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This was a 20 minute quiz worth 10 points.
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2
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to derive the distribution of X1 +X2.

Solution. The moment generating function of X1 +X2 is
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which is the MGF of a N (µ1 + µ2, σ
2
1 + σ2

2) random variable. Since the distribution of a random

variable is completely characterized by its moment generating function, it follows that

X1 +X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2).

2.) (5 point) A simple random sample of 400 people was taken from a city of 100 000 people. There were

320 males and 80 females in the sample. Estimate the population proportion p of males in the city,

and use the result to approximate the standard deviation of your estimator.

Solution. Let X1, . . . , Xn be Bernoulli random variables, where n = 400. Since it is a simple random

sample from the population and because the population size is much larger than the sample size, X-

s may be considered independent. Assume they also have a common distribution which is the true

population distribution, and that n is large enough. Let p̂ be the proportion estimator:

p̂ =
X1 + · · ·+Xn

n
.

Then E[p̂] = p and

Var[p̂] =
1

n2
Var(X1 + · · ·+Xn) =

p(1− p)
n

.

We observe p̂ = 320/400 = 0.8, hence our estimate of p is 0.8 and the standard deviation of our

estimator can be approximated by
√
0.8 · 0.2/400 = 0.02.


