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Abstract 
The literature on causal discovery has focused on interventions that involve randomly 
assigning values to a single variable. But such a randomized intervention is not the only 
possibility, nor is it always optimal. In some cases it is impossible or it would be 
unethical to perform such an intervention. We provide an account of “hard” and “soft” 
interventions, and discuss what they can contribute to causal discovery.  We also describe 
how the choice of the optimal intervention(s) depends heavily on the particular 
experimental set-up and the assumptions that can be made.  
 
 
Introduction 
Interventions have taken a prominent role in recent philosophical literature on causation, 
in particular in work by James Woodward (2003), Christopher Hitchcock (2005), Nancy 
Cartwright (2006, 2002) and Dan Hausman and James Woodward (1999, 2004). Their 
work builds on a graphical representation of causal systems developed by computer 
scientists, philosophers and statisticians called “Causal Bayes Nets” (Pearl, 2000; Spirtes, 
Glymour, Scheines (hereafter SGS), 2000).  The framework makes interventions explicit, 
and introduces two assumptions to connect qualitative causal structure to sets of 
probability distributions: the Causal Markov and Faithfulness assumptions. In his recent 
book, Making Things Happen (2003), Woodward attempts to build a full theory of 
causation on top of a theory of interventions.  In Woodward’s theory, roughly, one 
variable X is a direct cause of another variable Y if there exists an intervention on X such 
that if all other variables are held fixed at some value, X and Y are associated. Such an 
account assumes a lot about the sort of intervention needed, however, and Woodward 
goes to great lengths to make the idea clear.  For example, the intervention must make its 
target independent of its other causes, and it must directly influence only its target, both 
of which are ideas difficult to make clear without resorting to the notion of direct 
causation.   
 
Statisticians have long relied on intervention to ground causal inference. In The Design of 
Experiments (1935), Sir Ronald Fisher considers one treatment variable (the purported 
cause) and one or more effect variables (the purported effects). This approach has since 
been extended to include multiple treatment and effect variables in experimental designs 
such as Latin and Graeco-Latin squares and Factor experiments.  In all such cases, 
however, one must designate certain variables as potential causes (the treatment 
variables) and others as potential effects (the outcome variables), and inference begins 
with a randomized assignment (intervention) of the potential cause. Similarly, the 
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framework for causal discovery developed by Donald Rubin (1974, 1977, and 1978) 
assumes there is a treatment variable and that inferences are based on samples from 
randomized trials. 
Although randomized trials have become de facto the gold standard for causal discovery 
in the natural and behavioral sciences, without such an a priori designation of causes and 
effects Fisher’s theory is far from complete.  First, without knowing ahead of time which 
variables are potential causes and which effects, more than one experiment is required to 
identify the causal structure – but we have no account of an optimal sequence of 
experiments.  Second, we don’t know how to statistically combine the results of two 
experiments involving interventions on different sets of variables.  Third, randomized 
assignments of treatment are but one kind of intervention.  Others might be more 
powerful epistemologically, or cheaper to execute, or less invasive ethically, etc.    
 
The work we present here describes two sorts of interventions (“structural” and 
“parametric”) that seem crucial to causal discovery. These two types of interventions 
form opposite ends of a whole continuum of ‘harder’ to ‘softer’ interventions. The 
distinction lines up with interventions of different “dependency”, as presented by Korb 
(2004). We then investigate the epistemological power of each type of intervention 
without assuming that we can designate ahead of time the set of potential causes and 
effects.  We give results about what can and cannot be learned about the causal structure 
of the world from these kinds of interventions, and how many experiments it takes to do 
so.   
 
Causal Discovery with Interventions 
Causal discovery using interventions not only depends on what kind of interventions one 
can use, but also on what kind of assumptions one can make about the models 
considered. We assume that the causal Markov and faithfulness assumptions are satisfied 
(see Cartwright (2001, 2002) and Sober (2001) for exceptions and Steel (2005) and 
Hoover (2003) for sample responses). The causal Markov condition amounts to assuming 
that the probability distribution over the variables in a causal graph factors according to 
the graph as so: 
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where the parents of Xi are the immediate causes of Xi , and if there are no parents then 
the marginal distribution P(Xi ) is used.  For example, 
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The faithfulness assumption says that the causal graph represents the causal 
independence relations true in the population, i.e. that there are no two causal paths that 
cancel each other out. However, several other conditions have to be specified in order to 
formulate a causal discovery problem precisely. 
 
It is often assumed that the causal models under consideration satisfy causal sufficiency 
and acyclicity. Causal sufficiency is the assumption that there are no unmeasured 
common causes of any pair of variables that are under consideration (no latent 
confounders). Assuming causal sufficiency is unrealistic in most cases, since we rarely 
measure all common causes of all of our pairs of variables. However, the assumption has 
a large effect on a discovery procedure, since it reduces the space of models under 
consideration substantially. Assuming acyclicity prohibits models with feedback. While 
this may also be an unrealistic assumption – in many situations in nature there are 
feedback cycles – this is beyond the scope of this paper.  
 
With these assumptions in place we turn to “structural” and “parametric” interventions. 
The typical intervention in medical trials is a “structural” randomization of one variable. 
Subjects are assigned to the treatment or control group based on a random procedure, e.g. 
a flip of a coin. We call the intervention “structural” because it alone completely 
determines the probability distribution of the target variable. It makes the intervened 
variable independent of its other causes and therefore changes the causal structure of a 
system before and after such an intervention.  In a drug trial, for example, a fair coin 
determines whether each subject will be assigned one drug or another or a placebo. The 
assignment of treatment is independent of any other factor that might cause the outcome.2 
Randomization of this kind ensures that, at least in the probability distribution true of the 
population, such a situation does not arise. 
  
In Causal Bayes Nets a structural intervention is represented as an exogenous variable I 
(a variable without causes) with two states (on/off) and a single arrow into the variable it 
manipulates.3 When I is off, the passive observational distribution obtains over the 
variables. When I is on, all other arrows incident on the intervened variable are removed, 
and the probability distribution over the intervened variable is a determinate function of 
                                                
2 For example, treatment and age should not be associated, as age is likely a cause of response to almost 
any drug.   
3 For more detail, see SGS (2000), chapter 7, see also appendix here. 
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the intervention only.  This property underlies the terminology “structural.”4  If there are 
multiple simultaneous structural interventions on variables in the graph, the manipulated 
distribution for each intervened variable is independent of every other manipulated 
distribution5, and the edge breaking process is applied separately to each variable. This 
implies that all edges between variables that are subject to an intervention are removed.  
After removing all edges from the original graph incident to variables that are the target 
of a structural intervention, the resulting graph is called the post-manipulation graph and 
represents what is called the manipulated distribution over the variables. 
 
More formally, we have the following definition for a structural intervention Is on a 
variable X in a system of variables V: 

• Is is a variable with two states (on/off). 
• When Is is off, the passive observational distribution over V obtains. 
• Is is a direct cause of X and only X.  
• Is is exogenous6, i.e. uncaused.  
• When Is is on, Is makes X independent of its causes in V (breaks the edges that are 

incident on X) and determines the distribution of X; that is, in the factored joint 
distribution P(V), the term P(X | parents(X)) is replaced with the term  
P(X | Is), all other terms in the factorized joint distribution are unchanged.  

 

 
 
 

                                                
4 Pearl refers to these interventions as “surgical” for the same reason. They are also sometimes referred to 
as “hard” or “ideal” interventions. Korb (2004) refers to them as “independent” interventions. 
5 This is an assumption we make here for the theorems that follow. It is not an assumption that is necessary 
in general. There may well be so-called “fat-hand” interventions that imply correlated interventions on two 
variables. But in such cases the discovery procedure has to be adapted and the following results do not hold 
in general. 
6 We do not take ‘exogenous’ to be synonymous with ‘uncaused’ in general, but rather to represent a 
weaker notion. However, for brevity we will skip that discussion here. 

I =off Treatment Health Outcome 

Age 

I =on Treatment Health Outcome 

Age 

P(T, A, HO | I=off) = P(A) P(T | A) P(HO | A, T) 
 

Causal Bayes Net representing a 
“structural” intervention (e.g. a 
medical trial) where Treatment 
(T) and Health Outcome (HO) are 
confounded by an unmeasured 
common cause Age (A). When 
the intervention variable I is set to 
off, the passive observational 
distribution obtains over the 
variables. When it is set to on, the 
structural intervention breaks any 
arrows incident on the treatment 
variable, thereby destroying any 
correlation due to unmeasured 
common causes. 

P(T, A, HO | I=on) = P(A) P(T | I=on) P(HO | A, T) 
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The epistemological advantages of structural interventions on one variable are at least the 
following: 

• No correlation between the manipulated variable and any other non-manipulated 
variable in the resulting distribution is due to an unmeasured common cause 
(confounder). 

• The structural intervention provides an ordering that allows us to distinguish the 
direction of causation, i.e. it distinguishes between A  B and A  B. 

• The structural intervention provides a fixed known distribution over the treatment 
variable that can be used for further statistical analysis, such as the estimation of a 
strength parameter of the causal link. 

 
This is not the only type of intervention that is possible or informative, however. There 
may also be “soft” interventions that do not remove edges, but simply modify the 
conditional probability distributions of the intervened upon variable. In a causal Bayes 
net, such an intervention would still be represented by an exogenous variable with a 
single arrow into the variable it intervenes on. Again, when it is set to off, the passive 
observational distribution obtains; but when it is set to on, the distribution of the variable 
conditional on its causes (graphical parents) is changed, but their causal influence (the 
incoming arrows) are not broken. We refer to such an intervention as a “parametric” 
intervention, since it only influences the parameterization of the conditional probability 
distribution of the intervened variables on its parents, while it still leaves the causal 
structure intact.7 The conditional distribution of the variable still remains a function of the 
variable's causes (parents).  
 
More formally, we have the following definition for a parametric intervention Ip on a 
variable X in a system of variables V: 

• Ip is a variable with two states (on/off). 
• When Ip is off, the passive observational distribution over V obtains. 
• Ip is a direct cause of X and only X.  
• Ip is exogenous, i.e. uncaused.  
• When Ip is on, Ip does not make X independent of its causes in V (does not break 

the edges that are incident on X).  In the factored joint distribution P(V), the term 
P(X | parents(X)) is replaced with the term P(X | parents(X), Ip = on),8 and 
otherwise all terms are unchanged.  

 
 
 

                                                
7 As mentioned above, Korb (2004) refers to such an intervention as a “dependent” intervention. It has also 
been referred to as “soft” (Campbell, 2006) or “conditional”. 
8 Obviously, P (X | parents(X)) ≠ P(X | parents(X), Ip = on).  
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There are several ways to instantiate such a parametric intervention.  If the intervened 
variable is a linear (or additive) function of its parents, then the intervention could be an 
additional linear factor.  For example, if the target is income, the intervention could be to 
boost the subject’s existing income by $10,000/year. In the case of binary variables, the 
situation is a little more complicated, since the parameterization over the other parents 
must be changed, but even here it is possible to perform a parametric intervention, e.g. by 
inverting the conditional probabilities of the intervened variable when the parametric 
intervention is switched to on.9 
 
In practice parametric interventions can arise for at least two reasons. In some cases it 
might be impossible to perform a structural intervention. Campbell (2006) argues that 
one cannot perform a structural intervention on mental states, since it is impossible to 
make a mental state independent of its other causes: One can make a subject believe 
something, but that belief will not be independent of, for example, prior beliefs and 
experiences. Or if it is, then it is questionable whether one can still speak of the same 
subject that has this belief. Also, parametric interventions may arise when the cost of a 
structural intervention is too high or when a structural intervention of a particular variable 
would be unethical. For example, it is in principle possible to randomly assign (structural 
intervention) income, but the cost would be enormous and it is unethical to assign 
someone an income that would be insufficient for survival, while denying the participants 
their normal income. In such cases one might instead add a fixed amount to the income of 
the subjects (parametric intervention). Income would then remain a function of its prior 
causes (e.g. education, parental income, socio economic status (SES) etc.), but would be 
modified by the parametric intervention. 

                                                
9 We are grateful to Jiji Zhang for this example. 

I=off Income (IC) Health (H) 

SES 

I=on Income (IC) Health (H) 

SES 

P(IC,SES,H | I=off) = P(SES) P(IC|SES) P(H|SES,IC) 
 

P(IC,SES,H | I=on) = P(SES)P(IC|SES, I=on)P(H|SES,IC) 

Causal Bayes Net representing a 
“parametric” intervention. 
When the intervention variable I 
is set to off, the passive 
observational distribution obtains 
over the variables. When it is set 
to on, the parametric intervention 
does not break any arrows 
incident on the intervened 
variable, but only changes the 
conditional distribution of that 
variable. So, P(IC|SES) ≠ 
P(IC|SES, I=on). In contrast to 
structural interventions, 
parametric interventions do not 
break correlations due to 
unmeasured common causes.  
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Naturally, experiments involving parametric interventions provide different information 
about the causal structure than those that use structural ones. In particular, they do not 
destroy any of the original causal structure. This has the advantage that causal structure 
that would be destroyed in structural interventions might be detectable, but it has the 
disadvantage that an association due to a (potentially unmeasured) common cause is not 
broken.  In the following we provide an account of the implications these different types 
of interventions have on what we can learn about the causal structure, and how fast we 
can hope to do so. 
 
 
Results 
While a structural intervention is extremely useful to test for a direct causal link between 
two variables (this is the focus in the statistics literature), it is not straight forwardly the 
case that structural interventions on single variables provide an efficient strategy for 
discovering the causal structure among several variables. The advantage it provides, 
namely making the intervened upon variable independent of its other causes, is also its 
drawback. In general, we still want a theory of causal discovery that does not rely upon 
an a priori separation of the variables into treatment and effect as is assumed in statistics. 
Even time ordering does not always imply information about such a separation, since we 
might only have delayed measures of the causes. 
 
Faced with a setting in which any variable may be a cause of any other variable, a 
structural intervention of the wrong variable might then not be informative about the true 
causal structure, since even the manipulated distribution could have been generated by 
several different causal structures.  
 

 
 
For example, consider the above Figure. Suppose the true but unknown causal graph is 
(1).  A structural intervention on C would make the pairs A-C and B-C independent, 
since the incoming arrows on C are broken in the post-manipulation graph (2). The 
problem is that the information about the causal influence of A and B on C is lost. Note 
also, that an association between A and B is detected but the direction of the causal 
influence cannot be determined (hence the representation by an undirected edge). The 
manipulated distribution could as well have been generated by graph (3), where the true 
causal graph has no causal links between A and C or B and C. Hence, structural 
interventions also create Markov equivalence classes of graphs, that is, graphs that have a 
different causal structure, but imply the same conditional independence relations. (1) and 
(3) form part of an interventional Markov equivalence class under a structural 

A B 

C 

A B 

C 

A B 

C 
Is 

(1) (3) (2) 
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intervention on C (they are not the only two graphs in that class, since the arrow between 
A and B could be reversed as well). Discovering the true causal structure using structural 
interventions on a single variable, and to be guaranteed to do so, requires a sequence of 
experiments to partition the space of graphs into Markov equivalence classes of unique 
graphs. Note that a further structural intervention on A in a second experiment would 
distinguish (1) from (3), since A and C would be correlated in (1) while they would be 
independent in (3). 
 
Eberhardt, Glymour, and Scheines (2006) showed that for N causally sufficient variables 
N-1 experiments are sufficient and in the worst case necessary to discover the causal 
structure among a causally sufficient set of N variables if at most one variable can be 
subjected to a structural intervention per experiment assuming faithfulness. If multiple 
variables can be randomized simultaneously and independently in one experiment, this 
bound can be reduced to log(N) + 1 experiments (Eberhardt et al, 2005). These bounds 
both assume that an experiment specifies a subset of the variables under consideration 
that are subject to an intervention and that each experiment returns the independence 
relations true in the manipulated population, i.e. issues of sample variability are not 
addressed.  
 
Parametric interventions do not destroy any of the causal structure. However, if only a 
single parametric intervention is allowed, then there is no difference in the number of 
experiments between structural and parametric interventions: 
 
Theorem 1: N-1 experiments are sufficient and in the worst case necessary to discover 
the causal relations among a causally sufficient set of N variables if only one variable 
can be subject to a parametric intervention per experiment. (Proof sketch in Appendix) 
 
For experiments that can include simultaneous interventions on several variables, 
however, we can decrease the number of experiments from log(N) + 1  to a single 
experiment when using parametric interventions: 
 
Theorem 2: One experiment is sufficient and (of course) necessary to discover the causal 
relations among a causally sufficient set of N variables if multiple variables can be 
simultaneously and independently subjected to a parametric intervention per experiment. 
(Proof sketch in Appendix) 
 

 
The following example, illustrated in the above figure, explains the result: The true 
unknown complete graph among the variables A, B and C is shown on the left. In one 
experiment, the researcher performs simultaneously and independently a parametric 
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intervention on A and B (IA and IB, respectively, shown on the right). Since the 
interventions do not break any edges, the graph on the right represents the post-
manipulation graph. Note that A, B and IB form an unshielded collider,10 as do C, B and 
IB. These can be identified11 and hence determine the edges and their directions A to B 
and C to B. The edge A to C can be determined since (i) A and C are dependent for all 
possible conditioning sets, but (ii) IA, A and C do not form an unshielded collider. Hence 
we can conclude that (from (i)) there must be an edge between A and C and (from (ii)) 
that it must be directed away from A. We have thereby managed to discover the true 
causal graph in one experiment. Essentially, adjacencies can be determined from 
observational data alone. The parametric interventions set up a “collider test” for each 
triple IX, X and Y with X –Y adjacent, which orients the X – Y adjacency. 
 
Discussion 
These results indicate that the advantage of parametric interventions lies with the fact that 
they do not destroy any causal connections.  
 
Number of experiments for 
different types of interventions  

Single Intervention 
per experiment 

Multiple simultaneous 
interventions per experiment 

Parametric Interventions N – 1 1 
Structural Interventions N – 1 log2(N) + 1 
 
The theorems tempt the conclusion that parametric interventions are always better than 
structural interventions. But this would be a mistake since the theorems hide the cost of 
this procedure. First, determining the causal structure from parametric interventions 
requires more conditional independence tests with larger conditioning sets. This implies 
that more samples are needed to obtain a similar statistical power on the independence 
tests as in the structural intervention case. Second, the above theorems only hold in 
general for causally sufficient sets of variables. A key advantage of randomized trials 
(structural interventions) is their robustness against latent confounders (common causes). 
Parametric interventions are not robust in this way, since they do not make the intervened 
variable independent of its other causes. This implies that there are cases for which the 
causal structure cannot be uniquely identified by parametric interventions. 

 

                                                
10 Variables X, Y and Z form an unshielded collider if X is a direct cause of Y, Z is a direct cause of Y and 
X is not a direct cause of Z and Z is not a direct cause of X. Unshielded colliders can be identified in 
statistical data, since X and Z are unconditionally independent, while they are dependent conditional on Y. 
11 See previous footnote. 

A B 

C 
L2 L3 

L1 

A B 

C 
L2 L3 

L1 Two graphs with 
latent variables that 
are indistinguishable 
by parametric 
interventions on A, 
B and C. (The 
intervention 
variables are 
omitted for clarity.) 
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The two graphs above over the observed variables A, B and C with latent common causes 
L1, L2 and L3 are indistinguishable given parametric interventions on A, B and C. There 
is no conditional independence relation between the variables (including the intervention 
nodes omitted for clarity in the figure) that distinguishes the two graphs12. 
However, it is not always the case that causal insufficiency renders parametric 
interventions useless as the following example shows. 

 
 
The parametric intervention IX on X will not break the association between X and Y that 
is due to the unmeasured common cause L. This does not mean that the edge X to Y 
cannot be identified, since (a) if there were no edge between X and Y, then IX and Y 
would not be associated, and (b) if the edge were from Y to X, then IY and X would be 
associated.13  As the two examples show, parametric interventions are sometimes subject 
to failure when causal sufficiency cannot be assumed, but this depends very much on the 
complexity of the model.14  
 
It follows that the assumption of causal sufficiency does not compensate entirely for what 
parametric interventions lack in robustness to unmeasured common causes. First, the 
results for structural interventions also depend on causal sufficiency.15 A logarithmic 
bound on the number of experiments when using structural interventions would not be 
achievable in the worst case if there are latent common causes. Second, there are cases 
(as the example above shows) where parametric interventions are still sufficient to 
recover the causal structure even if there are latent common causes.16 In some cases one 
can even identify the location of the latent variables. However, this is not always the case 

                                                
12 In order to prove this claim, a huge number of conditioning sets have to be checked, which we did using 
the Tetrad program (causality lab: http://www.phil.cmu.edu/projects/causality-lab/), but omit here for 
brevity. 
13 Note, that it is not simply the creation of unshielded colliders that is doing the work here. If there were no 
parametric intervention on Y, we could not distinguish between X  Y and no edge between X and Y at 
all, even though the first case would create an unshielded collider IX   X  Y. In the presence of latent 
variables, creating colliders is necessary, but not sufficient (as the more complex example shows). 
14 Note also the close similarity between parametric interventions and instrumental variables as they are 
used in economics. However, in economics – as in statistics – there is the general assumption that some 
kind of order is known between the variables, so that one only tests for presence of an adjacency, while its 
direction is determined by background knowledge. 
15 See Eberhardt et al. (2005). 
16 It is not the simplicity of the second example (with just two variables) that allows for the identifiability of 
the structure when using parametric interventions in the presence of latent common causes. In fact, if we 
remove the edge C  B (instead of A  B) in the three variable example above, the graph would be 
distinguishable from the complete graph among A, B and C even if there are latent common causes for 
every pair of variables. However, it may not form a singleton Markov equivalence class under parametric 
interventions. 

X Y 

L 

IX 

Even in the presence of a 
latent variable, this causal 
structure can be uniquely 
determined with parametric 
interventions on X and Y in a 
single experiment. IY 
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and we do not have any general theorem of these cases to report at this stage. What seems 
to play a much larger role than causal sufficiency is the requirement of exogeneity of the 
intervention. It results in additional independence constraints (creating unshielded 
colliders) whose presence or absence make associations identifiable with direct causal 
connections. 
 
The moral is that while the types of interventions are not independent of the assumptions 
that are made about causal sufficiency, they are not interchangeable with them either. It is 
not the case that causal sufficiency and parametric interventions achieve the same search 
capability as causal insufficiency and structural interventions. The trade-offs are rather 
subtle and we have only shown a few examples of the interplay of some of the 
assumptions. But there does not seem to be any general sense in which one can speak of 
“weaker” or “stronger” interventions with regard to their epistemological power.  
 
Appendix: 
 
Intervention Variables 
 
We represent interventions in causal Bayes nets by so-called policy variables, which have 
two states. These policy variables are not causal variables in the sense of the other 
variables in the causal graph (although they may model instrumental variables): they need 
not have a marginal probability distribution over their values. By “switching” the policy 
variable to one of its states we refer to the decision to perform an intervention. In the case 
of a parametric intervention, the policy variable creates unshielded colliders, while we 
claim that this is not the case for structural interventions. This will need some 
clarification, since this aspect is very relevant to the discovery procedures.  
 
If our data contains samples both for when a variable X is subject to a structural 
intervention and when it is passively observed, then – using the sample distribution of Is – 
we will find that even in the case of structural interventions, Is  X  Y forms an 
unshielded collider. The adjacency is obtained from the subsample where Is = off, while 
the direction is determined when Is = on. This sample constitutes a mixture of 
populations, one manipulated and one unmanipulated, as we may find it in a randomized 
trial with a control group that is not subject to any intervention. However, in studies 
where each condition in the randomized trial involves an intervention17 (e.g. comparative 
medical studies) we do not have such a passively observed control group that would 
capture the unmanipulated structure. So the interventions are different (with regard to the 
manipulated distribution they impose) in different conditions, but if both conditions 
constitute structural interventions, then the causal structure cannot be recovered from the 
sample in all cases. Furthermore, if we perform multiple simultaneous structural 
interventions and only obtain data where either all intervention variables are on or all 
intervention variables are off for each sample, then again we cannot recover the causal 
structure in all cases.  
 

                                                
17 In this case the “on”-state (Is =on) of the intervention variable would have to be augmented to different 
on-states. 
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In contrast, we can consider the unshielded collider in experimental designs involving 
parametric interventions since we can discover the unshielded collider even in a data set 
where the sample Ip = on for all samples, as long as there are different “on”-states. And 
we can discover unshielded colliders in the case of multiple simultaneous parametric 
interventions, i.e. when we only obtain data where either all intervention variables are on 
or all intervention variables are off for each sample. The key is that parametric 
interventions can be combined independently and performed simultaneously without 
interfering, while this is not the case for structural interventions. 
 
 
Theorem 1: (Proof Sketch) 
Let each of the N-1 experiments Ei, with 0 < i < N consist of a parametric intervention on 
Xi. In each case, the intervention variable Ii forms an unshielded collider with any cause 
of Xi. Hence, for any variable Y, where Y and Ii are unconditionally independent, but 
dependent conditional on C union {Y} for all conditioning sets C, we know that Y is a 
cause of Xi. Further, in each experiment we check whether Xi and XN (which is not 
subject to an intervention) are dependent for all conditioning sets. If so, then Xi is a cause 
of XN. Since we perform a parametric intervention on N-1 variables, all causes of these 
N-1 variables can be discovered, and since we check for each variable whether it is a 
cause of XN, all its causes are determined as well. Hence, N-1 experiments are sufficient 
to discover the causal structure. 
N-1 experiments are in the worst case necessary, since N-2 parametric interventions 
would imply that two variables are not subject to an intervention. This would make it (in 
the worst case) impossible to determine the direction of any edge between them, if there 
were one. 
 
 
Theorem 2: (Proof Sketch) 
Since the parametric interventions described in the proof of the previous theorem do not 
interfere with each other, they can be performed all at the same time. That is, in a single 
experiment N-1 variables would be subject to a parametric intervention and the causal 
structure could be discovered all in one go. One experiment is necessary, since -- in the 
case of a complete graph -- there would not be any unshielded colliders that would allow 
for the determination of the direction of any causal link between the variables. This is 
where the parametric N-1 interventions are necessary. The theorem can also be derived 
simply from a theorem on rigid indistinguishability in SGS18. 
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