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Abstract

Much of scientific data is collected as ran-
domized experiments intervening on some
and observing other variables of interest.
Quite often, a given phenomenon is investi-
gated in several studies, and different sets of
variables are involved in each study. In this
article we consider the problem of integrating
such knowledge, inferring as much as possible
concerning the underlying causal structure
with respect to the union of observed vari-
ables from such experimental or passive ob-
servational overlapping data sets. We do not
assume acyclicity or joint causal sufficiency
of the underlying data generating model, but
we do restrict the causal relationships to be
linear and use only second order statistics of
the data. We derive conditions for full model
identifiability in the most generic case, and
provide novel techniques for incorporating an
assumption of faithfulness to aid in inference.
In each case we seek to establish what is and
what is not determined by the data at hand.

1 INTRODUCTION

For many scientific domains different research groups
study the same or closely related phenomena. In gen-
eral the resulting data sets may contain different sets
of variables with only partial overlap, and some of the
data sets may be passive observational, while others
have resulted from experiments intervening on a subset
of the variables. In the context of discovering causal
pathways, it would be desirable to be able to integrate
all the findings of these ‘overlapping’ experimental and
observational data sets, not only to gain an overall
view, but, where possible, to also detect causal rela-
tions that were not identified in any individual study.

In the literature on causal discovery methods this

problem has been addressed in two complementary, yet
so far, independent ways. On the one hand a variety
of algorithms have been developed that integrate data
from overlapping but purely passive observational data
sets (Tillman et al., 2009; Triantafillou et al., 2010;
Tillman and Spirtes, 2011). On the other hand there
are several procedures that combine multiple experi-
mental studies on the same set of variables (Cooper
and Yoo, 1999; Tong and Koller, 2001; Murphy, 2001;
Eaton and Murphy, 2007; He and Geng, 2008; Schmidt
and Murphy, 2009; Eberhardt et al., 2010; Hyttinen
et al., 2010).

In this article we present methods that combine the
two approaches: we consider data sets that con-
tain passive observational or experimental measures of
overlapping sets of variables. We do not assume that
the set of variables is jointly causally sufficient; in other
words we allow for the possible existence of common
causes of the measured variables that are not mea-
sured in any of the available data sets. Moreover, un-
like any of the previous work on overlapping data sets,
we do not assume that the underlying causal struc-
ture is acyclic. To ensure that we have a well-defined
representation of the cyclic relations, we assume that
the causal relations are linear (see Section 2). The
assumption of linearity also enables the use of quan-
titative constraints that can lead to the identifiability
of the underlying causal structure in cases which are
non-identifiable without such a parametric assumption
(Hyttinen et al., 2011). We provide necessary and suf-
ficient conditions under which the true causal model
can be identified, but given the weak set of background
assumptions, these are inevitably very demanding. In
general there may only be a very limited number of ex-
perimental data sets, and so the remaining underdeter-
mination can still be quite substantial. We then pro-
vide a novel approach for incorporating the assump-
tion of faithfulness (Spirtes et al., 1993) to aid in model
search for this family of linear models. We show that,
for sparse graphs, a significant amount of structure can
be inferred using this framework.
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Figure 1: An example of a linear cyclic model with
latent variables (left) and the corresponding manipu-
lated model in an experiment where x1 is intervened,
x3, x4 are observed and x2 is hidden (right). Single-
headed arrows denote non-zero direct effects while
double-headed arrows represent the existence of latent
confounders. The disturbance variables are omitted to
improve readability.

This paper is structured as follows. We formalize the
problem in Section 2, by defining the model family we
are considering, specifying the representation used for
overlapping data sets, and formulating the inference
problem. Then, in Section 3, we derive necessary and
sufficient conditions for the identifiability of the model,
in the absence of extra assumptions. In Section 4, we
consider an approach to integrate simple faithfulness
constraints, which we then extend to a more general
and powerful method in Sections 5-6. Simulations are
provided in Section 7, and some conclusions in Sec-
tion 8.

2 MODEL AND PROBLEM
DEFINITION

We use the following formal representation of the
setting with overlapping data sets: Given data sets
D1, . . . ,DK with measurements on the sets of variables
V1, . . . ,VK , respectively, let the joint set of variables
be V = {x1, . . . , xn} =

�
k=1,...,K Vk. Obviously, the

individual sets Vk of variables in Dk will generally not
be causally sufficient, but we also allow the joint set
of variables V to be causally insufficient, i.e. there can
be confounders that are not measured in any of the
available data sets. Each data set Dk is considered to
be the result of an experiment Ek that partitions the
variables V into Jk (intervened), Uk (observed), and
Lk (hidden) variables. We assume that all variables
in V are measured in at least one of the experiments,
i.e. for any x ∈ V there exists some experiment Ek
with 1 ≤ k ≤ K such that x ∈ Jk ∪ Uk. Passive ob-
servational studies are trivially represented by ‘null’-
experiments where Jk = ∅.

We assume that there is a single generating model over
the variables in V that, suitably manipulated for each
experiment, gives rise to all the data sets. We consider
the model class of linear cyclic models with latent vari-
ables (linear non-recursive SEMs with correlated dis-
turbances) (Bollen, 1989). The model can be described
by the equation

x := Bx+ e (1)

where x is a vector that denotes the variables in V
while e represents the corresponding exogenous distur-
bances. The model is parameterized by a direct effects
matrix B and a covariance matrix of the disturbances
cov(e) = Σe. Confounding due to variables external
to the joint set of variables V is modeled implicitly
by non-zero off-diagonal entries in Σe that correlate
the disturbances. Figure 1 shows how the structure
of such a model can be described by a mixed graph.
Note that we assume throughout that the diagonal of
B is zero; this is not a substantial assumption.1

We use the standard notion of “surgical” interventions
(Pearl, 2000), where an intervention makes the inter-
vened variable independent of its normal causes. For-
mally, the intervened model (B̃, Σ̃e) is the same as the
unintervened model (B,Σe) except that each row in
B̃ corresponding to edges incident on some xi ∈ J is
set to zero (thereby breaking the edges into any such
variables); similarly, for the ith row and column of
Σ̃e. An intervention vector c is added to the model
Equation (1) that determines the values of (only) the
intervened variables according to an intervention dis-
tribution with µc andΣc. For notational simplicity we
assume that the intervened variables are randomized
independently with zero mean and unit variance. This
does not seriously limit the applicability of the meth-
ods.2 For any individual (experimental) data set Dk

we then assume that only the values of x correspond-
ing to variables in Jk ∪ Uk are revealed (see Figure 1,
right).

To ensure that the cyclic model has a well-defined
equilibrium distribution, Hyttinen et al. (2012) ex-
amined models that are weakly stable, that is, mod-
els for which the I −B matrix of the model (where I
is the identity matrix) and all corresponding manip-
ulated versions are invertible. Weak stability implies
that the observed distribution follows a covariance ma-
trix cov(x) = (I−B)−1Σe(I−B)−T . However, in the

1
There is inherent underdetermination of the diagonal

elements of B, related to self-loops (edges from a node to

itself) in the model. These do not affect the equilibrium

distribution in linear cyclic models, and can be handled by

a suitable normalization (Hyttinen et al., 2012).
2
A detailed formal account of the intervened model is

given by Hyttinen et al. (2012), see their Equation 7 and

Lemma 5.



case of overlapping data sets we have to make a slightly
stronger assumption to obtain the desired identifiabil-
ity results:

Assumption 1 (No unit cycles) The sum-product
of edge-coefficients on any subset of paths from a vari-
able back to itself cannot sum up to exactly 1.

Weak stability follows from this assumption. The
proof of this claim, and all subsequent results in this
paper, can be found in the Appendix in the Supple-
mentary Material.

We can now state our learning problem formally:
Given data sets D1, . . . ,DK containing measurements
of the marginalized distribution of a (experimentally
manipulated) linear cyclic model with latent variables
(B,Σe) that satisfies Assumption 1, identify as many
causal relations among the joint set of variables, i.e.
entries in B, as possible.

3 IDENTIFIABILITY

One of the advantages of linear cyclic models is that
the correlation measured between an intervened vari-
able xi and a non-intervened variable xj corresponds
to the sum-product of all the directed paths from xi

to xj in a graph where all arcs into the intervened
variables in Jk are cut. Eberhardt et al. (2010) refer
to these terms as experimental effects and use the no-
tation covk(xi, xj) = t(xi�xj ||Jk). When the inter-
vention set of an experimental effect contains all but
one variable, then it corresponds to the direct effect :
t(xi�xj ||V \ {xj}) = b(xi → xj) = B[j, i]. Similarly,
when only one variable is subject to intervention, we
have the total effect : t(xi�xj ||{xi}) = t(xi�xj).

Eberhardt et al. (2010) describe a learning algorithm
which uses experimental effects estimated from the
data to form linear equations on the unknown total
effects. In particular, for an experiment with a vari-
able xi ∈ Jk and a variable xu ∈ Uk, one can obtain
the constraint

t(xi�xu) =
�

xj∈Jk\{xi}

t(xi�xj)t(xj�xu||Jk) (2)

+ t(xi�xu||Jk).

Note that for all xj ∈ Jk the experimental effects
t(xj�xu||Jk) are directly given by the relevant co-
variances (see above) in the data from this experiment,
so the equation is linear in the unknown total effects.
The intuition behind the equation is that the set of
all directed paths from xi to xu in the original (un-
manipulated) model can be separated into those go-
ing through each of the other intervened variables (the
ones in Jk \ {xi}) and the remaining ones. Collecting

a sufficient number of such linear constraints makes
it possible to identify all total effects, from which it
is straightforward to obtain the direct effects, as de-
scribed in their paper.

While their learning procedure was constructed for the
fully observed case, we note that it is directly appli-
cable to our overlapping data sets case, since for any
xi ∈ Jk and any xu ∈ Uk, all required experimen-
tal effects are covariances between observed variables
(and do not involve any variables in Lk). Moreover,
the identifiability results described in Eberhardt et al.
(2010) and Hyttinen et al. (2012) can be generalized
to the current setting once it is clarified how their con-
ditions apply when the set of variables V is split into
three sets Jk, Uk and Lk, rather than just Jk and Uk.
For this purpose, we say that a given set of experi-
ments E1, . . . , EK satisfies the pair condition for the
ordered pair of variables (xj , xu) if there is an exper-
iment Ek, with 1 ≤ k ≤ K, such that xj ∈ Jk and
xu ∈ Uk. Note that an experiment with xj ∈ Jk and
xl ∈ Lk does not satisfy the pair condition for the pair
(xj , xl) even though xl is not subject to intervention.
The identifiability conditions for overlapping data sets
are then as follows:

Theorem 1 (Sufficiency) Given some set of exper-
iments, a linear cyclic model with latent variables sat-
isfying Assumption 1 is fully identified if the pair
condition is satisfied for all ordered pairs (xi, xj) ∈
V × V, xi �= xj.

Note that unlike in Eberhardt et al. (2010), our suf-
ficiency result here requires the slightly stronger As-
sumption 1. We further show that the sufficient con-
dition is also in the worst case necessary.

Theorem 2 (Worst Case Necessity) Given any
set of experiments that does not satisfy the pair con-
dition for all ordered pairs of variables (xi, xj) ∈ V ×
V, xi �= xj, there exist two distinct linear cyclic mod-
els with latent variables satisfying Assumption 1 that
are indistinguishable given those experiments.

So with minor adjustments to the conditions and as-
sumptions, we obtain for the overlapping data sets case
very similar identifiability results as were given for the
case when all data sets shared the same set of variables.
In fact, as indicated in Appendix C, the learning algo-
rithm of Eberhardt et al. (2010) is also complete given
the background assumptions we have been considering
here, in the sense that the information gained from
the experimental effects fully exhausts what can be
inferred about the underlying causal model. That is,
correlations between non-intervened variables in this
case provide no extra benefit. In Section 7 we use this
algorithm (‘EHS’) as a baseline comparison of what a



complete procedure can infer without making stronger
search space assumptions. Together, Theorems 1 and
2 provide a priori guidelines to identify which experi-
mental results are needed to complement any available
ones. Note that K specifically chosen experiments are
enough to the satisfy the identifiability condition for
models with up to

� K
�K/2�

�
variables (Spencer, 1970).

4 FAITHFULNESS & BILINEARITY

In most realistic contexts the set of available overlap-
ping data sets will not contain a sufficient variety of
experimental interventions to satisfy the demanding
identifiability condition given in the previous section.
Hence, the full model will typically not be fully iden-
tified by the ‘EHS’ procedure. Furthermore, in most
cases the overwhelming majority of the direct effects
will remain underdetermined, as is evident from the
simulations in Section 7.

Thus, a useful approach might be to strengthen the as-
sumptions regarding the underlying model. The nat-
ural assumption, prevalent throughout causal discov-
ery research, is the assumption of faithfulness (Spirtes
et al., 1993), which can be seen as a simplicity or min-
imality assumption for causal discovery procedures.
Most commonly used for inference in passive obser-
vational data, we consider the natural extension of the
faithfulness assumption to experimental contexts: A
data-generating model is said to be faithful if all in-
dependences true in any (manipulated) observed dis-
tribution are consequences of the structure of the (ma-
nipulated) graph, and not due to the specific parameter
values of the model. In short, faithfulness enables us to
infer from a statistical independence that there is an
absence of a causal connection between the variables
in question, in the particular context under which the
statistical independence occurs. It is well known that
heavy confounding often results in causal models that
are effectively unfaithful given the limited sample size
of the data. Nevertheless, if one has reason to believe
that models are sparse and confounding limited, then
faithfulness may constitute a reasonable assumption
that can provide further insights.

Hyttinen et al. (2010) considered a set of simple faith-
fulness rules by which marginal or conditional indepen-
dencies in the observed variables were used to derive
constraints of the form b(xi → xj) = B[j, i] = 0, i.e.
based on statistical independencies in the experimen-
tal data, some direct effects were inferred to equal zero.
While these constraints are (trivially) linear in the di-
rect effects, they are highly non-linear in the total ef-
fects, and thus cannot easily be integrated with linear
constraints on the total effects of the form of Equa-
tion 2. To solve this problem Hyttinen et al. (2010)

noted that one could, in fact, use the measured exper-
imental effects to put linear constraints on the direct
effects, as opposed to the total effects.

t(xi�xu||Jk)= b(xi�xu) + (3)
�

xj∈V\(J∪{xu})

t(xi�xj ||Jk)b(xj�xu)

In this way, the constraints from the experimental ef-
fects could be straightforwardly combined with faith-
fulness constraints, resulting in a fully linear system
of equations constraining the direct effects (Hyttinen
et al., 2010). The resulting linear system can be an-
alyzed to determine which direct effects are identified
and which are underdetermined; this procedure is em-
pirically evaluated in Section 7 under the abbreviation
‘HEH’.

Unfortunately, in the overlapping variables scenario, in
most cases one cannot obtain many linear constraints
on the direct effects. This is because one or more of
the non-intervened variables may be latent, and one
needs the experimental effects to all non-intervened
variables in a given experiment to construct the linear
constraints on the direct effects. In general, the exper-
imental effects t(xi�xj ||Jk) are not available when
xj ∈ Lk, unless they can be inferred from the com-
bination of results from all data sets. On the other
hand, as we discussed in Section 3, we can obtain lin-
ear constraints on the total effects, because latents do
not form a problem in this case. The remaining prob-
lem is thus that, in general, we may have a large set of
linear constraints on the elements of the total effects
matrix T = (I−B)−1, where T[j, i] = t(xi�xj), com-
bined with the knowledge that certain elements of B
are zero, but finding a solution to this combined set of
constraints is no longer trivial.

One approach to solving this problem is to take the
combination of the direct effects (elements of B) and
the total effects (elements of T) as the unknown free
parameters of the problem. In this way, we now have
a bilinear system of equations: There are equations
linear in the elements of B, equations linear in the el-
ements of T, and the constraint T(I − B) = I yields
equations that are bilinear; they are linear in one pa-
rameter vector given the other. To determine the un-
derdetermination of the system under this combined
set of constraints thus involves characterizing the so-
lution set for such a bilinear equation system. Unfortu-
nately, no efficient solution methods for large bilinear
equation systems are known, except in certain special
cases (Cohen and Tomasi, 1997; Johnson and Link,
2009).

Nevertheless, one can attempt to solve the system by



minimizing the objective function

C(B,T) = �K1vec(B)− k1�2 + (4)

�K2vec(T)− k2�2 + �T(I−B)− I�2,

where the � · �2 denotes squared Euclidean norm (for
a vector) and squared Frobenius norm (for a matrix),
i.e. in both cases the sum of squares of the elements.
In this objective function, the first term (involving K1

and k1) represents all linear constraints on the ele-
ments of B that we have been able to construct, the
second term (involving K2 and k2) similarly repre-
sents any available linear constraints on the elements
of T, while the last term derives from the constraint
T = (I − B)−1. This objective function is quadratic
in B (for fixed T), and quadratic in T (for fixed B),
so it is easy to set up an alternating variables ap-
proach which minimizes with respect to each one at
a time, keeping the other fixed. Since the objective is
not convex with respect to the joint parameter vector,
one cannot be guaranteed to find the global minimum
using such a procedure. In our experience, however,
this approach is generally quite effective in finding so-
lutions to the underlying system of equations, when
such solutions exist. We use this procedure, starting
from a sample of random initial points, to generate a
sample of solutions to the available constraints. For
each of the direct effects (elements of B) we then, on
the basis of its variance in the sample, classify it as
determined or underdetermined. For determined coef-
ficients we further infer whether the coefficient is zero
(edge is absent) or non-zero (edge is present), based on
the mean value of the coefficient in the sample. Note
that any constraints on the model parameters that fol-
low the above bilinear form can easily be added to this
inference procedure. In fact, it turns out that several
of the faithfulness constraints derived in the following
section can be added. With these additions, we em-
pirically evaluate this method (under the abbreviation
‘BILIN’) in the simulations in Section 7.

5 FAITHFULNESS CONSTRAINTS
ON SETS OF PATHS

While constraints of the form b(xi → xj) = 0 are the
most obvious consequences of the faithfulness assump-
tion, they by no means exhaust the inferences that are
possible in linear models. In this section, we provide a
more general framework for deriving and representing
faithfulness constraints, and in the following section
we make use of these constraints in an inference algo-
rithm for the overlapping data sets setting.

We build on the work of Claassen and Heskes (2011),
who developed a logical inference procedure based on
minimal conditioning sets to derive graphical conse-

quences of the faithfulness assumption. A minimal
conditioning set, indicated by the brackets, identifies
exactly the set of variables that make a pair of vari-
ables (in)dependent. Formally, for variables x and y
and disjoint sets of variables C and D not containing
x and y, we denote a minimal independence by

x ⊥⊥ y |D ∪ [C] whenever we have

x ⊥⊥ y |D ∪ C and ∀C � � C, x \⊥⊥y |D ∪ C �,

and a minimal dependence by

x \⊥⊥y |D ∪ [C] whenever we have

x \⊥⊥y |D ∪ C and ∀C � � C, x ⊥⊥ y |D ∪ C �.

In both cases D and C can be empty, although when
C is empty, the statements become trivial. Under
the assumption that the generating model is acyclic,
Claassen and Heskes (2011) provide causal inference
rules based on such minimal dependencies and inde-
pendencies, that identify all consequences of faithful-
ness given passive observational data on a set of (po-
tentially) causally insufficient variables. We drop their
acyclicity axiom and change and expand their rules
to apply to overlapping data sets, experimental data,
and cyclic generating models. We use them to derive
constraints on the experimental effects of hypotheti-
cal experiments, which, in turn, are used to identify
additional features of the underlying causal model.

For example, if we find that x ⊥⊥ y | [z] in the ma-
nipulated distribution where only z is subject to an
intervention, then we infer that t(x�y||{x, z}) = 0,
i.e. for an experiment in which x and z are subject to
intervention, there would be no correlation between x
and y, since, by faithfulness, there is no directed path
from x to y that does not pass through z. Moreover,
we can generalize this constraint to all supersets of the
intervention set:

t(x�y||J ) = 0 ⇒ t(x�y||J ∪ C) = 0 (5)

for all C ⊆ V \ {y}. Note, in particular, that C may
contain variables in L. As a special case of this rule
we thus obtain the direct effect constraint t(x�y||V \
{y}) = b(x → y) = 0. Similarly, x and y can be re-
versed in all the previous constraints. If we addition-
ally found for some non-intervened w, that x \⊥⊥y | {z}∪
[w], then w is a so-called “unshielded collider”, which
implies that t(w�x||{w, z}) = t(w�y||{w, z}) = 0.
Again we can also generate constraints for all the ex-
perimental effects with supersets of the intervention
sets.

Since faithfulness in general implies the absence of par-
ticular causal pathways given a set of discovered inde-
pendence constraints, it implies for the linear models
that we have been considering, that the sum-products



of edge coefficients representing a (set of) path(s) con-
necting two variables are zero. An independence be-
tween x and y in a passive observational data set can
thus give rise to a set of polynomial equations rep-
resenting the fact that there is no directed pathway
from x to y or vice versa, and that there is no (latent)
common cause of x and y. Quite apart from the large
number of equations such a general approach produces,
there are no known efficient solution methods for such
a set of equations. We thus have to determine which
subset of the consequences of faithfulness we can han-
dle.

We found that for consequences of faithfulness that
can be represented as bilinear equations on the exper-
imental effects, such as Equation 6, computationally
feasible solution methods could still be developed.

t(x�u||J ∪ {x}) · t(u�y||J ∪ {u}) = 0 (6)

The bilinear approach of Section 4 can include such
equations as (6) if one of the experimental effects is
a total effect and the other is a direct effect. In Sec-
tion 6 we present a method that handles versions of
Equation 6 in its more general form. In Appendix D
we describe the full set of faithfulness rules we apply
and the equations we use. These include the skeleton
rules of the PC-algorithm, as well as many other stan-
dard faithfulness inferences. We also note the rules’
limitations by giving an example of an inference that
we cannot include in the current bilinear representa-
tion.

The independence constraints due to faithfulness thus
allow us to obtain zero-constraints on a variety of ex-
perimental effects and their products without ever hav-
ing to perform the corresponding experiment or having
a data set that includes all the variables present in the
constraint. We note that in practice inferences due
to faithfulness are very sensitive to the correctness of
the independence test judgments. In particular, once
the inference depends on more than a simple uncondi-
tional independence test, reliability rapidly decreases
and the theoretical gains one obtains in the infinite
sample limit evaporate (see Section 7 for more discus-
sion and comparisons). So while a complete method
for inferences based on faithfulness given the back-
ground assumptions here is still of theoretical interest,
its practical usefulness may be limited.

6 INFERENCE ALGORITHM

In Section 4 we took an approach that overparameter-
ized the search problem by treating both the total and
the direct effects as unknown. The proposed method
searched for solutions using the available constraints
that could be represented in the bilinear system relat-

Algorithm 1 Linear Inference algorithm: LININF

Record all observed experimental effects.

Record any experimental effects directly identified as zero by

the faithfulness rules.

While TRUE,

Initialize matrix A and vector b as empty. Let x be the

vector of the remaining unknown experimental effects.

For all experimental effects t(xi�xu||Jk),

For all sets Jl such that Jk � Jl � V \ {xu},
If Equation 7 is linear with respect to the unknown

experimental effects, add it to the system Ax = b.

For all equations induced by the faithfulness rules,

If the equation is linear with respect to the unknown

experimental effects, add it to the system Ax = b.

Solve x from Ax = b and determine the uniquely identified

elements of x.

Record all experimental effects corresponding to uniquely

identified elements of x, and derive implied experimental

effects based on Equation 5.

Exit if no new experimental effects were recorded.

Output the recorded experimental effects.

ing total and direct effects. But in the previous section
we showed that the assumption of faithfulness implies
zero-constraints on the experimental effects that can-
not, in general, be used by such a bilinear method (see
Equations 5 & 6). In this section we propose a method
that includes these more general constraints on exper-
imental effects that are neither total nor direct effects.
We consider all experimental effects as unknown pa-
rameters of the model. This can be seen as taking the
overparametrization one step further, but given that
there are now a total of n(n − 1)2n−2 different ex-
perimental effects for a model with n variables in V,
the iterative approach of Section 4 becomes unfeasible;
something simpler is needed.

Some experimental effects are readily observed in the
overlapping experiments. We use these observed ex-
perimental effects to determine some of the remain-
ing unknown ones. Hyttinen et al. (2012) generalized
Equation 2 to show how some experimental effects can
be used to constrain others. If two experiments with
intervention sets Jk and Jl satisfy Jk � Jl � V\{xu},
then the experimental effects of the two experiments
are related by the following equation:

t(xi�xu||Jk)= t(xi�xu||Jl) + (7)
�

xj∈Jl\Jk

t(xi�xj ||Jk)t(xj�xu||Jl)

Generally such equations are non-linear in the un-
known experimental effects. However, the equation
is linear if for all xj ∈ Jl \ Jk either t(xi�xj ||Jk) or
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Figure 2: A case study. (a) True data generating model. (b) The manipulated and marginalized model cor-
responding to an experiment with J1 = {x1}, U1 = {x2, x4}, and L1 = {x3}. (c) The marginalized model
corresponding to a ‘null’-experiment with J2 = ∅, U2 = {x2, x3, x4}, and L2 = {x1}. (d) The causal structure
over the union of observed variables learned by LININF (omitting any double-headed arcs). Notice that all causal
arcs between x1 and x3 are discovered to be absent, although variables x1 and x3 are not observed together in
either of the observed data sets. Dotted arrows indicate underdetermined parameters.

t(xj�xu||Jl) is already known. In addition, the full
set of implications from the faithfulness rules of Sec-
tion 5 (see Appendix D) may require that a particular
experimental effect is zero, or – as in Equation 6 – that
t(xi�xj ||Jk)t(xj�xu||Jl) is zero. Combining all the
available information can render several equations lin-
ear. We ignore any equations that remain non-linear
in the unknown experimental effects in order to keep
the solvability of the system feasible.

There are a total of n(n− 1)
�n−2

i=0

�n−2
i

�
(2n−i−2 − 1)

equations similar to Equation 7 for a model with n
variables in V. Thus, if even a small share of these
equations are linear with respect to the unknown ex-
perimental effects, the model space compatible with
the constraints at hand will be substantially restricted.
Furthermore, equations that were initially non-linear
in the unknown experimental effects, can be rendered
linear as we iterate the inference and more experimen-
tal effects are determined. Since we are only using
linear equations, we can trivially see which of the un-
known experimental effects are uniquely determined
by the system of equations. Similarly, since the di-
rect effects are just a special case of the experimental
effects, we can find which direct effects are underde-
termined.

The Linear Inference algorithm using these ideas is
outlined in Algorithm 1. A powerful part of the algo-
rithm is the application of the inference in Equation 5
throughout the several rounds of inference. For finite
samples this inference depends on judging whether an
inferred experimental effect that is not measured in
any of the available data sets, is zero. One option is
to run the same algorithm in parallel on several re-
sampled data sets, and see whether all estimates for a
single experimental effect are effectively zero or not.

Unlike the bilinear procedure of Section 4, this linear
inference procedure is consistent. It is incomplete as
it does not exploit the available non-linear equations,

but it is able to extract more information from the
overlapping experiments by benefiting from the vast
number of different faithfulness constraints produced
by sparse data generating models.

7 SIMULATIONS

In the overlapping data set setting the general idea is
that the experiments have already been run, with little
regard to how the data sets and interventions may fit
together. So it is likely that the identifiability condi-
tion of Section 3 is not satisfied and that there still is
a large amount of underdetermination. In particular,
one might expect substantial underdetermination with
regard to the causal relations between variables that
are never measured together in one data set. Figure 2
offers a concrete example of how the findings from mul-
tiple experimental data sets can be synthesized to yield
knowledge not available from any of the individual
data sets. Panel (a) shows the true underlying data
generating model. This model is subject to one exper-
iment where x1 is intervened, x2 and x4 are observed,
while x3 is latent (b), and one ‘null’-experiment where
all variables except x1 are passively observed (c). Note
that x1 and x3 are never measured together in the
same data set. One can think of the two experiments
as resulting from two different research groups inves-
tigating two overlapping sets of variables. Panel (b)
represents the manipulated and marginalized version
of the true model corresponding to the first experi-
ment, while (c) represents the marginalized model cor-
responding to the ‘null’-experiment. Panel (d) shows
the output of the Linear Inference algorithm described
in Section 6 applied to the overlapping data sets of the
two experiments. Here, solid edges denote identified
edges, absences of edges denotes cases where the al-
gorithm has inferred that there is no edge, and what
remains undetermined is shown by dotted edges. Note
that faithfulness has been effectively used to detect the
absence of several edges in the underlying model. In



particular, x4 is determined not to be a direct cause
of any other variable, without there being any exper-
iment intervening on x4. Also, similarly to the re-
sults of Tillman et al. (2009) for passive observational
data from acyclic models, we can detect the absence of
edges between x1 and x3, even though they were never
measured together in any of the data sets. Only the
existence of the arcs x2 → x1 and x3 → x4 (indicated
by dotted arrows) is left underdetermined. Finally,
note that we have not discussed the detection of con-
founding here, so the absence of bi-directed edges in
panel (d) is not indicative of any prediction on such
edges.

We assessed the performance of our methods more gen-
erally in simulations. To test the effect of the faith-
fulness assumption we ran the method of Eberhardt
et al. (2010) (EHS), that was shown in Section 3 to
be complete for our circumstances, as a baseline for
comparison. It does not assume faithfulness. We com-
pared this baseline with the performance of the new
BILINear and LINear-INFerence methods, presented
in Sections 4 and 6, respectively, that were specifi-
cally designed for the overlapping data set case, and
that assume faithfulness. Lastly, we ran the method of
Hyttinen et al. (2010) (HEH), that only uses faithful-
ness constraints on the direct effects obtained within
each data set.

The methods3 were modified to produce one of three
answers: ‘present’, ‘ absent’, or ‘unknown’, for each
possible edge, i.e. each entry of B. An algorithm could
only return ‘present’ if it had actually identified a spe-
cific value for the edge parameter. We compared how
much of the true model the algorithms identified, and
what percentage of that was correct.

To ensure that assuming faithfulness could actually
make a difference, we simulated the methods on sparse
models. We generated 100 6-variable models, with
around 20% of the possible edges present, and 15%
of the possible non-zero covariances, representing ex-
ogenous latent confounders. We drew the connection
strengths randomly, though we avoided generating co-
efficients that were very close to zero, in order to make
the predictions of absence/presence of edges meaning-
ful. For each model, we constructed 5 overlapping ex-
periments by selecting uniformly among partitions of
the set of variables into intervened, observed and hid-
den variables, with the only constraint that for each
experiment, neither J nor U were empty.

Figure 3 reports the percentage correct among the
edges reported absent (left) and present (right) for

3
Code implementing all compared methods and repro-

ducing the simulations is available at

http://www.cs.helsinki.fi/u/ajhyttin/exp/
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Figure 3: Accuracy of the learning algorithms. Each
point on the lines is the average over 100 models.
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Figure 4: Predictions of the learning algorithms. Each
bar represents the predictions over 100 models.

each algorithm at 1,000 and 10,000 samples per experi-
ment, as well as for the infinite sample limit. Note that
for the finite sample cases we restricted the maximum
size of the conditioning set, in the search for faithful-
ness rules, to 1; this tends to improve the accuracy of
the predictions. Similarly, in the finite sample cases,
we restricted the number of inference rounds in the
LININF algorithm to 1. With the exception of BILIN,
the algorithms have a similar performance across the
board. BILIN offers an undesirable trade-off: for fi-
nite samples it offers a high correctness of predicted
absences, but a poor performance for predicted links.
And since it is not consistent, it does not guarantee
the absences of errors in the infinite sample limit, as



can be seen in the presence of errors for the predicted
absences.

Figure 4 shows the actual numbers of correct and
incorrect predicted absences (left column) and links
(right column) for each algorithm at 1,000 samples
per experiment (top row) and the infinite sample limit
(bottom row). In the 100 true models of the simu-
lation there were a total of 624 edges and 2376 ab-
sences (confounding is not included in either of these
counts). The first thing to notice is the scale of the
plots: Substantial underdetermination remains for all
algorithms, especially with respect to the identified
links: More than half the links remain underdeter-
mined. With respect to the individual algorithms we
notice that EHS produces very few predictions, most
edges are simply marked as ‘unknown’, since faithful-
ness is not assumed. HEH produces a remarkable num-
ber of predicted absences with good accuracy, so that
the improvement of the methods tailored to the setting
of overlapping experiments is limited for finite samples.
However, the improvement in the number of predicted
links is clearly quite significant (top and bottom right
plots).

It would be desirable to have a comparison of how
much underdetermination is inevitable given the over-
lapping data sets. A brute force check is not feasible
even for six variable models, and we are not aware of
any general results on equivalence classes for (manip-
ulated) linear cyclic models with latent confounders.
Developing an extension of LININF that is complete
with regard to faithfulness may thus be the more
promising route for such a comparison.

8 CONCLUSION

We have presented two new algorithms (BILIN and
LININF) designed for causal learning from overlap-
ping experimental or passive observational data sets.
The first algorithm relies on a bilinear iterative opti-
mization, while the second is based on solving linear
constraints on general experimental effects. Both al-
gorithms assume faithfulness, but apply to the general
model class of linear cyclic models with latent con-
founding. We have also formulated necessary and suf-
ficient conditions for model identifiability when faith-
fulness is not assumed.

The approach we have taken brings together several
different strands of related work: We have connected
the results on combining different experimental results
on the same set of variables with the techniques of inte-
grating overlapping data sets of passive observational
data. To do so, we have relied on the inferences based
on faithfulness developed for non-parametric, acyclic
causal models with latent confounding, but adapted

them to linear, cyclic models with latent confounding.
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