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Abstract:  

 

Hans Reichenbach is well known for his limiting frequency view of probability, with his 

most thorough account given in The Theory of Probability in 1935/49. Perhaps less 

known are Reichenbach's early views on probability and its epistemology. In his doctoral 

thesis from 1915, Reichenbach espouses a Kantian view of probability, where the 

convergence limit of an empirical frequency distribution is guaranteed to exist thanks to 

the synthetic a priori principle of lawful distribution. Reichenbach claims to have given a 

purely objective account of probability, while integrating the concept into a more general 

philosophical and epistemological framework. A brief synopsis of Reichenbach’s thesis 

and a critical analysis of the problematic steps of his argument will show that the roots of 

many of his most influential insights on probability and causality can be found in this 

early work.  
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1. Historical Background 

 

Hans Reichenbach wrote his thesis Der Begriff der Wahrscheinlichkeit für die 

mathematische Darstellung der Wirklichkeit (The Concept of Probability in the 

Mathematical Representation of Reality) largely independently in 1914. It was accepted 

in March 1915 by Paul Hensel and Max Noether at the University of Erlangen. Unlike his 

later views, the thesis was deeply influenced by the Kantian view dominant in philosophy 

and epistemology at the time. Reichenbach took synthetic a priori principles to form the 

foundation of empirical knowledge, and transcendental arguments to be the appropriate 

method to support such principles. Reichenbach had studied with Ernst Cassirer, and had 

hoped (unsuccessfully) to write his dissertation with the neo-Kantian Paul Natorp.  

 

In 1914 the mathematics of probability was already reasonably well developed but there 

was not yet an agreed upon axiomatization. First proposals were around (e.g. Bohlmann, 

1901), but Andrey Kolmogorov only published the now standard set of axioms in 1933, 

while Reichenbach published his own (structurally, but not semantically similar) 

axiomatization in a paper in 1932. In 1914 the discussion surrounding the formal 

definition of randomness (involving R. von Mises, A. Church, J. A. Ville, A. Copeland, 

A. Wald etc.), which is generally regarded as one of the main impediments in the early 

development of an axiomatization of probability, had not yet started. Emile Borel had 

published a few papers on this topic, but Reichenbach does not appear to have been 

familiar with them at the time. Without an axiomatization or any other widely accepted 
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foundation, probability claims and their corresponding inferences supplied successful 

heuristics, but were without any epistemological grounding.  

 

 

2. Thesis Synopsis 

 

Reichenbach's thesis set out to change this situation by giving a detailed account of the 

concept of probability as it was used in the sciences, and by tying this concept into a 

broader philosophical and epistemological framework. Reichenbach intended to provide a 

purely objective account of the meaning of probability claims, conditions for the 

assertibility of probability claims and a foundation for a rational expectation that is based 

on judgments of probability. 

 

Reichenbach contrasted his view with those of Johannes von Kries (1886) and Carl 

Stumpf (1892), both of whom he appears to have regarded as representative of two 

different accounts of probability common at the time. Kries’ account of probability was 

based on equi-probable events: The probability of a particular event E is determined by 

the proportion of equi-probable ‘ur-events’ it derives from. These ur-events can be found 

by tracing back the (causal) history of E and its compliment, tracking each of their causal 

ancestor events, until an event space is found for which no reason is available to consider 

one event in the space more likely than any other. This space then constitutes the space of 

equi-probable ur-events. The inference from events for which there is no reason to 

believe that one is more likely than the other, to the claim that these events are equi-
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probable is licensed by the principle of insufficient reason1, which states that if there is no 

reason to distinguish the probability of two events, then the two events have equal 

probability. By tracing the dependency on its ur-events, the probability of the event E can 

be determined.  

It is not obvious how a space of ur-events should be determined practically, whether 

practical constraints on the tracing of the causal history limits judgments of probability, 

or whether there always is a unique space of ur-events. A failure of uniqueness would 

imply problems similar to those in the Bertrand paradox (Bertrand, 1888), where the 

probability of events is undetermined because symmetry conditions can be applied in 

different ways to yield conflicting probability judgments for events. In modern 

terminology Kries could be described as an objective Bayesian. He believed that 

probabilities are objective and that there is in some sense one correct objective 

probability for any event, but that ultimately, a human judgment enters into the account 

when the space of equi-probable events is determined.2 

 

Reichenbach took issue with this human, and therefore in his view subjective component 

of the principle of insufficient reason. He considered such a subjective element alien to 

the scientific use of probability. Consequently, Reichenbach sought to develop Kries' 

account of probability in such a way that the principle of insufficient reason became 

redundant and that probability claims could be couched in a purely objective framework.3 

 

Both Kries' and Reichenbach's views contrasted with that of Carl Stumpf. Stumpf had a 

purely subjectivist view of probability. He took probability to represent degrees of belief. 
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He did not present his view explicitly in terms of wagers, but it could have been framed 

in those terms. Stumpf took the realization that a die is biased to constitute a change in 

probability as opposed to a correction. He did not view the prior belief that all sides of a 

die have equal probability as false. Instead, probability only constitutes a summary of the 

current knowledge an individual has about the events under consideration – and that can 

be updated. Stumpf did not give a detailed account of belief update or the constraints that 

beliefs are subject to, but it is obvious that he only required that a probability claim about 

an event reflect the considered knowledge of an individual. Events, for which an agent 

has no reason to believe that their probabilities differ, are assigned equal probability – 

until there is evidence to the contrary. Unsurprisingly, Reichenbach rejected this account 

as unsuitable for a description of probability in science, since it would replace the aim for 

objectivity with what appears to be subjective whim and autobiography. 

 

Reichenbach proposed a foundation of probability based on Henri Poincaré’s argument of 

arbitrary functions (1912). In modern terms one would describe this argument as an 

analysis of strike ratios.4 For illustration, Reichenbach considered a moving tape that is 

punctured (repeatedly) by a projectile shot from a cylinder fixed above the moving tape. 

The event space (possible locations of punctures on the tape) is divided into narrow 

equally wide alternating black and white stripes orthogonal to the movement of the tape. 

In a sequence of trials (shots at the moving tape) the number of punctures of the tape that 

fall within each stripe are counted and plotted as a histogram. As the number of outcomes 

increases and the width of the stripes decreases5, the histogram approximates a Riemann 

integrable function, as shown in Figure 1 below. 
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Furthermore, the number of hits on white stripes is approximately equal to the number of 

hits on black stripes. That is, we find that the ratio of hits on white to hits on black stripes 

is approximately equal no matter what the Riemann integrable function is that the 

histogram converges towards. Reichenbach thereby was able to argue that it is not the 

equi-probability of the ur-events that is required to make sense of probability claims, but 

rather the existence of a convergence limit of the empirical frequency distribution to a 

continuous function. This result does not even depend on an equal partition of the event 

space: If the black stripes were twice as wide as the white ones, one would converge to a 

strike ratio of 2:1. As long as the empirical distribution converges to a continuous 

function, one is able to specify a probability distribution. Thus, Reichenbach could 

replace the principle of insufficient reason with an assumption about the existence of a 

convergence limit.6 

 

Which conditions are necessary to justify the assumption that the empirical distribution 

has a convergence limit? Reichenbach identified two: causally independent and causally 

identical trials: Reichenbach deemed an assumption of convergence to a limiting 

Figure 1: Strike ratio: If the 
black and white stripes are 
equally wide, the probability 
of a white outcome is the 
same as the probability of a 
black outcome. (Figure 
taken from Reichenbach’s 
thesis.) 
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distribution justified when (i) the shots of the projectile are independent of one another 

(that is, in particular, if the movement of the tape is independent of the shooting device) 

and (ii) if the repeated shots are generated by the same mechanism subject to the same 

forces. If the projectile were somehow attracted to the black stripes, or if the shooting 

mechanism varied between shots, one would not expect the distribution of hits to be 

equal or even stable.  

Reichenbach then attempted to show that causally independent and causally identical 

trials imply probabilistically independent and identically distributed trials. Reichenbach 

did not provide a proof of this inference, but he did hint at an argument based on 

invariance constraints of a distribution generated by a causal structure that is subject to an 

intervention. He claimed that the marginal distribution of one of two causally 

independent variables is invariant when the other variable is subject to an intervention. 

This in turn implies the factorization of the joint probability into the two marginals over 

the variables, which constitutes probabilistic independence. The details of the argument 

are opaque, and its generalization to more complex scenarios is far from obvious.7 We 

return to this point in the analysis. 

 

Probabilistically independent and identically distributed trials provide a foundation for 

the weak law of large numbers. The weak law of large numbers guarantees that the 

sample average of a sequence of (probabilistically) independent and identically 

distributed trials converges to the distribution mean with probability 1, i.e. for all ε 

€ 

lim
n→∞

P(| X −µ |< ε) =1 
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In a sequence of Bernoulli trials the sample mean is an estimator of the probability of the 

event occurring, hence the weak law of large numbers would be of interest as a 

convergence guarantee towards a limiting distribution. Reichenbach did not follow this 

line of argument, nor did he discuss the relevance of the weak law of large numbers to his 

argument, even though there is reasonable evidence8 that he was familiar with the law at 

the time. One explanation for this neglect is that the weak law of large numbers only 

guarantees convergence in probability. Since probability is exactly what Reichenbach 

was attempting to define, convergence in probability would have implied a circular 

definition. Instead, he attempted to provide a guarantee of convergence with certainty.  

 

In retrospect it might be obvious that search for convergence with certainty is hopeless. 

But in his thesis Reichenbach argued that the existence of a convergence limit of the 

empirical frequency distribution is guaranteed by a synthetic a priori principle: the 

principle of lawful distribution. The argument for the synthetic a priori status of this 

principle is, in short, as follows. It is a transcendental argument in the spirit of Kant's 

argument for the synthetic a priori principle of causality.9 

 

Reichenbach claims that our scientific knowledge is represented in the laws of nature. 

These laws, or at least some of them, are causal laws. In his view at the time, causal 

relations were assumed to be relations between individual token events, not between 

types of events – entirely in line with Kant's view of causality (or at least one of its 

interpretations). Hence, if our causal knowledge is restricted to token events, then in 

order to attain knowledge in terms of causal laws, one needs some procedure that 
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aggregates token causal events into scientific laws. This aggregation is achieved by the 

calculus of probability. But we only ever have finitely many token causal events to 

aggregate. If we had no guarantee that the empirical frequency distribution of these 

finitely many token causal events converges, then we could not have the knowledge 

represented in the laws of nature. But we do have this knowledge and use it successfully, 

and hence we must have a guarantee of convergence. Hence, the principle of lawful 

distribution, stating that each empirical distribution has a convergence limit, is a 

necessary ingredient for the attainment of scientific knowledge; it is a synthetic a priori 

principle that complements Kant's principle of causality.10 

 

Reichenbach claimed that if convergence did not occur  (though it is not clear how or 

when that would be judged) then it is an indication that the conditions (causal 

independence of trials, causally identical trials) have not all been satisfied. However, 

such lack of convergence supposedly does not refute the principle of lawful distribution. 

Reichenbach admitted that his argument implies that the principle of lawful distribution is 

untestable, but he pointed out that the same criticism applies to Kant, whose principle of 

causality also fails to be testable. We apparently simply have to accept the lamentable 

nature of synthetic a priori principles.11 

 

Reichenbach thus provided what he regarded to be an entirely objective account of 

probability. It is objective in the sense that it is only dependent on necessary constraints 

of experience, and it is not circular, since it builds on causally independent and causally 

identical trials. The principle of insufficient reason is replaced by the assumption of the 
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existence of a convergence limit of the empirical frequency distribution, which in turn is 

guaranteed by the synthetic a priori principle of lawful distribution. On his view, the 

transcendental deduction of the principle of lawful distribution matches Kant’s 

transcendental argument for the principle of causality. Kant had argued that Hume’s 

skepticism towards causal knowledge disregarded the fact that causal knowledge is 

necessary for empirical knowledge, and hence that the principle of causality must be 

synthetic a priori. Reichenbach considered his argument to complete the missing link in 

Kant’s account from token causal relations to causal relations of types, as they are 

represented in the (causal) laws of nature.  

 

The meaning of (scientific) probability statements is thus given by a relative frequency of 

an event within a sequence of trials, and the justification of probability claims hinges on 

conditions concerning the relation between the trials that give rise to the frequencies. 

Reichenbach embedded his account in an epistemology that was regarded as standard at 

the time, and he claimed that this account provides grounds for a rational expectation: 

Given the convergence guarantee one could take the empirical distribution to be 

indicative of the limiting distribution. Though the empirical distribution may at any point 

diverge again before it converges, the guarantee of convergence at some -- albeit 

unknown -- finite point is (supposedly) sufficient to regard any expectation based on the 

empirical distribution as rational.12 Convergence at some unknown point is (supposedly) 

better than no guarantee of convergence at all, and since this assurance is, so to speak, 

better than nothing, it is (supposedly) rational. Reichenbach’s argument that belief in the 

accuracy of the empirical distribution is the best available strategy (and therefore 
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rational) is not made explicit in the thesis; this line of argument only surfaces later as a 

justification of the straight rule (see below). 

 

 

3. Analysis of Thesis 

 

Reichenbach successfully criticized accounts based on equi-probability and instead 

proposed a version of Poincaré’s argument from strike ratios. He thereby avoided 

paradoxes resulting from the lack of uniqueness in determining the event space of equi-

probable events (e.g. Bertrand's paradox). His new contribution was the synthetic a priori 

foundation with the principle of lawful distribution. It enabled him to abandon Kries’ 

principle of insufficient reason and substitute a supposedly justified assumption about 

convergence. While the result might appear to successfully establish a more objective 

foundation of probability, it is not obvious that the account can hold what it promises. We 

will consider some of the problematic issues, and in many cases we will find that 

Reichenbach had much more to say about these points in his later works on probability. 

 

In his thesis Reichenbach did not provide any guidance on how the trials that form the 

basis of his account of probability are supposed to be judged (i) causally independent, 

and (ii) causally identical. Reichenbach claimed that causal identity is satisfied when 

repeated trials are of the “same” process. Two processes are the same if they differ only 

in their position in space and time and all physically measurable variables have the same 

value. He must have assumed some caveat restricting the measurement to all relevant 
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physically measurable variables, and we can guess that the judgment of relevance of 

variables was given by knowledge derived from the Kantian synthetic a priori principle 

of causality. None of this is elaborated in the thesis.  

 

The argument for causal independence had to be similar. Without recourse to 

probabilistic features (since those were to be defined in terms of these causal relations), it 

is unclear how causal independence can be judged. Unless this knowledge is supplied by 

some a priori principle, it would seem that a subjective -- or at least somewhat arbitrary -- 

assessment of causal independence would enter the supposedly objective foundation.  

After publishing his thesis Reichenbach attended Albert Einstein’s lectures in Berlin. 

Einstein’s findings concerning the nature of space spelled trouble for the supposedly 

synthetic a priori assumption that space is Euclidean. As a result, Reichenbach almost 

immediately became uneasy with the Kantian notion of causality as synthetic a priori. But 

as the above analysis shows, without the synthetic a priori principle of causality, 

Reichenbach loses the foundation of his account of probability in terms of causal 

independence and identical causal trials. 

 

In his mature view on probability in The Theory of Probability (1935/49), Reichenbach 

abandoned any attempt to build probability on token causal events. Instead, probability 

was defined in terms of properties of sequences. These sequences were supposed to 

correspond to sequences of trials, but the causal properties of the trials were no longer 

deemed relevant to the determination of probabilities. Instead, the sequences had to 

satisfy the mathematical conditions of normality. The class of normal sequences is more 
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general than that of sequences generated from independent identically distributed trials 

(or random sequences), but excludes deterministic or patterned sequences. The 

motivation for recourse to normal sequences resulted from the difficulties that had been 

identified with a precise formal characterization of randomness in the early part of the 

20th century. For Reichenbach this generalization to normal sequences not only avoided 

the problems associated with randomness, but also seemed appropriate in light of 

sequences of trials in science. The condition of full independence and causal identity of 

trials is excessively strong, since, for example, a coin might be found to measurably wear 

down in a long sequence of flips. Nevertheless, it might still exhibit a stable probability 

of ½ for heads. Reichenbach considered the weakening to normal sequences to provide a 

more general foundation that would be appropriate even for such sequences.  

 

While Reichenbach ultimately abandoned the causal foundation expounded in his thesis 

and concluded that probability could not be founded on causal notions, there is a 

sequence of papers published after his thesis in which he goes back and forth in taking 

causality or probability to be the more fundamental notion. (See Reichenbach, 1925, 

1929, 1930, 1932a.) The assessment of the connection between causality and probability 

is one of Reichenbach’s greatest influences. In the thesis Reichenbach’s derivation of 

probabilistically independent and identically distributed trials from causally independent 

and causally identical trials is far from complete. In order to complete the proof, 

Reichenbach would have needed a bridge principle that connects features of the causal 

structure to features of the probability distribution over that structure. Throughout his life 

there are indicators of the development of such a principle, but he only stated it explicitly 
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as the principle of common cause in The Direction of Time (1956), published 

posthumously. By that time he regarded the scientific notion of causality to be a relation 

of event types rather than of token events. The principle of common cause links the 

causal feature of ‘screening off’ to probabilistic independence. Intuitively, a cause 

screens off its effects from any prior causal ancestors. This ‘screening off’ is reflected in 

the probability distribution generated by the causal structure, and so the principle of 

common cause states that a dependence between two variables is due to one causing the 

other, or the existence of a common cause of both variables. This contribution to the 

connection between probability and causality is widely regarded as one of Reichenbach’s 

most influential achievements. Reichenbach’s ideas were generalized to arbitrary causal 

structures in the causal Markov assumption13, first mentioned by Kiiveri and Speed 

(1982), which underlies most of the contemporary procedures of causal discovery. The 

basic issue already featured prominently in Reichenbach’s thesis. 

 

The second aim of Reichenbach's thesis was to supply a justification of why probability 

judgments determined in the way described supply a normative guide to action. The aim 

was to explain why probability claims supported a rational expectation for the occurrence 

of events. In this regard his conclusions are unsatisfying. Reichenbach unfortunately 

succumbed to the strong influence of the Kantian philosophy, which seems to have 

prevented him from presenting interesting results. He essentially claimed that we must 

assume that the strike ratios of the process under consideration will converge, since 

otherwise the knowledge represented in the laws of science would be impossible to attain. 

Reichenbach hinted at the weak law of large numbers, but did not lay out its relevance to 
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the problem he was trying to tackle, nor did he discuss why he considered it to be 

inadequate. Instead, he argued that a guarantee of convergence could be given with 

certainty. But the claim is – even if one accepts the transcendental deduction – extremely 

weak and practically useless: Convergence is guaranteed at some point after some finite 

number of trials, but the actual point is unknown. This claim makes no headway into the 

actual question of how we are supposed to interpret the empirical distribution after a 

finite number of trials, what the empirical distribution tells us about future events or 

future distributions and how we could verify or falsify any probability claim. 

Furthermore, it is an extremely weak support for the basis of a rational expectation: Use 

the empirical distribution as basis for inferences because at some point the empirical 

distribution converges to the true distribution. No measure of confidence in the empirical 

distribution or measure of distance between the empirical and true distribution is 

provided. 

A synthetic a priori assurance that the empirical distribution of a finite number of trials 

converges at some point begs the question of what assurance we have regarding 

probability claims based on empirical facts. Reichenbach does not deny this and admits 

that there is no way to disprove the principle of lawful distribution. But rather than 

admitting that he has provided an unsatisfactory argument, he argues that Kant's 

argument for the principle of causality was no better. Sadly, reference to a poor argument 

of a greater authority does not make the present argument any better.  

 

Later in his career, Reichenbach took several different approaches to address this 

problem. He developed a framework of higher-order probabilities that guarantee 
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convergence (in higher-order probability)14 and argued for what came to be known as the 

straight rule. The straight rule states that one should take the empirical distribution as 

representative of the limiting distribution. Although the empirical distribution might at 

any point be quite distinct from the limiting distribution or there might not actually be a 

limiting distribution, Reichenbach later argued that adherence to the straight rule is the 

best strategy available to find the truth, even if no guarantee of convergence is 

provided.15  

This view is controversial, and within the sciences that use search procedures, there is a 

lively debate of how to handle situations in which one either has to accept such a weak 

convergence guarantee (known as pointwise convergence) or commit to stronger 

assumptions -- whose support is dubious -- to achieve a convergence guarantee that 

supports confidence intervals (so-called uniform convergence).  

In The Theory of Probability Reichenbach claims that the probability of convergence can 

be estimated by integration of convergence results across different domains16 using 

higher order probabilities combined with subjective posits. These posits, which basically 

amount to subjective guesses of probability values, seem like a peculiar reversal of 

Reichenbach’s orginal aim at an objective foundation of probability. Reichenbach 

claimed that where possible, these guesses should be informed by available frequency 

information, but could otherwise just be blind guesses. He considered them to be 

innocuous, since their effect would “wash out” in the long run, as the probability 

assessment is updated in light of new data. Scientific objectivity would be reached in the 

limit. Needless to say, even this considered view was not spared from criticism (see, e.g. 

Nagel, 1938), but it certainly addresses the problems of the thesis in more detail. 
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4. Conclusion 

I have tried to argue that Reichenbach’s thesis leaves us with a technical account of an 

(well, let us say) objective foundation of probability (strike ratios approximating a 

continuous function), but with no satisfactory meaning to our probability claims, as the 

convergence guarantee is bogus. The guarantees it provides, even if one accepts the 

Kantian spin, are useless for scientific inference. In that sense, Reichenbach failed to 

achieve his aim. But he achieved what a doctoral thesis should perhaps most importantly 

achieve: It furnished him with a lifetime’s supply of interesting problems, to which he 

would make influential, though rarely uncontroversial, contributions. 

 

I have not read Reichenbach as a limiting frequentist in 1915 (though he is obviously a 

frequentist), since he does not explicitly identify the probability with the limit of the 

relative frequency in an infinite series and he points out in later work that he did not do so 

in his thesis.17 The role of the limit is taken up by the synthetic a priori assurance given 

by the principle of lawful distribution. But since Reichenbach does require some kind of 

convergence the synthetic a priori principle seems very much like a limiting frequency 

wolf in the coat of some kind of sheep. 
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5. Epilogue. 

 

In unpublished autobiographical notes from August 6, 1927, Reichenbach gives a brief 

review of the main results of his thesis. He lists the following:18   

(i) “The assumption of equi-probable events can be replaced by a continuity 

assumption.  

(ii) The continuity assumption is essential to an understanding of causal claims.  

(iii) An attempt to provide a guarantee of certain convergence.   

(iv) An attempt to show that the principle of lawful distribution is a synthetic a 

priori principle and necessary for all knowledge.” 

In 1927 Reichenbach views points (iii) and (iv) as failures. His work in The Theory of 

Relativity and a priori Knowledge (1920/1965), resulting from the lectures Reichenbach 

attended with Einstein after his doctoral thesis, convinced him of the impossibility of 

synthetic a priori principles. On (iii) he concedes that one can only guarantee 

convergence in probability (as is the case in the weak law of large numbers), rather than 

convergence with certainty. However, he considers (ii), the link between probability and 

causality, to be one of the most important discoveries since Hume.  

The results of this importance that Reichenbach attached to this point can be found in 

several of his later works, and Reichenbach's insights on the relationship between 

probability and causality contributed crucially to the modern understanding of causality 

developed by Salmon (1984, 1998) and Suppes (1970), and the causal Bayes net 

representation in Spirtes, Glymour and Scheines (2000). 
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Figure Caption 

 

Figure 1: Strike ratio: If the black and white stripes are equally wide, the probability of a 

white outcome is the same as the probability of a black outcome. (Figure taken from 

Reichenbach’s thesis.) 
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1 The principle of insufficient reason is now also referred to as the principle of indifference, a term coined 

by the economist John Maynard Keynes in 1921. While there may be minor differences in the precise usage 

of the two terms, those are not relevant here. 

2 Salmon (1979) describes Reichenbach as having attempted to be an ‘objective Bayesian’. While this may 

be an accurate description of Reichenbach’s mature views, I think it is a misleading description of 

Reichenbach’s early views. Reichenbach rejected (or at least tried to reject) any component of human 

judgment in the foundation of probability, and consequently he struggled with an account of how we come 

to know probabilities. In contrast, an objective Bayesian admits a component of human judgment in the 

assessment of probability, as did Reichenbach with the introduction of posits in his mature view on 

probability. The synthetic (a priori) part of Reichenbach’s early view of probability admittedly constitutes 

an introduction of human constraints into the concept of probability, but I consider this to be of a more 

necessary nature than an objective Bayesian would require. 

3 “In particular, we will strive to get rid of the principle of insufficient reason, which Kries could not avoid 

and which, since it is purely subjective, would preclude the objective validity of the laws of probability.”, 

Reichenbach (1916, 13), translation by author. 

4 See, for example, Michael Strevens, Bigger than Chaos, (2003). 

5 Reichenbach is not particularly precise about the nature of the limit. He explicitly states the decrease in 

stripe width, but like Poincaré he appears to assume that there are always enough events so that the 

histogram bins do not suddenly only contain one or no “hit”. 

6 Thesis, pp. 21-26. 

7 “Consider the experiment in which two different variables x and y are simultaneously physically realized 

in repeating trials; then a vast variety of different combinations of x and y will be observed. Let each 

observed combination x, y be represented by a point in the x-y-plane. If the y variable is now forced to 

remain within an interval c-d, then all these points will lie in a band parallel to the x-axis. The distribution 

along this band is proportional to ∫
b

a

dxxf )(1  if the interval from a to b varies arbitrarily. Each point on the 
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band corresponds to an x-value and their distribution remains unchanged when the distribution of y-values 

is restricted: this is the condition of independence. Hence, if the limits c and d are fixed while a and b vary 

arbitrarily, the following equality must hold: 

∫ ∫ ∫=
b

a

d

c

b

a

dxxfkdxdyyxf )('),( 1  

The same is true when a and b are fixed while c and d vary, i.e. 

∫∫ ∫ ∫=
d

c

b

a

d

c

b

a

dyyfdxxfkdxdyyxf )()(),( 21 ”, 

Reichenbach (1916, 33), translation by author. See also pages 33-36. 

8 In notes pertaining to Reichenbach’s thesis preserved in the Reichenbach Archives the weak law of large 

numbers is mentioned, but there is no elaboration.  

9 Reichenbach (1916, ch. 3). 

10 “If there were a fully exact measurement of real things, then one should be able to claim that the value 

obtained once can be found again at any time at any place. Since we cannot claim that the value remains 

constant we have no choice but to assume that if it is not constant then there exists some law for its 

distribution in time and space. This is the synthetic a priori judgment which we must make. It should be 

added that the same judgment must hold for the combination of several processes. As before, we cannot 

claim that the calculated value remains constant, and we have to replace it with its lawful distribution in 

space and time. Hence we conclude that the principle of lawful connection of all events, which causality 

brings about, is insufficient for the mathematical representation of reality. A further principle has to be 

added, which connects the events – one could say – orthogonally; this is the principle of lawful 

distribution.” (Reichenbach, 1916, 62-63); “Natural knowledge is only possible when this principle is 

added to the principle of causality, thereby, so to speak, connecting events orthogonally to the direction in 

which the relation of cause and effect connects them.” (Reichenbach, 1916, 74). (italics original, translation 

by author). 
11 Reichenbach (1916, 71). 

12 Reichenbach (1916, 70-72). 
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13 The causal Markov condition states that each variable in a causal structure (directed acyclic graph) is 

independent of its non-descendents given its parents (in the graph). Note that Reichenbach’s principle of 

common cause (Reichenbach, 1956) is a special case of the causal Markov condition when taken to apply 

to distributional properties. 

14 Reichenbach (1932a, 614). 

15 Reichenbach (1949). 

16 The domain of cross-integration was given by Reichenbach’s theory of reference classes. We will not go 

into any detail of that theory here.  Suffice it to say that Reichenbach’s account of reference classes was 

problematic. 

17 Reichenbach (1932a, 576-577). 

18 HR 044-06-21, Reichenbach Collection, Special Collections, University of Pittsburgh. All rights 

reserved. (translation by author). 


