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Abstract

One of the basic tasks of causal discovery is to
estimate the causal effect of some set of variables
on another given a statistical data set. In this
article we bridge the gap between causal struc-
ture discovery and the do-calculus by proposing
a method for the identification of causal effects
on the basis of arbitrary (equivalence) classes of
semi-Markovian causal models. The approach
uses a general logical representation of the equiv-
alence class of graphs obtained from a causal
structure discovery algorithm, the properties of
which can then be queried by procedures im-
plementing the do-calculus inference for causal
effects. We show that the method is more ef-
ficient than determining causal effects using a
naive enumeration of graphs in the equivalence
class. Moreover, the method is complete with
respect to the identifiability of causal effects for
settings, in which extant methods that do not re-
quire knowledge of the true graph, offer only in-
complete results. The method is entirely modular
and easily adapted for different background set-
tings.

1 INTRODUCTION

The theory of causal learning is aimed at finding ways to
estimate causal effects in a variety of different settings. In
the most basic setting the starting point is a statistical data
set of measurements over the variables of interest. In this
article we explore how quantitative causal effects can be es-
timated from such data alone, that is, without the additional
knowledge of the causal structure.

When the true causal structure (the causal graph) is known,
the well-known do-calculus enables the complete inference
(i.e., the identification) of causal effects from the passive
observational distribution over the variables (Pearl, 2000;

Shpitser and Pearl, 2006b). However, full knowledge of the
true graph requires a rather extensive understanding of the
system under investigation. Data alone is in general insuf-
ficient to uniquely determine the true causal graph. Even
complete discovery methods will usually leave the graph
underdetermined (Spirtes et al., 1993).

Here we develop a general method for the combined task
of causal structure discovery and the inference about causal
effects.1 Leveraging a constraint satisfaction approach to
connect the output of causal discovery algorithms to the do-
calculus, our method enables the identification of causal ef-
fects for arbitrary (equivalence) classes of semi-Markovian
causal models (DAGs with latent variables). The primary
advantages of the approach are that (i) it does not assume a
unique true causal structure, (ii) it is not restricted to partic-
ular types of equivalence classes of causal structures, such
as partial ancestral graphs (PAGs), (iii) it provides an algo-
rithm that outputs (when possible) at least one estimator of
the causal effect, rather than only specifying rules of a cal-
culus, (iv) it considers all do-calculus inferences, not just
e.g. the so-called backdoor conditions, and (v) it gives the
user flexibility e.g. in how statistical conflicts in the data are
handled and how the possibility of multiple estimators of a
causal effect is addressed. To simplify notation we will,
throughout this article, describe our method using a single
observational data set as input. However, we emphasize
that the method is extremely general, so, where relevant,
we will indicate how the approach is extended or adapted
to other scenarios.

Figure 1 gives an overview of the computational flow of the
proposed method. The method determines whether a causal
effect of the form P (y | do(x), w) is identified given a data
set as input, and if so, provides a numerical estimate. We
use a (complete) causal discovery method to extract from
the data as much information as possible about the true
causal graph in terms of so-called d-separation/connection
constraints. We encode these constraints in the language
of propositional logic for the constraint solving compo-
nent, thereby implicitly representing the equivalence class

1See Section 5 for a discussion of related approaches.
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Figure 1: Overall structure of the system.

of causal structures (Hyttinen et al., 2013, 2014). This
enables the application of modern constraint solving tech-
niques, such as Boolean satisfiability (SAT) solvers (Biere
et al., 2009). We can then use the do-calculus to determine
whether the causal effect P (y | do(x), w) is identified by
alternating between do-calculus inferences and constrain-
ing the equivalence class to graphs for which no estimator
of the causal effect has been found yet. If the causal ef-
fect is identifiable, we obtain a formula and a numerical
estimate of the causal effect from the joint probability dis-
tribution over the variables.

Our method enables considerable flexibility in address-
ing the identification problem: The representation of the
candidate causal structures in terms of a logical formula
frees us from the restriction to settings where standard
graphical representations of equivalence classes of causal
graphs apply. We can include a wide variety of back-
ground constraints or additional knowledge, e.g., from ex-
periments. We can leverage the full inferential power of
the do-calculus without having to explicitly enumerate ev-
ery causal structure consistent with the data. Nevertheless,
we can (and do) instantiate an implicit exhaustive search
that ensures that we preserve the completeness guarantees
of both the causal discovery procedure and the do-calculus.

The paper is structured as follows: In Section 2 we de-
scribe the model space and assumptions used and give a
concise problem statement. Section 3 explains the infer-
ence algorithms, whose completeness properties are dis-
cussed in Section 4. In Section 5 we describe known re-
sults and approaches that are closely related to ours or that
provide context. Section 6 provides simulated results illus-
trating our main points.

2 PROBLEM SETUP

Following the standard set-up of the do-calculus, we as-
sume that the causal system can be represented by a semi-
Markovian causal model (SMCM). In other words, the un-
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Figure 2: a) Example of a SMCM graph for which the
causal effect P (y|do(x)) is identifiable even when the
graph is unknown. b) Example of a SMCM graph for which
the causal effect P (y|do(x)) is not identifiable even when
the graph is known (since the graph includes a hedge).

derlying causal structure over a set of causal variables V is
described by a directed acyclic graph G, in which the di-
rected edges correspond to direct causal relations between
the variables (relative to V), and confounding of any two
observed variables by some unobserved common cause U
is represented by a bi-directed edge between the variables
(thereby omitting U for simplicity in the graph; see Fig-
ure 2). The causal structure gives rise to a probability dis-
tribution that is assumed to be Markov and faithful to the
graph. No further parametric assumption about the distri-
bution is made. Importantly, Markov and faithfulness en-
sure that the probabilistic (in)dependencies of the distribu-
tion correspond to d-separation/connection relations in the
causal graph.2

Under specific d-separation conditions on the underlying
causal structure, the rules of the do-calculus (see Figure 3)
license inferences between the passive observational dis-
tribution P (V) and the corresponding (conditional) inter-
ventional distributions P (y | w, do(x)), where one or more
variables x ⊂ V have been subject to intervention and vari-
ables w ⊂ V are conditioned on. By using an additional
exogenous intervention variable IX with IX → X for each
variable X , the d-separation conditions of the do-calculus
can be stated as in Figure 3 (see Pearl (1995, p. 686) for the

2See Spirtes et al. (1993) for a precise statement of the as-
sumptions and for a definition of d-separation.



Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if Y ⊥⊥ Z|X,W ||X

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if Y ⊥⊥ IZ |X,Z,W ||X

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if Y ⊥⊥ IZ |X,W ||X

Rule 4 (Marginalization/sum-rule):

P (y|do(x), w) =
∑

z P (y, z|do(x), w)

Rule 5 (Conditioning):

P (y|do(x), z, w) = P (y, z|do(x), w)∑
y P (y, z|do(x), w)

Rule 6 (product/chain-rule):

P (y, z|do(x), w) = P (y|do(x), w, z)P (z|do(x), w)

Figure 3: Rules of the do-calculus.

proof of equivalence to the standard conditions; see also
Spirtes et al. (1993, p. 79)). The d-separation conditions of
each rule have the general form of ‘Y ⊥⊥ Z | X,W || X’,
where W,X, Y, Z are disjoint sets of variables in the graph
(including intervention variables), and ‘ || X’ denotes an
intervention on X: any edges with arrowheads into the
variables in X are cut.

Given a graph G, the identifiability of a causal effect is now
defined as follows (see Pearl (2000), Def. 3.2.4, p. 77): a
causal effect is identifiable if and only if it can be uniquely
computed from G and any positive input distribution P ()
that is Markov to G, i.e., there are no two causal models
with structure G that are Markov to P () but have different
numerical values for the causal effect.

An algorithm to apply the do-calculus when the true graph
is known was developed by Tian and Pearl (2002), which
with some modifications was shown to be complete for the
identification of (conditional) causal effects by Shpitser and
Pearl (2006b) (see also Huang and Valtorta (2006)). The
Shpitser algorithm provides (given the graph and the ob-
servational distribution) one estimator of the causal effect,
if such an estimator exists. When the causal effect is non-
identifiable, it returns a feature of the graph, known as a
hedge, that proves non-identifiability (see Figure 2b for an
example; see Shpitser and Pearl (2006b) for the exact defi-
nition).

Since we do not assume that the true graph G is known, we
take a causal effect to be identifiable given the equivalence
class of causal structures deemed consistent with the input
data if and only if the causal effect is (Pearl-) identifiable
by the same estimator for each member of the equivalence
class.

As shown in the simulations in Section 6, the causal ef-
fect is very often not uniquely identifiable from data when
the true graph is unknown. So, instead of outputting only
whether an effect is identifiable, and the estimate if it is,
we follow Maathuis et al. (2009), who output a (multi)set
of causal effect estimates that in some cases can be used to
obtain bounds on the true causal effect. This leads to the
following problem statement.

Problem Statement
INPUT: Data set D generated from an SMCM over

variables V and a query about a causal effect
P (y | do(x), w).

TASK: Output a set of causal effect estimates S such
that it includes an estimate for P (y | do(x), w)
for any causal structure that is consistent with D.
Include ‘NA’ in S, if the causal effect is not iden-
tifiable for some causal structure consistent with
D.

3 THE APPROACH

We proceed by describing the main contribution of this
work: a general method for the estimation of causal ef-
fects. In the following, we will specify the main compo-
nents (recall Figure 1) of our approach. First, we give de-
tails on how we connect the causal structure discovery al-
gorithm of choice with the constraint solving component
that maintains a logical representation of the equivalence
class of models under consideration. Then, we describe the
do-calculus inference component and its iterative interac-
tions with the constraint solver.

3.1 Querying the Equivalence Class

We use (for purposes of illustration) the FCI-algorithm
(Spirtes et al., 1993) to determine the equivalence class
of candidate causal structures from the data set. The FCI-
algorithm considers the same class of causal models as the
do-calculus: acyclic causal structures with latent variables.
It is complete with respect to knowledge about the underly-
ing causal structure that can be obtained from conditional
independence tests. Most importantly, FCI achieves this
d-separation completeness while performing very few re-
dundant tests. It thus also lends itself to the efficient char-
acterization of the equivalence class in terms of a small set
of d-separation constraints that can be fed to the constraint
solver.



Algorithm 1 Do-calculus Inference.

Input: P (y|do(x), w), an equivalence class E of SMCM
graphs.

Initialize the set S of causal effect estimates as empty.

While E is nonempty:

Find a graph G from the equivalence class E.
Find a formula F by calling Shpitser’s algorithm for graph
G. If the algorithm does not find a formula but returns a
hedge H, restrict eq. class E not to include H, add NA to
S and continue the loop from the beginning.
Find a derivation for F by calling Algorithm 2 for graph G
and the input distributions used in F .
Using F and the (estimated) P (V), compute the estimate
for the causal effect and add it to S.
Restrict the eq. class E to not satisfy at least one of the
required d-separations in derivation D.

Return a set S of numerical causal effect estimates.

We translate the d-separation constraints of the equivalence
class into a logical representation using the ASP-encoding
of Hyttinen et al. (2014). We can then query the con-
straint solver to obtain graphs from the equivalence class
or to check whether any graphical conditions, such as d-
separations or ancestral relations, apply to all, some or none
of the members in the equivalence class, and we can further
restrict the equivalence class with additional constraints.

For other settings or different background assumptions, the
FCI algorithm can be substituted with any other structure
discovery method. If one has reason to think that there are
no latent variables, we would recommend using an exact
Bayesian search algorithm, or the PC- or GES-algorithms
if something more scalable is required (Spirtes et al., 1993;
Chickering, 2002). If the causal constraints are to be ob-
tained from heterogeneous data sets, possibly including ex-
perimental data or background knowledge, then a search
algorithm such as GIES, IOD or a SAT-based procedure
may be better (Hauser and Bühlmann, 2012; Tillman and
Spirtes, 2011; Triantafillou and Tsamardinos, 2014; Hytti-
nen et al., 2014). The overall completeness of our method
depends in part, of course, on whether the causal discovery
method is complete.

3.2 Identifying Causal Effects

Algorithm 1 instantiates the do-calculus inference on a
given equivalence class. It queries the constraint solver for
a graph G in the equivalence class (one truth-value assign-
ment to the logical formula) and calls Shpitser’s algorithm
on G to identify the desired causal effect.

If Shpitser’s algorithm fails to identify the effect and re-
turns a hedge H , then the causal effect is non-identifiable
for G. Consequently, Algorithm 1 adds ‘NA’ to the set

Algorithm 2 Do-calculus Derivation.

Input: P (y|do(x), w), a SMCM graph G, and a set of distri-
butions P = {P1, . . .}.

For each Pi in P :

Derive the distributions computable from Pi using the
rules of the do-calculus such that:
• The required d-separation conditions are satisfied by

G.
• All variables appearing in the derived distributions are

ancestors of Y ∪W (see Shpitser and Pearl (2006a)).
• For an application of the product rule, both required

distributions are in P .
Add the new distributions to P and record the used rules
and the required d-separations.
If P (y|do(x), w) was derived, return the formula, the
rules, and the d-separations used on the way.

Return “the effect is not identifiable”.

S of causal effect estimates to mark the non-identifiability.
In addition, we restrict the equivalence class to not include
any graphs that have the hedge H , as the causal effect is
unidentifiable for such graphs as well.

If Shpitser’s algorithm returns a formula F , then the causal
effect is identifiable on the basis of the (marginal condi-
tional) distributions {P1, . . .} used in F . Algorithm 2 is
then called with the causal effect query, the graph G and
the list of distributions {P1, . . .} to obtain a ‘derivation’
for the formula. This derivation specifies the rules of the
do-calculus used to derive the formula F and consequently
the set of d-separation constraints C that warrant the use
of this estimate. The numerical estimate is added to S.
This estimate is now valid for all graphs that satisfy the
d-separation constraints in C. Then, the equivalence class
is again restricted to disregard such graphs by ensuring that
at least one of the constraints in C is no longer satisfied,
i.e., we add the negation of the conjunction of constraints
in C to the constraint solver. We repeatedly solve for a new
graph G from the restricted equivalence class until the class
becomes empty, at which time we have the solution to the
Problem Statement. Note that the repeated restrictions of
the equivalence class avoid an explicit enumeration of all
the members of the equivalence class, allowing for faster
operation.

Algorithm 2 implements the search for a valid do-calculus
derivation for a formula. We need such a derivation as Sh-
pitser’s algorithm does not output the set of d-separations
needed for the validity of the formula. Algorithm 2 does
an exhaustive breadth-first-search, producing computable
distributions that are warranted by the input graph and do-
calculus. It stops when a derivation for the causal effect
is found. The algorithm can be made sufficiently efficient
because 1) we only input the distributions that are used in



the formula given by Shpitser’s algorithm, 2) we use the
fact that only variables that are ancestors of Y ∪W can be
helpful in determining the causal effect (Shpitser and Pearl,
2006b), and 3) causal structures usually permit the identifi-
cation of fairly few distributions.

Figure 9 at the end of the paper shows an example run of
Algorithm 1 for one particular equivalence class.

4 COMPLETENESS RESULTS

The completeness properties of our method are derivative
of the completeness properties of the causal discovery al-
gorithm of choice and the do-calculus. Given a complete
structure search algorithm, such as FCI, we obtain in the
large sample limit the Markov equivalence class of the true
causal structure. If the causal effect in this equivalence
class is non-identifiable, it is either because one graph in
the equivalence class contains a hedge, which proves non-
identifiability, or because there are two graphs which have
different estimators for the causal effect. Algorithm 1 re-
peatedly performs the (complete) Shpitser algorithm on
members of the equivalence class, each time restricting
the equivalence class to graphs for which the discovered
derivations of an estimator do not hold. Consequently, its
output must eventually identify a graph with a hedge if
there is one, since implicitly the entire set of graphs in the
equivalence class is enumerated. If no graph with a hedge
is found, then Algorithm 1 only terminates once there is
a derivation of an estimator of the causal effect for each
graph in the equivalence class. A check whether these for-
mulas are the same determines the identifiability. (In the
presented version of the algorithms we only output the nu-
merical estimates, but the formulas could easily be added
to avoid any formal concern that there could be coinciden-
tally identical numerical values of the causal effect derived
from two different estimators.)

We note that the FCI algorithm is not complete with regard
to so-called Verma constraints that can further restrict the
equivalence class of causal structures (Shpitser and Pearl,
2008). We are not aware of any search algorithm that is
complete in this regard. However, any specific Verma con-
straint that may be established for a particular case, can eas-
ily be included and the set of estimators our method returns
will be complete with regard to that additional constraint.

For settings involving multiple data sets or experimental
data sets, there exist d-separation complete structure search
algorithms, but it is not known whether the do-calculus is
complete for these settings. Certainly, Shpitser’s algorithm
is restricted to the passive observational distribution. For
the restricted experimental settings described in Barein-
boim and Pearl (2012), we could replace Shpitser’s algo-
rithm with Bareinboim’s method in Algorithm 1 and re-
tain completeness, since Bareinboim shows completeness
for the identification problem in these so-called “surrogate

experiments”. In the future, we hope our approach can aid
the identification of causal effects from multiple data sets
of non-identical populations (Bareinboim and Pearl, 2013).

5 RELATED WORK

Building the connection between causal structure discovery
and causal effect inference seems essential if one wants to
complete the aim of causal learning from data sets to causal
effects. We consider it all the more important given that
significant parts of the causal literature regard the problem
of identifying the causal effect given the causal structure
as entirely separate from the problem of discovering the
causal structure in the first place. For example, the entire
literature on algorithms applying the do-calculus assumes
— generally without further discussion — that the causal
graph is known (Tian and Pearl, 2002; Huang and Valtorta,
2006; Shpitser and Pearl, 2006b; Bareinboim and Pearl,
2012). In the general model space that the do-calculus al-
lows for, the causal structure can hardly ever be uniquely
determined from the passive observational distribution or
even from the experimental distributions that Bareinboim
and Pearl (2012) consider. Still, the algorithms rely on be-
ing able to check complicated features of the causal struc-
ture. Similarly, the methods of causal structure discovery
often remain silent on how exactly one should determine
the causal effects given their output equivalence class.3

There need not be any harm in this division of labor if there
is an obvious and satisfactory answer of how to connect
the two. We assume that the standard proposal would be
to take the equivalence class of causal structures output by
a search algorithm, enumerate each member of the equiva-
lence class, and perform the do-calculus algorithm on each
member to determine (the identifiability of) the causal ef-
fect. Effectively, this is what is done in the IDA-algorithm
which returns (multi-sets of) estimates of the causal ef-
fects of variables from an equivalence class of causal struc-
tures under the assumption that there are no latent vari-
ables (Maathuis et al., 2009). However, such an explicit
enumeration of the members of an equivalence class can
very quickly become unwieldy (see also (Malinsky, 2015)).
In our simulations (Section 6) we show that our approach
is more efficient than a naive enumeration combined with
the do-calculus inference.

Zhang (2008), instead, developed a do-calculus directly
for the equivalence classes represented by partial ancestral
graphs (PAGs; see also Richardson and Spirtes (2003)). As
he explains, the calculus is not complete and no inference
algorithm to apply the calculus is given (although Zhang
notes that his results could be used to improve on the ear-

3The same is not true for methods of causal discovery that
include a parametric assumption (e.g. linearity, additive noise,
non-Gaussianity, etc), since in these cases the identification of
the qualitative causal effect generally corresponds to providing
a quantitative estimate of it.
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Figure 4: Identifiability of the causal effect P (y|do(x)) over random 5-variable graphs.
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lier Prediction Algorithm by Spirtes et al. (1993)). His ap-
proach is closely related to ours, with the main difference
that we do not restrict ourselves to equivalence classes of
SMCMs that are PAGs and that our procedure is complete
for his setting.

Also relying on PAGs, Maathuis and Colombo (2015) fo-
cus on a subset of Zhang’s invariance principles (which
themselves are implied by the do-calculus) in order to spec-
ify conditions on a PAG that allow for the identification
of an adjustment set, i.e., a set of variables W that block
all so-called “backdoor paths” between X and Y , and al-
low for the causal effect P (y | do(x)) to be estimated us-
ing P (y | w, x). In our approach their “generalized back-
door criterion” corresponds to the simple and intuitive d-
separation conditions that are required for the estimation
of the causal effect (w ⊥⊥ Ix and y ⊥⊥ Ix | x,w). These
we can directly query on any class of SMCMs, not just on
PAGs (or MAGs or DAGs).

More data-driven methods to find adjustment sets have also
been developed (De Luna et al., 2011; Entner et al., 2013;
VanderWeele and Shpitser, 2011). These do not rely ex-
plicitly on a graphical representation of the causal knowl-
edge, but specify independence conditions that can be di-
rectly checked in the data. This is a very attractive direction
of research, since it cuts out the graph from the inference
procedure altogether. However, extant methods rely on a
variety of general background assumptions about how the
causal variables may be related (e.g. order assumptions)
that we do not require. More generally, methods for the
identification of adjustment sets obviously do not exhaust
the identifiability conditions for causal effects for which the
do-calculus was shown to be complete. Most prominently,
the so-called “front-door” criterion for identifiability is not
considered. Thus, one of the contributions of our method
is to enable the full identification power of the do-calculus
in settings when the causal structure is underdetermined.

6 SIMULATIONS

These simulations explore the identifiability of the causal
effects when the true causal graph is unknown, the scala-
bility of the methods presented in this paper, and, finally,
the accuracy of different causal effect estimates when mul-
tiple estimators can be calculated. We implemented the
algorithms using R with various packages (Tikka, 2014;
Kalisch et al., 2012). Following Hyttinen et al. (2014) for
the implementation of the constraint solving component,
we employed the off-the-shelf state-of-the-art answer set
programming (ASP) solver Clingo version 4.4.0, which at
its core uses modern SAT solving techniques to perform a
complete search for solutions, and at the same time allows
for a natural high-level representation of the structural con-
straints in logical form (Gebser et al., 2011).

Figure 4 compares the identifiability of the basic causal ef-

fect P (y|do(x)) when the graph is known vs. when only its
equivalence class is known. Figure 4a shows the number of
identified causal effects in random 5-variable graphs with-
out any restrictions, as density increases. When only the
equivalence class is known, the causal effect is almost al-
ways either trivially identified as X is discovered not to be
an ancestor of Y in any member of the equivalence class, or
trivially unidentifiable due to a possible hedge in the equiv-
alence class. When the graph is known, a significant num-
ber of causal effects are identified even when X is an an-
cestor of Y . This is further highlighted in Figure 4b where
X is required to be an ancestor of Y in the true graph. Al-
most no causal effects are identified when only the equiva-
lence class is known. Only in very rare cases can one ori-
ent enough edges to deduce the absence of hedges from the
equivalence class. This seems to happen when 4-7 edges
are present; additional edges often prevent the determina-
tion of the orientation. Figure 4c and 4d consider the same
comparison with the modification that the true causal order
is known by the causal discovery algorithm, and thus fixed
in the equivalence class. A few more effects are identified,
but since the fixed causal order does not prevent bidirected
edges, the improvement on non-trivial instances is limited
in Figure 4d.

Figure 5 shows equivalence classes of graphs for which the
causal effect is identified even when the true graph is un-
known. In each case, we are able to deduce enough edge
orientations to prevent the presence of a hedge, and to fix
the orientation of the paths from X to Y . Note that Fig-
ure 5d shows an example for which the do-calculus for-
mulation of Zhang (2008) over PAGs is incomplete. Our
approach is complete here and can hence identify the con-
ditional causal effect.

We also compared the running times of Algorithm 1 against
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trivially enumerating all graphs in the equivalence class and
running Shpitser’s algorithm on all of them. Figure 6 shows
the median times spent by the different parts of the algo-
rithms. Algorithm 1 is much faster. In addition to the time
spent on enumerating the whole equivalence class by the
ASP constraint solver used here, running Shpitser’s algo-
rithm on so many graphs also takes a considerable amount
of time.

Figure 7 shows the median of the time spent during the dif-
ferent operations of Algorithm 1 on larger instances. FCI
was run using an independence oracle. Algorithm 1 spends
the majority of its time finding graphs for which the for-
mulas obtained in previous iteration rounds are not war-
ranted. For some outlier instances not visible in the median
here, Algorithm 2 also needs a considerable amount of time
when finding the derivation for a particularly complicated
formula. Note that we undergo here a rather heavy task of
finding estimates for all graphs in the equivalence class. If
we were content to just decide whether the effect is identi-
fiable, the total running times would be considerably lower.
However, as shown in Figure 4, the results of that kind of
an algorithm would be quite uninformative.

Finally, we examined the benefits of finding more esti-
mators for the causal effect using Algorithm 2 in cases
where multiple different estimators exist. We drew ran-
dom parameters for a binary SMCM with the graph in Fig-
ure 2. Given the equivalence class (shown in Figure 5c), the
causal effect P (y|do(x = 0)) can be calculated from the
passively observed distribution P (h,w, x, y, z) either by
the backdoor formula adjusting for h, or by the front-door
formula relative to z (see Figure 5c). We also estimated the
causal effect by directly sampling from the model when x
is surgically fixed to 0. Figure 8 shows the average KL-
divergence of the different estimators. The distributions
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Figure 8: Average KL-divergence for different estimates of
P (y|do(x)) for the equivalence class of Figure 2. Median,
33% and 66% quantiles are plotted.

needed for the estimators were estimated directly (with reg-
ularization to avoid zero probabilities). In these simulations
the front-door estimator seems to offer better accuracy than
the backdoor estimator. By intervention we can obtain still
higher accuracy than either of the estimates obtained from
passively observed data. Shpitser’s algorithm gives here
only the backdoor formula. This simulation shows that it
may be beneficial to consider many estimators of a causal
effect instead of using only a single consistent formula.

7 CONCLUSION

In this work we explored the possibilities of estimating
causal effects from data. We have considerably relaxed
the assumption of the known true graph, which has been
standard in the literature on the do-calculus. Although
causal effects are rarely identified when the true graph is
unknown, our approach can still generate informative out-
put in terms of a set of estimates. Unlike other approaches
that perform only a limited set of causal effect inferences,
our method retains the completeness properties of the used
causal discovery algorithm and the do-calculus inference.
We hope that the flexible machinery presented in this paper
can be used to obtain further graphical criteria for identi-
fiability, and will help in achieving more completeness re-
sults.
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