes even during, the presentation of the evidence,
subjects are asked to identify the most likely hypothesis in light of the new evidence.
This identification can take many forms, including binary or n-ary forced choice, free
response (e.g., for situations with infinitely many hypotheses), or the elicitation of
numerical ratings (for a close-to-continuous hypothesis space, such as causal strength,
or to assess the participant’s confidence in their judgment that a specific hypothesis is
correct). Any change over time in the responses is taken to indicate learning in light of
evidence, and those changes are exactly what the Bayesian model aims to capture.

These experiments must be carefully designed so that the experimenter controls the
prior probability distribution, the likelihood functions, and the evidence. This level of
control ensures that we can confirm the predictions of the Bayesian model by directly
comparing the participants’ belief changes (as measured by the various elicitation
methods) with the mathematically computed posterior probability distribution
predicted by the model. As is standard in experimental research, results are reported
for a participant population (split over the experimental conditions) to control for any
remaining individual variation. Since the model is supposed to provide an account of
each participant in the population individually, experimental resultsmust be compared
to the predictions of an aggregate (or ‘‘population’’) of model predictions. A
comparison at the population level inevitably complicates any inference to the
individual level. The following example will illustrate this point.

We focus throughout on (the relevant parts of) experiment 1 in Schulz et al.
(2007), but there is nothing special about this experiment. The confirmation
methodology is applied in many other papers, and we could have given a
structurally identical description for many other experiments (e.g., Kemp et al.
2007; Xu and Tenenbaum 2005, 2007). The Schulz et al. experiments examine
whether children will infer a mental cause for some physical effect given
appropriate evidence, despite their strong prior beliefs against such cross-domain
causation. Children are read two story books, each featuring 7 days of an animal’s
life, where each day constitutes a piece of evidence. In the within-domain book, a
deer develops itchy spots (E) every morning after being exposed to two potential
physical causes (A, B, C, and so on), where one of the causes (A: ‘‘running through
cattails’’) occurs every day. That is, the 7 days of evidence have the form:

Day 1 : A and B then E
Day 2 : A and C then E
Day 3 : A and D then E

. . .

In the cross-domain book, a similar story is presented with two candidate causes
each day: one is physical and varies from day-to-day; one is mental (‘‘feeling
scared’’) and occurs every day. That is, the cross-domain evidence is structurally
identical with the within-domain evidence, except that the recurring cause (A) is a
mental state.

After reading a book, children are asked (forced choice) which of the potential
causes on the last day actually caused the itchy spots. In the within-domain
condition, they are thus presented with a choice between two within-domain causes;
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in the cross-domain condition, they face a choice between one within-domain and
one cross-domain cause. In a separate baseline control group, the children are not
exposed to any evidence, but instead proceed directly to the final choice. This
baseline provides an indication of children’s prior beliefs about potential within-
and cross-domain causes of itchy spots; as expected, it revealed children’s
indifference between within-domain causes, and strong bias for within-domain
causes compared to a cross-domain cause. In contrast, children observing purely
within-domain evidence showed a strong preference for the recurring cause (A), and
children observing cross-domain evidence showed a weaker (but significant) shift to
preference for the cross-domain cause. That is, the evidence seems to have led
children to change their beliefs to favor the recurring cause, even if the recurring
cause was in a different domain than the effect.

Schulz et al. (2007) provide a Bayesian model of these belief shifts. The precise
mathematical details are not important; the model can be paraphrased as follows:
Children’s prior probabilities are highly skewed in favor of within-domain potential
causes as against cross-domain causes, but the strong evidence in favor of a cross-
domain cause (i.e., that this single factor can explain all of the observations) is
sufficient to overcome this initial bias. Within-domain causes still retain a
significant posterior probability in the cross-domain condition, but only because
of their high prior probability. Schulz et al. (2007) situate their particular model in a
more general hierarchical Bayesian model of framework theories (Tenenbaum and
Niyogi 2003; Tenenbaum et al. 2007), but their framework theory simply serves to
specify prior probabilities.

In the experiment, each individual participant is asked (using various methods) to
select the most likely hypothesis about which factor caused the outcome (here, the
itchy spots); this feature is widespread among experiments testing Bayesian models.
Consider, however, what prediction is actually made by the Bayesian model. The
model predicts simply that the participant starts with a prior probability distribution,
and updates that distribution by conditioning on the evidence. Strictly speaking, the
model is silent about how the participant makes a choice based on her posterior
probability distribution. A Bayesian model of inference must therefore be
supplemented by a suitable choice principle to make any empirical predictions.
Despite the importance of choice strategies, very few Bayesian models in cognitive
science are accompanied by explicit choice principles (though see, e.g., Körding and
Wolpert 2006; Oaksford et al. 1997).

Given a probability distribution over some hypothesis space, and given the
plausible utilities, the choice strategy that maximizes utility will select the
hypothesis with greatest probability (or if there are multiple hypotheses with
maximal probability, it chooses one of them). Consider the empirical prediction
implied by that choice strategy. In particular, suppose (1) the cover story has the
desired effect such that every participant has the same hypothesis space, same prior
probability distribution, and same utilities; and (2) the Bayesian model of learning
and inference is actually correct. In this idealized case, every participant should
have the same posterior probability distribution. Thus, if participants actually
maximize utility, then they should all choose exactly the same hypothesis. That is,
one should expect to discover little variance in individual responses, and ideally no
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variance at all. The distribution of participant responses should be a narrowly
peaked function with virtually all weight on the hypothesis with greatest probability.
More specifically, the distribution of responses should not match the predicted
individual posterior probability distribution particularly well (except for certain,
very special, posterior distributions). In this ideal case, it does not matter whether
the hypothesis space is finite (e.g., a set of possible categories) or infinite (e.g.,
possible causal strength ratings). In either case, if people are perfect Bayesian
learners and choose rationally (and the experiment is well-designed), then every
participant should respond (approximately) identically. To state the problem more
precisely:

If the individual response provides the hypothesis that maximizes the posterior
and every individual has the same posterior over the hypothesis space, then
(assuming uniform utilities) the individual posterior will be different from the
distribution of participant responses unless the individual posterior places all
probability weight on its maximum points.

This type of heavily-peaked response distribution is not, however, what is usually
found. Instead, almost all experiments find (though do not always describe it in
these terms) that the distribution of individual responses resembles the posterior that
the model predicts an individual to have. In the case of Schulz et al. (2007), this is
precisely the way the data are presented: Bayesian model predictions of an
individual’s posterior probabilities are shown to match the distribution of choices
across the participant population. That is, the model posterior probability for each
hypothesis is compared with the proportion of children that chose that hypothesis
when asked to identify the correct cause.5 More importantly, this method of
confirmation is widespread for Bayesian models (including all of the papers cited at
the beginning of this section). These analyses thus imply the puzzling conclusion
that the population as a whole acts as a rational Bayesian learner, but the individual
learners do not.6

As a concrete example of the problem, suppose we have three hypotheses and the
predicted posterior probability distribution is P(H1) = 0.3; P(H2) = 0.3; and
P(H3) = 0.4. Hypothesis H3 is slightly more likely than the other two. The rational
forced choice for this posterior probability distribution (modulo our previous
remarks about utilities) is ‘‘H3’’. Thus, if the Bayesian model is correct and

5 For our purposes here the relevant point is that the match of the response distribution with the model
prediction is considered the relevant criterion to assess fit. We do not intend to argue here about whether
or not the model actually constitutes a good fit. Visually there are some quite clear discrepancies between
model prediction and data in the cross domain condition, but the authors claim their ‘‘model accurately
predicted the responses […] with a Pearson product-moment correlation coefficient of r(9) = .85.’’
6 There are some notable exceptions that do actually try to compare each individual participant’s
responses with the predictions of a Bayesian model. For example, Körding and Wolpert (2006) directly
model each individual learner’s prior probabilities and subsequent inferences. Steyvers et al. (2003)
model learning given participant-chosen interventions on an individual basis. Tenenbaum and Griffiths
(2001) do not directly model individuals, but do obtain probability judgments that can be compared to the
predicted posterior probability distribution (assumed to be the same for all individuals). Whether these
analyses have provided more support for the Bayesian models is, we believe, open to question. The
concern about the methodology of the more typical methods discussed here remains, independently.
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participants are choosing rationally, then we should expect everyone to respond H3.
But that is not what happens in these experiments; rather the common ‘‘confirma-
tion’’ of the Bayesian model checks whether 30% of the participant population
chooses H1, 30% chooses H2, and 40% chooses H3.

The problem is that the following four propositions are jointly inconsistent:

1. People are Bayesian about learning and inference [explicit claim];
2. People choose the option that maximizes expected utility given their beliefs

[requirement of rationality];
3. Experiments successfully constrain participants’ prior beliefs and utilities

[methodological assumption]; and
4. The distribution of participant responses matches the model posterior [empirical

data].

Rationality of Bayesian Models

As we noted in the introduction, almost all Bayesian models can only contribute to
explanations of observed behavior because of their (putative) status as rational
models, and so must provide an account of the rationality of the behavior and
inference. If a Bayesian model is not rational, then it cannot provide even the first
premise in a rationality- or optimality-based explanation. The Bayesian model itself
only constrains the belief update in light of evidence, and so its empirical testability
(and overall rationality) depends on an (often implicit) account of the connection
between the updated beliefs, and the reported choice or exhibited behavior. In the
previous section, we suggested that Bayesian models fit most naturally with a choice
principle such as maximizing expected utility (proposition 2 above), but gave no
particular justification for that claim. In this section, we explore in more detail the
sense in which Bayesian models, and possible accompanying choice principles, can
be understood as ‘rational.’7

One standard defense of the rationality of Bayesian belief updating that is often
mentioned in the psychological literature is diachronic probabilistic coherence,
understood as avoidance of diachronic Dutch books. In general, a commonly
accepted constraint on rationality is that a reasoner is rational only if there is no set
of bets that she would accept for which she would be guaranteed to lose no matter
what the outcome of the propositions bet upon; i.e., there is no ‘‘Dutch Book.’’
Synchronic Dutch Book arguments show that only degrees of belief satisfying the
axioms of probability provide betting odds against which no Dutch Book can be
made at any single time (de Finetti 1937; Ramsey 1931). Diachronic Dutch Book
arguments aim to show a similar result for changes of belief over time: namely, that

7 Recall that ‘Bayesian model’ refers (in the cognitive science community) to a model of Bayesian belief
updating. Throughout this section, we share this focus, and so will ignore the many arguments for
synchronic Bayesianism: the theory that degrees of belief are (or should be) given by a coherent
subjective probability distribution. Our issue here is only with the correct way to change one’s beliefs
over time, not whether synchronic Bayesianism is the correct way to understand degrees of belief at some
moment in time.
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only Bayesian updating, or some equivalent method, guarantees that there is no
sequence of bets that guarantee a loss (Teller 1973, 1976). The Dutch book defense
of rationality connects in an obvious way the optimal belief update (Bayesian
inference) with a choice principle based in standard decision theory: choose the
action that maximizes subjective expected utility. The problem is, as we showed in
the previous section, that its predictions do not fit the empirical data from cognitive
science in any obvious way.

There are several independent reasons why one might view diachronic Dutch
book arguments with suspicion, as they seem overly restrictive (Levi 1988, 2002;
Maher 1992; van Fraassen 1984). For example, diachronic Dutch book arguments
require a reasoner to make firm and unchangeable conditional commitments (i.e.,
commitments about degrees of belief given any arbitrary evidence) at the outset of
inquiry. While various proposals have been made to adjust the diachronic arguments
in response to those concerns, it suffices for our purposes here to note that all of
these weakenings of the diachronic Dutch book argument result in the conclusion
that Bayesian belief updating is only one of many protections against irrationality.
That is, if the conditions for diachronic rationality are weakened in plausible ways
(e.g., if reasoners are permitted to ‘‘look ahead’’ before accepting or declining bets),
then Bayesian updating no longer has a privileged position as the rational method of
belief updating, since other (non-Bayesian) forms of belief update have similar
normative grounds (e.g., Douven 1999). Additional arguments would then be
required to distinguish Bayesian updating as the best rational explanation.

One could instead try to justify the rationality of Bayesian updating by appeal to
its long-run properties, though this reason is rarely cited in the cognitive science
literature as a convincing argument (see Perfors et al. (in press) for an exception). In
particular, a plausible necessary condition on any rational belief change method is
that it should converge to the truth when possible (though the method might also
value, e.g., short-run predictive accuracy). Given a resolution to some technical
issues,8 one can prove that Bayesian updating converges to the truth (when
possible)9 and is provably not dominated in speed of convergence by any other
method.10 This observation leaves unanswered the question of what choice of
hypothesis is rational in situations in which the distribution has not converged,

8 One natural assumption is that learners should only invoke computable functions, but this constraint is
sometimes incompatible with the requirement (on synchronic Dutch book grounds) that a Bayesian
reasoner know all (relevant) logical and mathematical implications of the various hypotheses that she
entertains (Gaifman and Snir 1982). Moreover, there are learning problems that can be solved in the long
run by computable falsificationist methods (e.g., Popper’s method of ‘‘assert the hypothesis until it is
refuted’’) that cannot be solved by a computable Bayesian reasoner (Juhl 1993; Kelly and Schulte 1995;
Osherson et al. 1988). In these circumstances the Bayesian reasoner only converges to the truth (whenever
the truth can be learned) if she can sometimes ‘‘compute’’ uncomputable functions.
9 If the true hypothesis H is empirically distinguishable from other hypotheses and P(H) = 0, then for all
e, P(Bayesian reasoner has degree of belief greater than 1–e in the truth) ? 1 as the number of datapoints
goes to infinity; see Savage (1972) for a canonical expression of this result.
10 More precisely, Bayesian updating (for any non-dogmatic prior probability distribution) provably
satisfies the condition that there is no method that gets to the truth faster than Bayesian updating in every
‘‘world’’ (i.e., regardless of which hypothesis is true, and the order of the randomly sampled evidence).
There may be alternative non-Bayesian methods that get to the truth faster in particular worlds, but none
outperforms Bayesian updating in every world (Schulte 1999). There are, however, methods that are
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which is presumably the case in most experimental situations.11 We still require an
additional account of how a particular choice is made in light of a non-trivial
posterior probability distribution. An obvious candidate would again be to choose
the hypothesis that maximizes the posterior probability distribution. But as we found
earlier, this combination of belief update and choice principle is inconsistent with
the empirical results.

The two standard defenses of the rationality of Bayesian updating offered in the
cognitive science literature both imply that the rational choice principle is to choose
the hypothesis with maximal expected utility. In essentially all psychological
experiments, that choice principle implies choosing the hypothesis with maximal
probability, but that implication is inconsistent with empirical data, and so the
‘‘maximize expected utility’’ choice principle is unavailable to the proponent of
Bayesian models in cognitive science.

In light of this tension, various weaker notions of rationality that explicitly deny
the existence of an overarching general formal account of rationality have been
suggested in the cognitive literature (e.g., in Oaksford and Chater 2007). These
accounts focus on rationality as successful, goal-directed action, where the
constraints used to judge this particular notion of ‘rationality’ are situation- and
behavior-specific, rather than formal: ‘‘which…rational principles should be used to
define a normative standard for particular…tasks…is constrained by the empirical
human reasoning data to be explained’’ (Oaksford and Chater 2007, p. 31). That is,
the scientist assumes that people’s behavior is largely rational, and then finds a
(small, coherent) set of formal principles that justify that behavior as normatively
correct in the given situation. Violations of a normative theory (e.g., the well-known
Allais or Ellsberg ‘‘paradoxes’’) are seen as challenges to the appropriateness of the
putative normative theory, not indicators of irrationality. Put crudely, such
approaches claim that rationality of type A with normative principles P1,…, Pk

applies in situations of type S, and rationality of type B with normative principles
Q1,…, Qn applies in situations of type S’, and rationality A and rationality B need
not have anything more in common than identifying optimal behavior relative to
their respective principles.

This response misunderstands what normative principles of rationality are
supposed to do, as they are exactly supposed to not be situation-dependent in this
way. If they are situation-dependent, then they are only restatements of the observed
behavior, and so simply instrumentalist. As Oaksford and Chater (2007) note, the
appeal to a weaker notion of ‘rationality’ only works if we avoid extreme situation-
dependence by finding normative standards that are ‘‘consistent with other

Footnote 10 continued
similarly non-dominated by Bayesian updating, so any argument along these lines does not identify
Bayesian inference as uniquely rational.
11 Virtually no experiment that uses Bayesian models has a degenerate posterior distribution. If the
Bayesian model is supposed to provide a normatively correct description of the belief update of an
individual, then it follows that the experiment is explicitly considering circumstances in which the
distribution over the hypotheses has not converged. Moreover, much of the appeal of Bayesian models (in
contrast to logic-based models) results from the ability to describe shifts in degree of belief that are not
complete, i.e. where uncertainty over the true hypothesis remains.
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knowledge, independently plausible, and so on’’ (p. 31). But in that case, we are
right back in the situation of searching for relatively abstract formal constraints that
justify some particular method as ‘rational’ (see also Evans 2009; Khalil 2009).

The dilemma we face is that none of the standard accounts of the rationality of
Bayesian belief update naturally predict empirical data in which the response
distribution matches the model posterior. We thus consider the possibility that
rationality requires something other than maximizing expected utility (i.e., rejecting
proposition 2 above), or that experimental controls are perhaps less successful than
is typically thought (i.e., amending proposition 3 above).

Alternative Responses

Many different psychological theories (both Bayesian and non-Bayesian) hold on
empirical grounds that choices are made by probability matching: participants select
hypothesis H with a probability corresponding to the (posterior) probability of
H (assuming constant utilities); in other words, the behavioral response looks like a
random sample by the individual participant from her (posterior) probability
distribution. The Luce choice axiom that characterizes a pair of constraints on
human choice implies under fairly weak assumptions that an option is selected in
proportion to its weight (Luce 1959, 1977).12 Assuming that experiments
appropriately control the utilities and other saliencies across the available
hypotheses, it then follows from the Luce choice axiom that a hypothesis is
selected according to its posterior probability, i.e. it is probability matched. The
axiom should not be mistaken for an axiom of rational behavior. It does not itself
explain why probability matching constitutes the normatively correct behavior.
Such an account would have to describe why the conditions of the Luce choice
axiom are hallmarks of rationality. In particular, its second condition concerning
‘‘choice probabilities’’ effectively begs the question of the rationality of probability
matching.

In practice, the content of the claim that hypotheses are probability matched is
typically ambiguous between two claims: (A) the distribution of responses from a
population of participants corresponds to the posterior distribution over hypotheses
determined by the model; and (B) each participant in a population chooses a
hypothesis using a method that is equivalent to taking a random sample from her
posterior distribution over hypotheses (which supposedly corresponds to the
posterior of the model). Claim (B) implies (A), but not vice versa. Moreover, (B) is
significantly harder to test: one must collect repeated choices in the ‘‘same’’

12 The Luce choice axiom states:
(1) If options a and b are in a choice set S and a is never chosen over b in the binary choice situation,

then a can be removed from S without affecting any choice probabilities; and
(2) If R is a subset of S, then the choice probabilities for the choice set R are identical to the choice

probabilities for S conditional on R having been chosen (i.e. PR(a) = PS(a | R) for all a in R).

Luce (1959) shows how the axiom implies that PS(x) = v(x)/Ry in S v(y), where v(.) is a measure of
value or weight over the options y in the choice set S.
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situation from the same participant in order to determine whether her behavior
corresponds to the appropriate posterior probability distribution.

Claim (B) says that probability matching is, for reasons of fit-to-data, the proper
choice principle to be tacked onto the Bayesian belief update. Without further
explanation, however, this response removes (almost) all of the normative
justification for the Bayesian model of inference. The claim being defended in
this response is that humans use Bayesian updating for learning and inference, and
then probability match their current posterior distribution when asked to make a
choice (given equal utilities). But without an account of the rationality of probability
matching, the proponent can no longer claim that people are approximately rational
Bayesians. If the aim is to make the right choice as often as possible, then
probability matching is provably sub-optimal and so usually thought to be
‘‘irrational’’ or a ‘‘bias’’ (e.g., Shanks et al. 2002; Vulkan 2000; West and Stanovich
2003). For example, if we have a coin that is biased with probability 0.7 towards
heads, we should always bet on heads, and not probability match (i.e., bet heads on
70% of trials). The former strategy can expect to win 70% of the time; a probability
matching strategy can only expect to win in 58% of trials.

Thus, a model with a Bayesian belief update and a probability matching choice
strategy implies that people are rational learners, but to no particular point, since
they are irrational decision makers. Thus, a host of questions arise: In what sense is
such a process rational? What efficiency or optimality could probability matching
provide for a learner?13 Why would probability matching develop in the first place,
rather than maximizing the posterior?

The ‘‘Bayesian inference ? probability matching choice procedure’’ hypothesis
might be descriptively correct, but without substantial additions to the account, there
is no justification for describing such a cognitive agent as rational, and there are
natural arguments that she actually is irrational. Moreover, there is a peculiar
internal tension in models of this type, as they claim that people (approximately)
compute the quite difficult Bayesian updates, but then fail to use a computationally
quite simple choice strategy. If people can (approximately) carry out the first
computations, it would be surprising (though not impossible) if they were unable to
use the optimal choice method.

This leaves two alternatives. Either (I) one finds circumstances in which it is
optimal or rational for an individual to take a random sample from her posterior, and
then demonstrates that these circumstances apply in the experimental conditions. This
response would amount to a rejection of proposition 2 (from our earlier list of four),
that choices are made by maximizing expected utility. Or (II) one holds that
probability matching is only descriptive of population behavior (claim A), and then
shows how this population-level probability matching can arise from rational
Bayesian learners. As we will later show, any argument endorsing option II maintains
claim 2 at the cost of a weakening of claim 3, that experiments successfully constrain
participants’ prior beliefs and utilities. We start, however, with option I.

13 This question is particularly pressing, since rational analyses must ultimately provide a developmental
story (in phylogenetic time, ontogenetic time, or both) that exploits some optimality property of the
model. Such a story seems much less plausible if people are probability matching.
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Changing the Circumstances

There are several different avenues for trying to characterize circumstances in which
probability matching is rational, but the most obvious candidates are circumstances
with competition and resource constraints (Stephens and Krebs 1986).14 For
example, suppose each individual in a population believes that some resources are
located at location X with probability .75, and at location Y with probability .25. If
there is no competition for the resources, then (assuming more is better) the optimal
behavior for an individual is to go to location X, since it is the more likely location.
If, however, resources are constrained by competitors, then there are scenarios in
which the optimal strategy is to go to location X 75% of the time, and to location Y
25% of the time. That is, one should probability match. In particular, when all
individuals have the same utilities for the resources, the resource payoffs for each
location are based on competition (i.e., more individuals at a location means fewer
resources for everyone), and no communication is possible, then probability
matching can form a Nash equilibrium: if everyone probability matches, then there
is no incentive for any individual to unilaterally change her strategy.15 Qualitatively,
the idea is simply that randomizing can decrease the likelihood that we directly
compete for a resource at a particular location (or at least, make my success not
depend on your strategy). To the extent that strategies implied by Nash equilibria
are rationally justifiable (and there is debate about this), then probability matching is
rational in these types of circumstances.

Our present focus, however, is on seemingly quite different circumstances that do
not obviously involve competition or constraints on shared resources. A claim that
such competitive considerations (conscious or not) are at work in the experimental
circumstances of inference and hypothesis learning implies that an experimenter’s
efforts to remove or control for aspects that might induce competitive behavior are
futile, and so the proposal would be a rejection of both proposition 2 and 3. Of
course, the success of experimental control will never be perfect, but in the case of
learning hypotheses, one uses counter-balancing to control for differences in the
specific utility of any hypothesis, and so the trigger of competitive behavior must
derive from the posterior probability alone. Perhaps people exhibit competitive
behavior for pure truth in real life, rather than just in psychological experiments, but
there is little evidence for this. Moreover, it is quite unclear why there would be
such competition, as true propositions are not a constrained resource: my knowledge
of a true proposition does not preclude you from knowing it. Much more
explanation is thus needed for why participants would import such competitive

14 An alternative suggestion is made in Fiorina (1971), who argues that many experiments use non-
random event probabilities that may appear non-constant to the participant. If event probabilities
fluctuate, then choosing the hypothesis with maximal posterior probability is no longer optimal. This
response is insufficient, though, since fluctuating probabilities do not automatically imply probability
matching behavior is optimal. Moreover, probability matching occurs even in experiments in which
participants appear to consider the event-probabilities stable.
15 We have omitted many technical details, including some additional necessary assumptions. Interested
readers should consult any standard book on optimal foraging theory (e.g., Stephens and Krebs 1986) or
see the appendix for a simple concrete example. We argue that this response is unsuccessful, and so these
additional constraints on its scope are irrelevant for our present purposes.
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behavior in the first place, and if they do, why a suitable competitive payoff
structure is appropriate.

A different argument (though to our knowledge not published in the cognitive
literature) for the rationality of selecting a hypothesis by probability matching is
based on an approach combining statistical learning theory with Bayesian inference
procedures: PAC-Bayesian theory (see, e.g., Seeger 2003 for a review).16 Probably
Approximately Correct (PAC-) learning theory provides bounds that, with high
probability, constrain an algorithm’s worst-case generalization error; that is, it
bounds (with high probability) the error-rate of an algorithm on a test sample given
the algorithm’s error-rate on a training sample. The appealing aspect of integrating
features of PAC-learning with Bayesian inference is that PAC-bounds are robust
even when the true hypothesis is not included in the hypothesis space. However,
known PAC-Bayesian results only imply that probability matching on the posterior
is optimal (i.e., provides the tightest PAC-Bayesian bounds) for tasks that already
contain in their description some aspect of probability matching, such as estimating
a distribution, selecting a hypothesis stochastically, or providing a weighted average
(McAllester 1999, 2003). In fact, for the task of interest to us—selecting the true
hypothesis—PAC-Bayesian considerations imply the same response as rational
choice: select the hypothesis that maximizes the posterior of the model (McAllester
1999, p. 165). We are thus in the same situation as with the arguments for
competitive behavior: we need an independent explanation why participants would
import behavior that is suboptimal for the task they are asked to solve. In addition,
PAC-Bayesian arguments further require motivation for why long-run, worst-case
considerations are relevant.

We thus fall back on option II: probability matching results from other
phenomena or inaccuracies in the individual computation (rather than actual
individual probability matching) and is therefore only descriptive of the group-level
behavior.

Explaining Group-Level Probability Matching

Since option II attributes probability matching to differences between participants,
this proposal inevitably implies either a rejection that people are Bayesian, or a
weakening of the assumption of successful control in the experiments (i.e.,
proposition 3). We assume the prior option is unavailable to the committed
Bayesian. There are both strong and weak ways of rejecting proposition 3. A strong
rejection might argue that priors and utilities differ widely across participants, and
these differences actually fall outside the bounds of the purported (or plausible)
measurement error reported in experiments.17 If there are widely varying priors or

16 Josh Tenenbaum (personal communication) has suggested that PAC-Bayesian approaches provide a
potential solution to the dilemma we point to and so we address the proposal here. A thorough description
of PAC-Bayesian learning would go far beyond the scope of this article. We only aim here to indicate the
reasons why we do not think this is a fruitful approach.
17 We note that any rejection of proposition 3 that exclusively focuses on the prior faces a significant
formal challenge. Suppose N participants have priors P1(H), …, PN(H). Assume also that all individuals
have the same likelihoods (P(D|h) for all h in H), and that they choose optimally given their beliefs. The
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utilities in the population, then the match of empirical response distribution and
Bayesian model posterior can arise simply from aggregation over the (varying)
participant population. There may well be significant variation between participants
in the prior beliefs imported into the lab, the extent to which they are imported, and
the participant’s utilities. But this strong rejection of proposition 3 calls into
question many of the standard methods of experimental design in psychology and
the procedures used to control for alternative explanations. It is a rather big pillar to
start shaking. Moreover, most experiments cited here counterbalance relevant
aspects of the cover story to control for (among other things) differing utilities, and
use a control condition in which participants are asked to report the most likely
hypothesis without seeing any evidence. Thus, any rejection of proposition 3 must
argue not just that there is variation, but that the non-degenerate response
distribution could arise from individual variation that would not be picked up in
these controls.

A weak rejection of proposition 3 would instead argue that the variation in the
population is smaller than the plausible measurement error in the controls of the
experiment, but is nonetheless sufficient to explain the empirical results. Random
utility maximization provides one such proposal. McFadden (1974) explores the
circumstances under which a group of utility maximizers will exhibit a response
distribution that looks like every individual reported a random sample from the
same function. That is, McFadden attempts to explain observed probability
matching as a result of aggregation of optimal responses from a population.
Specifically, suppose that each individual’s utility function, U(H), is given by:
U(H) = V(H) ? e(H), where H is a hypothesis in the space under consideration,
V(.) is a non-stochastic function representing a utility function shared by every
member of the population, and e(.) is stochastic, representing the individual’s
deviation from the population utility V(.). Individuals in McFadden’s model choose
the hypothesis that maximizes their own personal U(H). Under a fairly weak set of
assumptions on the distribution of individual variations,18 McFadden shows that
choice based on individual utility maximization leads to a population response
distribution with the same maxima and minima as the shared, population-level
utility function. Specifically, there are plausible conditions on e(.), and sensible

Footnote 17 continued
‘‘population prior’’ (the initial aggregate response distribution) is the distribution over H of the number of
participants for which h maximizes their prior, i.e. Ppop(h) = #N argmaxH Pi(h)/N. If all individuals use
Bayesian updating, then the ‘‘population posterior’’ (the final aggregate response distribution) is
Ppop(H|D) = #N argmaxH Pi(h|D)/N. The puzzle can be solved by appeal to variation in the participant
priors only if the population posterior is distributionally equivalent to Bayesian updating on the popu-
lation prior: Ppop(H|D) must be distributionally equivalent to P(D|H)Ppop(H)/P(D). Mathematically, this
holds when: #N argmaxH P(D|h)Pi(h) & P(D|H) #N argmaxH Pi(h). For arbitrary likelihoods, this con-
dition is not satisfied for standard prior distributions (e.g., flat or Gaussian), although it may be satisfied
for such priors given particular likelihoods P(D|H). (We know of no such analyses.) But satisfaction in
special cases would only provide further support that the appearance of probability matching is largely
accidental.
18 If e(.) is i.i.d. with a Weibull distribution for each hypothesis in the space (and each participant), then
the distribution of responses is given by expðUðHiÞÞ=

P
j expðUðHjÞÞ. The Weibull distribution is

sufficient; weaker constraints on the distribution of e(.) can be given.
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monotonic functions f(.), such that the set of responses from a population of utility
maximizers is given by: f ðUðHiÞÞ=

P
j f ðUðHjÞÞ.

The focus on utilities is irrelevant here. The basic point is: if a population of
participants share a common function (whether utility or probability) over a space of
options (including hypotheses) but have independent individual deviations (of a
certain kind) from this trend, then the population-level response distribution when
each individual selects the maximum of her individual function is a distribution that
has the same maxima and minima as the population function. Moreover, the
individual deviations can arguably be sufficiently small that they would not be
easily observed in experimental settings. One could even remain agnostic as to the
source of the individual deviations, as long as they satisfy the condition in
McFadden’s theorem (see previous footnote). In the Bayesian case, the trend-
function can be the posterior probability, or the expected posterior utility, and
individual deviations could arise in either the inference computation or the utilities.

A McFadden-style response preserves the rationality (if any) of both the update
and choice procedure, and potentially explains the appearance of probability
matching at the population level as the result of individual differences within the
population. In a McFadden-style response, the functional relation between the
response distribution and the population function (the model prediction) depends on
the precise distribution of individual discrepancies. For the specific distribution of
individual variations in McFadden (1974), the response distribution is an
exponential transformation of the population trend (in the Bayesian case, the
model posterior). The response distribution should thus share the location of
maxima and minima with the model posterior, but not be identical with it. Since
identity is the standard confirmatory test for Bayesian models (as stated or implicit
in the papers we have cited19), that individual variation distribution is not
appropriate. It is unknown whether there is a plausible distribution for individual
deviations that implies identity between the model posterior and the response
distribution. More generally, any use of a McFadden-style response depends
crucially on establishing, on independent grounds, either that the individuals in the
population exhibit the suitable variation, or that two populations exhibit specific
differences in variation. Such testing has, to our knowledge, never been done in the
psychological literature on Bayesian models. Nevertheless, this proposal is of great
interest, since the necessary sources of variation potentially exist in psychological
experiments, and the proposal lends itself to precise empirical predictions.

Solving a Different Task

An alternative response—which could also be combined with the optimal betting or
PAC-Bayesian response—argues that problem solving and learning strategies are
automated and optimized for everyday use to such an extent that the artificial

19 For example, Schulz et al. (2007), which we discussed in Section ‘‘Confirmation of Bayesian Models’’,
claim in their conclusion: ‘‘The Bayesian model presented in the Appendix [in their paper] …
show[s] that the judgments of the 4- and 5-year-olds in our experiments are close to the probabilities
entertained by an ideal Bayesian learner using a particular causal theory.’’
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settings of psychological experiments are unable to control and focus the subject on
the best strategy for the task of the experiment. Despite an experimenter’s best
efforts at developing an ecologically valid experiment, and despite debriefing
reports by participants that they understood the task and did their best, the
underlying learning and inference machine might have been solving a different
problem. If so, then the participant response is not an indication of how she solved
the task at hand, but rather an indication of which ingrained problem solving
strategy was triggered by this task. For all we know, this strategy may involve
Bayesian inference and be highly optimized for most of our everyday learning
problems, just not for the specific task of the experiment. This response is ultimately
unsatisfactory, however, as it raises more questions than it answers:

(a) What is the nature of rationality employed for the automated cognitive
processes?

(b) What is the underlying task that the behavior is rational for, and how can we
determine such a task?

(c) Why do we solve a task other than the one the experiment poses?

In particular, question (a) brings us full circle back to where we started: the
standard of rationality.

A Return to Behaviorism?

Without an account of the rationality of the observed input–output relation, the
computational level models provide a summary of the observed data, but no rational
explanation for the behavior. That is, their models begin to look very similar to
those advocated by (methodological) behaviorists: the model happens to capture
some important behavioral regularities, but implies no commitments beyond that.
Such an interpretation has been (informally) offered for Bayesian models. A ‘‘data
summary’’ Bayesian model is principally (but perhaps not solely) of interest when it
is the most compact or efficient representation of some empirical phenomena. In
many cases, however, comparable levels of empirical fit can be achieved by simpler
models with less conceptual baggage (e.g., Chater et al. 2003; Gigerenzer et al.
1999; Nelson 2009). Thus, some alternative argument must be provided for their
use.

The most plausible such justification is the widespread applicability of Bayesian
models: the existence of Bayesian models for a wide range of domains provides
some measure of unification to those disparate domains (assuming the method of
confirmation is more successful in these domains). This argument, however, only
has non-pragmatic force when the widespread applicability arises because of some
similarity in the underlying mechanisms that generate the phenomena, or the
function/role of the phenomena in a containing system. In either case, stronger
commitments than simple unification can (and should) be made. And if there is no
such shared mechanism or function/optimality, then there is no particular reason to
prefer Bayesian models as data summaries. Moreover, the idea that Bayesian
models should be only data summaries is a surprising reversal for cognitive science.
Much of the debate in the ‘‘cognitive revolution’’ was precisely about whether
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psychologists could justifiably talk about internal states. The suggested restriction
would amount to giving up on that hard-won right.

Conclusion

Our assessment of the standard confirmation methods for Bayesian models in
cognitive science has been largely negative. But we are explicitly not concluding
that Bayesian models are not testable, or that the use of Bayesian models in
cognitive science is inevitably misguided; such claims would require an exhaustive
exploration of the space of possible models, and would constitute, in light of
evidence from several other experimental techniques that appear to support parts of
the Bayesian paradigm, a surprising rejection of the whole methodology. Our
conclusion is more conservative, and largely methodological. All of the problems
we have raised can ultimately be traced back to insufficient specification of the
Bayesian models, either in the justification that they are ‘rational,’ or in the choice
mechanism that maps a posterior probability distribution to a behavior. Full
specification of the models is, in a certain sense, risky: such specified models are
more readily disconfirmed and rejected. Such specification is, however, absolutely
necessary if the models are to help us understand the nature of cognition.
Commitment to a non-trivial account of rationality with a fully specified choice
procedure would turn experiments like the one described in ‘‘Confirmation of
Bayesian Models’’ into proper tests of Bayesian models. An alternative solution,
such as random utility maximization (McFadden 1974), could provide a resolution
of our puzzle that maintains the standard view of rationality in terms of Bayesian
belief update combined with rational choice. And just as it adds plausible
commitments, it also provides further constraints for new types of tests for Bayesian
models. Alternatively, an account of rationality that is weaker than Dutch Book
rationality, but is sufficiently concrete to satisfy the explanatory demands of a
computational level model (i.e., does not imply a large number of ‘‘rational’’
inference methods), would almost certainly be of interest well beyond the
confirmation of Bayesian models. We doubt that these are the only possible
alternatives, but commitments of this type simply have not been openly suggested
and defended in the psychological literature.

One of the most important desiderata of a scientific theory—perhaps the most
important one—is explanatory power. Bayesian models are commonly presented
as computational models describing how beliefs are updated, and so are taken by
many (though certainly not all) in the community to have marginal or non-
existent implications for the algorithmic and implementation level. If a Bayesian
model describes only input–output relations, then it has no substantial
explanatory power. Thus, a Bayesian model must be rational for it to play a
role in any substantive explanation at all. As we argued in ‘‘Rationality of
Bayesian Models’’, however, the standard accounts of rationality fail to account
for the behavior in the empirical data. We thus reached our four claims that are
jointly inconsistent:
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1. People are Bayesian about learning and inference [explicit claim];
2. People choose the option that maximizes expected utility given their beliefs

[requirement of rationality];
3. Experiments successfully constrain participants’ prior beliefs and utilities

[methodological assumption]; and
4. The distribution of participant responses matches the model posterior [empirical

data].

The question that remains open is: If one is committed to claim 1, what can be
given up?
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Appendix

Recent books on Bayesian models include: Oaksford and Chater (2007) with Open
Peer Commentary (Oaksford and Chater 2009); Doya et al. (2007); and Chater and
Oaksford (2008). Bayesian models were also the focus of a 2006 special issue of
Trends in Cognitive Science (Chater et al. 2006; Courville et al. 2006; Körding and
Wolpert 2006; Steyvers et al. 2006; Tenenbaum et al. 2006; Yuille and Kersten
2006). A very incomplete sample of phenomena for which Bayesian models have
been proposed includes:

• Category learning and inference (Heit 1998; Kemp and Tenenbaum 2003; Kemp
et al. 2007; Tenenbaum and Griffiths 2001)

• Causal learning and reasoning (Bonawitz et al. 2006; Griffiths and Tenenbaum
2005; Schulz et al. 2007; Sobel and Kushnir 2006; Sobel et al. 2004; Steyvers
et al. 2003)

• Inference about conditionals (Oaksford and Chater 2007; Oaksford et al. 2000)
• Covariation assessment (McKenzie and Mikkelsen 2007)
• Imitation (Rao et al. 2004)
• Information selection (Oaksford et al. 1997)
• Framing effects (McKenzie 2004)
• Memory effects (Schooler et al. 2001; Shiffrin and Steyvers 1997; Steyvers and

Griffiths 2008)
• Object perception (Kersten and Yuille 2003; Kersten et al. 2004)
• Repetition effects and priming (Mozer et al. 2002, 2003)
• Word learning (Xu and Tenenbaum 2005, 2007)
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Example of Optimality of Probability Matching Strategy in Competitive
Circumstances

Suppose that a resource occurs with probability 0.75 at location X and with
probability 0.25 at locations Y. Further, suppose that for two competitors the pay-off
is structured such that a competitor only obtains resources if (1) resources are
present at the chosen location and (2) the other competitor did not select the same
location. The pay-off matrices for the two possible locations of resources are shown
below:

Resource is at location X (75% of
cases)

Competitor 2 selected location
X

Competitor 2 selected location
Y

Competitor 1 selected location X 0/0 1/0

Competitor 1 selected location Y 0/1 0/0

Resource is at location Y (25% of
cases)

Competitor 2 selected location
X

Competitor 2 selected location
Y

Competitor 1 selected location X 0/0 0/1

Competitor 1 selected location Y 1/0 0/0

In foraging theory the optimal strategy is generally taken to be the one that
maximizes the average pay-off over several foraging trials (Stephens and Krebs
1986). We can thus combine the two possible payoff structures by weighting them
according to the rate of occurrence of the resource at each location:

Combined pay-off structure Competitor 2 selected location X Competitor 2 selected location Y

Competitor 1 selected location X 0/0 0.75/0.25

Competitor 1 selected location Y 0.25/0.75 0/0

If both competitors select location X with probability 0.75 and location Y with
probability 0.25 then no unilateral change of strategy by a competitor would
improve that competitor’s payoff, that is, these two strategies that ‘‘match the
probabilities’’ of the occurrence of the resource at the two locations specify a Nash
equilibrium.20 Note, however, that the optimality of the probability matching
strategy crucially depends on the combination of the resource distribution and the
specific resource payoff structure. In particular, if competitors can split resources

20 If competitor C1 selects location X with probability p and competitor C2 selects location Y with
probability q, then C1 receives 0.75*(1 - q) for location X and 0.25 q for location Y. At equilibrium
these have to be equal, hence q = 0.75. The argument is the same for p since the payoff structure is
symmetric.
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when they both select the same location, then probability matching no longer
constitutes a Nash equilibrium.
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