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This was a 20 minute quiz worth 10 points.

The Weak Law of Large Numbers says, that if X1, X2, · · · is a sequence of i.i.d. random variables with

E (|X1|) <∞, then
∑n

i=1Xi/n converges in probability to µ = E (X1).

Use Chebyshev’s inequality to show that if X1, X2, · · · is a sequence of uncorrelated random variables, all

having mean E(Xi) = µ and variance Var(Xi) = σ2 <∞, then
∑n

i=1Xi/n converges in probability to µ.

Solution. Let
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n
.
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and since X1, X2, · · · are uncorrelated, Cov(Xi, Xj) = 0 for i 6= j, hence
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According to Chebyshev’s inequality, for any ε > 0

P (|Yn − EYn| ≥ ε) ≤
VarYn
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Since probabilities are always nonnegative, taking the limit as n→∞, one gets
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It follows that

lim
n→∞
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= 0.


