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Sample Spaces, Realizations, Events

Probability Theory is the mathematical language for uncertainty quantification.

The starting point in developing the probability theory is to specify sample space
= the set of possible outcomes.

Definition
The sample space Ω is the set of possible outcomes of an “experiment”

Points ω ∈ Ω are called realizations

Events are subsets of Ω

Next, to every event A ⊂ Ω, we want to assign a real number P(A), called the
probability of A. We call function P : {subsets of Ω} → R a probability
distribution.

We don’t want P to be arbitrary, we want it to satisfy some natural properties
(called axioms of probability):

1 0 ≤ P(A) ≤ 1 (Events range from never happening to always happening)
2 P(Ω) = 1 (Something must happen)
3 P(∅) = 0 (Nothing never happens)
4 P(A) + P(Ā) = 1 (A must either happen or not-happen)
5 P(A + B) = P(A) + P(B)− P(AB)
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Probability on Finite Sample Spaces

Suppose that the sample space is finite Ω = {ω1, ω2, . . . , ωn}.

Example:

If we toss a die twice, then Ω has n = 36 elements:

Ω{ (i , j) : i , j = 1, 2, 3, 4, 5, 6}

If each outcome is equally likely, then P(A) = |A|/36, where |A| denotes the
number of elements in A.
Test question: What is the probability that the sum of the dice is 11?
Answer: 2/36, since the are two outcomes that correspond to this event: (5, 6)
and (6, 5).

In general, if Ω is finite and if each outcome is equally likely, then

P(A) =
|A|
|Ω|

To compute the probability P(A), we need to count the number of points in an
event A. Methods for counting points are called combinatorial methods.
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Example: Birthday Problem

Suppose that a room of people contains n people.
What is the probability that at least two of them have a common birthday?

Assume that
Every day of the year is equally likely to be a birthday
There are 365 days in the year (disregard leap years)

Then
Ω = {ω = (x1, . . . , xn) : xi = 1, 2, . . . , 365}, |Ω| = 365n

A = {ω ∈ Ω : xi = xj for some i 6= j}
Ā = {ω ∈ Ω : xi 6= xj for all i , j}, |Ā| = 365× 364× . . .× (365− n + 1)

P(A) = 1− 365× 364× . . .× (365− n + 1)

365n

n P(A)
4 0.016

23 0.507
32 0.753
42 0.91
56 0.988
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Example: Birthday Problem
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Independent Events

If we flip a fair coin twice, then the probability of two heads is 1
2 ×

1
2 . We multiply

the probabilities because we regard the two tosses as independent. We can
formalize this useful notion of independence as follows:

Definition
Two events A and B are independent if

P(AB) = P(A)P(B)

Independence can arise in two distinct ways:

1 We explicitly assume that two events are independent. For example, in
tossing a coin twice, we usually assume that the tosses are independent which
reflects the fact that the coin has no memory of the first toss.

2 We derive independence of A and B by verifying that P(AB) = P(A)P(B).
For example, in tossing a fair die, let A = {2, 4, 6} and B = {1, 2, 3, 4}.
Are A and B independent?
Yes! Since P(A) = 1/2, P(B) = 2/3, AB = {2, 4},
P(AB) = 1/3 = (1/2)× (2/3)
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Examples

Suppose that A and B are disjoint events, each with positive probability. Can
they be independent?
Answer: No! P(AB) = P(∅) = 0, but P(A)P(B) > 0

Two people take turns trying to sink a basketball into a net.
I Person 1 succeeds with probability 1/3
I Person 2 succeeds with probability 1/4

What is the probability that person 1 succeeds before person 2?
Answer: 2/3

Konstantin Zuev (USC) Math 408, Lecture 1 January 16, 2013 8 / 9



Summary

The sample space Ω is the set of possible outcomes of an “experiment”

Points ω ∈ Ω are called realizations

Events are subsets of Ω

Properties (axioms) of probability:
I 0 ≤ P(A) ≤ 1 (Events range from never happening to always happening)
I P(Ω) = 1 (Something must happen)
I P(∅) = 0 (Nothing never happens)
I P(A) + P(Ā) = 1 (A must either happen or not-happen)
I P(A + B) = P(A) + P(B)− P(AB)

A and B are independent if P(AB) = P(A)P(B)

Independence is sometimes assumed and sometimes derived.

Disjoint events with positive probability are not independent.
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Motivation and Definition

Recall (see Lecture 1) that the sample space is the set of all possible outcomes of
an experiment. Suppose we are interested only in part of the sample space, the
part where we know some event – call it A – has happened, and we want to know
how likely it is that various other events (B,C ,D . . .) have also happened.

What we want is the conditional probability of B given A.

Definition

If P(A) > 0, then the conditional probability of B given A is

P(B|A) =
P(AB)

P(A)

Useful Interpretation:

Think of P(B|A) as the

fraction of times B occurs among those in which A occurs

Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 3 / 9



Properties of Conditional Probabilities

Here are some facts about conditional probabilities:
1 For any fixed A such that P(A) > 0, P(·|A) is a probability, i.e. it satisfies

the rules of probability:
I 0 ≤ P(B|A) ≤ 1
I P(Ω|A) = 1
I P(∅|A) = 0
I P(B|A) + P(B̄|A) = 1
I P(B + C |A) = P(B|A) + P(C |A)− P(BC |A)

2 Important: The rules of probability apply to events on the left of the bar.
3 In general

P(B|A) 6= P(A|B)

Example: the probability of spots given you have measles is 1 but the
probability that you have measles given that you have spots is not 1.

4 What if A and B are independent? Then

P(B|A) =
P(AB)

P(A)
=

P(A)P(B)

P(A)
= P(B)

Thus, another interpretation of independence is that knowing A does not
change the probability of B.
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Law of Total Probability

From the definition of conditional probability we can write

P(AB) = P(B|A)P(A) and P(AB) = P(A|B)P(B)

Often these formulae give us a convenient way to compute P(AB) when A and B
are not independent.

A useful tool for computing probabilities is the following law.

Law of Total Probability

Let A1, . . . ,An be a partition of Ω, i.e.⋃n
i=1 Ai = Ω (A1, . . . ,Ak are jointly exhaustive events)

Ai

⋂
Aj = ∅ for i 6= j (A1, . . . ,Ak are mutually exclusive events)

P(Ai ) > 0

Then for any event B

P(B) =
n∑

i=1

P(B|Ai )P(Ai )
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Bayes’ Theorem

Conditional probabilities can be inverted. That is,

P(A|B) =
P(B|A)P(A)

P(B)

This relationship is called Bayes’ Rule after Thomas Bayes (1702-1761) who did
not discover it (in this form, Bayes’ Rule was proved by Laplace).
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Example: False Positive Paradox

Problem
Suppose a rare disease infects one out of every 1000 people in a population. And
suppose that there is a good, but not perfect, test for this disease: if a person has
the disease, the test comes back positive 99% of the time. One the other hand,
the test also produces some false positives. About 2% of uninfected patients also
test positive. Suppose you just tested positive. What are your chances of having
the disease?

Answer: the chances of having the disease is less than 5% !

Important Conclusion: When dealing with conditional probabilities:

don’t trust your intuition, do computations!

Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 7 / 9



Monty Hall problem

Problem
Suppose you are on a game show, and you are given the choice of three doors.
A prize is placed at random between one of three doors. You pick a door, say door
1 (but the door is not opened), and the host, who knows what’s behind the doors,
opens another door which is empty. He then gives you the opportunity to keep
your door 1 or switch to the other unopened door. Should you stay or switch?

Answer: You should switch!
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Summary

If P(A) > 0, then

P(B|A) =
P(AB)

P(A)

P(·|A) satisfies the axioms of probability for fixed A. In general P(A|·) does
not satisfy the axioms of probability for fixed A.

In general, P(B|A) 6= P(A|B)

A and B are independent if and only if P(B|A) = P(B)

Law of Total Probability: If A1, . . . ,An is a partition of Ω, then for any B ⊂ Ω

P(B) =
n∑

i=1

P(B|Ai )P(Ai )

Bayes’ Theorem

P(A|B) =
P(B|A)P(A)

P(B)
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Motivation and Definition

Statistics is concerned with data.

Question: How do we link sample spaces and events to data?

Answer: The link is provided by the concept of a random variable.

Definition

A random variable is a mapping X : Ω→ R that assigns a real number x = X (ω)
to each realization ω ∈ Ω.

Remark: Technically, a random variable must be a measurable function.

Example: Flip a coin 10 times. Let X (ω) be the number of heads in the sequence.
For example, if ω = HHTHTTTHTH, then X (ω) = 5.

Given a random variable X and a set A ⊂ R, define

X−1(A) = {ω ∈ Ω : X (ω) ∈ A}
and let

P(X ∈ A) =P(X−1(A)) = P({ω ∈ Ω : X (ω) ∈ A})
P(X = x) =P(X−1(x)) = P({ω ∈ Ω : X (ω) = x})
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The Cumulative Distribution Function

Definition

The cumulative distribution function (CDF) FX : R→ [0, 1] is defined by

FX (x) = P(X ≤ x)

Example: Flip a fair coin twice and let X be the number of heads.
Find the CDF of X

Question: Why do we bother to define CDF?

Answer: CDF effectively contains all the information about the random variable

Theorem

Let X have CDF F and Y have CDF G . If F (x) = G (x) for all x, then
P(X ∈ A) = P(Y ∈ A). In words, the CDF completely determines the distribution
of a random variable.
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Properties of CDFs

Question: Given a function F (x), can we find a random variable X such that F (x)
is the CDF of X , FX (x) = F (x)?

Theorem

A function F : R→ [0, 1] is a CDF for some random variable if and only if it
satisfies the following three conditions:

1 F is non-decreasing:

x1 < x2 ⇒ F (x1) ≤ F (x2)

2 F is normalized:

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1

3 F is right-continuous:
lim

y→x+0
F (y) = F (x)
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Discrete Random Variables

Definition

X is discrete if it takes countable many values {x1, x2, . . .}.
We define the probability mass function (PMF) for X by

fX (x) = P(X = x)

Example: Flip a fair coin twice and let X be the number of heads.
Find the probability mass function of X .

The CDF of X is related to the PMF fX by

FX (x) = P(X ≤ x) =
∑
xi≤x

fX (xi )

The PMF fX is related to the CDF FX by

fX (x) = FX (x)− FX (x−) = FX (x)− lim
y→x−0

F (y)
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Important Examples

The Point Mass Distribution
X has a point mass distribution at a, denoted X ∼ δa, if P(X = a) = 1.
In this case

F (x) =

{
0, x < a;
1, x ≥ a.

and

f (x) =

{
1, x = a;
0, x 6= a.

The Discrete Uniform Distribution
Let n > 1 be a given integer. Suppose that X has probability mass function
given by

f (x) =

{
1/n, for x = 1, . . . , n;
0, otherwise.

We say that X has a uniform distribution on 1, . . . , n.
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Important Examples

The Bernoulli Distribution
Let X represents a coin flip. Then P(X = 1) = p and P(X = 0) = 1− p for
some p ∈ [0, 1]. We say that X has a Bernoulli distribution, denoted
X ∼ Bernoulli(p). The probability mass function is

f (x |p) = px(1− p)1−x , x ∈ {0, 1}

The Binomial Distribution
Suppose we have a coin which falls heads with probability p for some
p ∈ [0, 1]. Flip the coin n times and let X be the number of heads. Assume
that the tosses are independent. The probability mass function of X is then

f (x |n, p) =

{ (
n
x

)
px(1− p)n−x , if x = 0, 1, . . . , n;

0, otherwise.

A random variable with this mass function is called a Binomial random
variable and we write X ∼ Bin(n, p).
Remark: X is a random variable, x denotes a particular value of the random
variable, n and p are parameters, that is, fixed real numbers. The parameter
p is usually unknown and must be estimated from data.
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Binomial Distribution Bin(n, p)
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Important Examples

The Geometric Distribution
X has a geometric distribution with parameter p ∈ (0, 1),
denoted X ∼ Geom(p), if

f (x |p) = p(1− p)x−1, x = 1, 2, 3 . . .

Think of X as the number of flips needed until the first heads when flipping a
coin. Geometric distribution is used for modeling the number of trials until
the first success.
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Geometric Distribution Geom(p)
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Important Examples

The Poisson Distribution
X has a Poisson distribution with parameter λ,
denoted X ∼ Poisson(λ) if

f (x |λ) = e−λ
λx

x!
, x = 0, 1, 2, . . .

The Poisson distribution is often used as a model for counts of rare events
like traffic accidents. f (x |λ) expresses the probability of a given number of
events x occurring in a fixed interval of time if these events occur with a
known average rate λ and independently of the time since the last event.
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Poisson Distribution Poisson(λ)
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Summary

A random variable is a mapping X : Ω→ R that assigns a real number
x = X (ω) to each realization ω ∈ Ω.

The cumulative distribution function (CDF) is defined by

FX (x) = P(X ≤ x)

I CDF completely determines the distribution of a random variable
I CDF is non-decreasing, normalized, and right-continuous

Random variable X is discrete if it takes countable many values {x1, x2, . . .}.
The probability mass function (PMF) of X is

fX (x) = P(X = x)

Relationships between CDF and PMF:

FX (x) = P(X ≤ x) =
∑
xi≤x

fX (xi )

fX (x) = FX (x)− FX (x−)
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Definition

Recall that a random variable is a (deterministic) map X : Ω→ R that assigns a
real number X (ω) to each (random) realization ω ∈ Ω.

Definition
A random variable is continuous if there exists a function fX such that

fX (x) ≥ 0 for all x∫ +∞
−∞ fX (x)dx = 1, and

For every a ≤ b

P(a < X ≤ b) =

∫ b

a

fX (x)dx

The function fX (x) is called the probability density function (PDF)

Relationship between the CDF FX (x) and PDF fX (x):

FX (x) =

∫ x

−∞
fX (t)dt fX (x) = F ′X (x)
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Important Remarks

If X is continuous then P(X = x) = 0 for every x .

Don’t think of fX (x) as P(X = x). This is only true for discrete random
variables.

For continuous random variables, we get probabilities by integrating.

A PDF can be bigger than 1 (unlike PMF!). For example:

fX (x) =

{
10, x ∈ [0, 0.1]
0, x /∈ [0, 0.1]

Can a PDF be unbounded?
Yes, of course! For instance

fX (x) =

{
2
3x
−1/3, 0 < x < 1

0, otherwise
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Important Examples

The Uniform Distribution
X has a uniform distribution on [a, b], denoted X ∼ U[a, b], if

f (x) =

{
1

b−a , x ∈ [a, b]

0, otherwise

Normal (Gaussian) Distribution
X has a Normal (or Gaussian) distribution with parameters µ and σ, denoted
by X ∼ N (µ, σ2), if

f (x) =
1√
2πσ

exp

(
− (x − µ)2

2σ2

)
, x ∈ R

I Many phenomena in nature have approximately Normal distribution.
I Distribution of a sum of random variables can be approximated by a Normal

distribution (central limit theorem)
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Important Examples

Exponential Distribution
X has an Exponential distribution with parameter β > 0, X ∼ Exp(β), if

f (x) =
1

β
e−x/β , x > 0
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The exponential distribution is used to model the life times of electronic
components and the waiting times between rare events. β is a survival
parameter: the expected duration of survival of the system is β units of time.
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Important Examples

Gamma Distribution
X has a Gamma distribution with parameters α > 0 and β > 0,
X ∼ Gamma(α, β), if

f (x) =
1

βαΓ(α)
xα−1e−x/β , x > 0

I Γ(α) is the Gamma function

Γ(α) =

∫ ∞
0

xα−1e−xdx

I The Gamma distribution is frequently used to model waiting times.
I Exponential distribution is a special case of the Gamma distribution:

Gamma(1, β) = Exp(β)
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Gamma Distribution

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

G
am

m
a 

P
D

F
 f(

x|
α,

β)

α=1, β=2

α=2, β=2

α=9, β=0.5

Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 8 / 13



Important Examples

Beta Distribution
X has a Beta distribution with parameters α > 0 and β > 0,
X ∼ Beta(α, β), if

f (x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1

I The beta distribution is often used for modeling of proportions.
I The beta distribution has an important application in the theory of order

statistics. A basic result is that the distribution of the kth largest X(k) of a
sample of size n from a uniform distribution X1, . . . ,Xn ∼ U(0, 1) has a beta
distribution:

X(k) ∼ Beta(k, n − k + 1)
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Beta Distribution
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Transformation of Random Variables

Suppose that X is a random variable with PDF/PMF (continuous/discrete) fX
and CDF FX . Let Y = r(X ) be a function of X , for example, Y = X 2, Y = eX .

Q: How to compute the PDF/PMF and CDF of Y ?

In the discrete case, the answer is easy:

fY (y) = P(Y = y) = P(r(X ) = y) = P({x : r(x) = y}) =
∑

xi :r(xi )=y

fX (xi )

Example:

X ∈ {−1, 0, 1}
P(X = −1) = 1/4, P(X = 0) = 1/2, P(X = 1) = 1/4

Y = X 2

Find PMF fY

Answer: fY (0) = 1/2 and fY (1) = 1/2.
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Transformation of Random Variables: Continuous Case

The continuous case is harder.
These are the steps for finding the PDF fY :

1 For each y , let Ay = {x : r(x) ≤ y}
2 Find the CDF FY (y)

FY (y) = P(Y ≤ y) = P(r(X ) ≤ y) = P(X ∈ Ay ) =

∫
Ay

fX (x)dx

3 The PDF is then fY (y) = F ′Y (y)

Example: Let X ∼ Exp(1), and Y = lnX . Find fY (y).

Answer: fY (y) = eye−e
y

, y ∈ R

Important Fact: When r is strictly monotonic, then r has an inverse s = r−1 and

fY (y) = fX (s(y))

∣∣∣∣ds(y)

dy

∣∣∣∣
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Summary

A random variable is continuous if there exists a function fX , called
probability density function such that

I fX (x) ≥ 0 for all x
I

∫ +∞
−∞ fX (x)dx = 1

I For every a ≤ b

P(a < X ≤ b) =

∫ b

a

fX (x)dx

Relationship between the CDF FX (x) and PDF fX (x):

FX (x) =

∫ x

−∞
fX (t)dt fX (x) = F ′X (x)

Important Examples: Uniform Distribution, Normal Distribution, Exponential
Distribution, Gamma Distribution, Beta Distribution

If Y = r(X ) and r is strictly monotonic, then

fY (y) = fX (s(y))

∣∣∣∣ds(y)

dy

∣∣∣∣ s = r−1
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Bivariate Distributions

Discrete Case

Definition
Given a pair of discrete random variables X and Y , their joint PMF is defined by

fX ,Y (x , y) = P(X = x ,Y = y)

Continuous Case

Definition

A function fX ,Y (x , y) is called the joint PDF of continuous random variables X
and Y if

I fX ,Y (x , y) ≥ 0,
∫ +∞
−∞

∫ +∞
−∞ fX ,Y (x , y)dxdy = 1

I For any set A ⊂ R× R

P((X ,Y ) ∈ A) =

∫ ∫
A

fX ,Y (x , y)dxdy

The joint CDF of X and Y is defined as FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)
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Marginal Distributions

Discrete Case
If X and Y have joint PMF fX ,Y , then the marginal PMF of X is

fX (x) = P(X = x) =
∑
y

P(X = x ,Y = y) =
∑
y

fX ,Y (x , y)

Similarly, the marginal PMF of Y is

fY (y) = P(Y = y) =
∑
x

P(X = x ,Y = y) =
∑
x

fX ,Y (x , y)

Continuous Case
If X and Y have joint PDF fX ,Y , then the marginal PDFs of X and Y are

fX (x) =

∫
fX ,Y (x , y)dy and fY (y) =

∫
fX ,Y (x , y)dx
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Examples

Suppose that the PMF fXY is given in the following table:

Y = 0 Y = 1
X = 0 1/10 2/10
X = 1 3/10 4/10

Find the marginal PMF of X .
Answer: fX (0) = 3/10, fX (1) = 7/10

Suppose that
fX ,Y (x , y) = e−(x+y), x , y ≥ 0

Find the marginal PDF of X .
Answer: fX (x) = e−x , x ≥ 0
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Independent Random Variables

Definition
Two random variables X and Y are independent if, for every A and B

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

In principle, to check whether X and Y are independent, we need to check the
above equation for all subsets A and B. Fortunately, we have the following result:

Theorem

Let X and Y have joint PDF/PMF fX ,Y . Then X and Y are independent if and
only if

fX ,Y (x , y) = fX (x)fY (y)

Example: Suppose that X and Y are independent and both have the same density

f (x) =

{
2x , x ∈ [0, 1]
0, x /∈ [0, 1]

Find P(X + Y ≤ 1). Answer: 1/6
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Conditional Distributions

Discrete Case
If X and Y are discrete, then we can compute the conditional probability of
the event {X = x} given that we have observed {Y = y}:

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)

This leads to the following definition of the conditional PMF:

fX |Y (x |y) = P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

fX ,Y (x , y)

fY (y)

Continuous Case
For continuous random variables, the conditional PDF is

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)

Then,

P(X ∈ A|Y = y) =

∫
A

fX |Y (x |y)dx
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Example

Suppose that X ∼ U(0, 1). After obtaining a value x of X , we generate
Y |X = x ∼ U(x , 1). What is the marginal distribution of Y ?
Answer:

fY (y) = − ln (1− y) y ∈ (0, 1)
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Transformation of Several Random Variables

In some cases we are interested in transformation of several random variables. For
example, if X and Y are given random variables, we might want to know the
distribution of X/Y , X + Y , max{X ,Y }, etc.

Let Z = r(X ,Y ). The steps for finding fZ are the following:

1 For each z , find the set Az = {(x , y) : r(x , y) ≤ z}
2 Find the CDF

FZ (z) = P(Z ≤ z) = P(r(X ,Y ) ≤ z) = P((X ,Y ) ∈ Az) =

∫ ∫
Az

fX ,Y (x , y)dxdy

3 Then PDF fZ (z) = F ′Z (z)

Example: Let X ,Y ∼ U[0, 1] be independent.
Find the density of Z = X + Y .

Answer:

fZ (z) =

 z , 0 ≤ z ≤ 1
2− z , 1 < z ≤ 2
0, otherwise
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Summary

Joint Distributions:
I Discrete case: fX ,Y (x , y) = P(X = x ,Y = y)
I Continuous case: P((X ,Y ) ∈ A) =

∫ ∫
A
fX ,Y (x , y)dxdy

Marginal Distributions
I Discrete case: fX (x) =

∑
y fX ,Y (x , y)

I Continuous case: fX (x) =
∫
fX ,Y (x , y)dy

X and Y are independent if, for every A and B

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

I X and Y are independent if and only if fX ,Y (x , y) = fX (x)fY (y)

Conditional PDF/PMF:

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)

Algorithm for finding distribution of Z = r(X ,Y )
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Expectation of a Random Variable

The expectation (or mean) of a random variable X is the average value of X . The
formal definition is as follows.

Definition
The expected value, or mean, or first moment of X is

µX ≡ E[X ] =

{ ∑
x xfX (x), if X is discrete∫
xfX (x)dx , if X is continuous

assuming that the sum (or integral) is well-defined.

Remarks:
The expectation is a one-number summary of the distribution.
Think of E[X ] as the average value you would obtain if you computed the
numerical average 1

n

∑n
i=1 Xi of a large number of i.i.d. draws X1, . . . ,Xn.

The fact that

E[X ] ≈ 1

n

n∑
i=1

Xi

is a theorem called the law of large numbers.
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Examples

Let X ∼ Bernoulli(p). Find E[X ].
Answer: E[X ] = p

Let X ∼ U(−1, 3). Find E[X ].
Answer: E[X ] = 1

Let Y = r(X ). How do we compute E[Y ]? There are two ways:

Find fY (y) (Lecture 4) and then compute E[Y ] =
∫
yfY (y)dy .

An easier way:

E[Y ] = E[r(X )] =

∫
r(x)fX (x)dx

Example: Take a stick of unit length and break it at random. Let Y be the length
of the longer piece. What is the mean of Y ?
Answer: E[Y ] = 3

4
Functions of several variables are handled in a similar way: if Z = r(X ,Y ), then

E[Z ] = E[r(X ,Y )] =

∫ ∫
r(x , y)fX ,Y (x , y)dxdy
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Properties of Expectations

If X1, . . . ,Xn are random variables and a1, . . . , an are constants, then

E

[
n∑

i=1

aiXi

]
=

n∑
i=1

aiE[Xi ]

I Let X ∼ Bin(n, p). Find E[X ].
I Answer: E[X ] = np

Let X1, . . . ,Xn be independent random variables. Then,

E

[
n∏

i=1

Xi

]
=

n∏
i=1

E[Xi ]

Remark: Note the the summation rule does not require independence but the
multiplication rule does.
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Variance and Its Properties

The variance measures the “spread” of a distribution.

Definition
Let X be a random variance with mean µX .
The variance of X , denoted V[X ] or σ2

X , is defined by

σ2
X ≡ V[X ] = E[(X − µX )2] =

{ ∑
x(x − µX )2fX (x), if X is discrete∫

(x − µX )2fX (x)dx , if X is continuous

The standard deviation is σX =
√
V[X ]

Important Properties of V[X ]:

V[X ] = E[X 2]− µ2
X

If a and b are constants, then V[aX + b] = a2V[X ]
If X1, . . . ,Xn are independent and a1, . . . , an are constants, then

V

[
n∑

i=1

aiXi

]
=

n∑
i=1

a2i V[Xi ]
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Covariance and Correlation

Example: Let X ∼ Bin(n, p). Find V[X ].
Answer: E[X ] = np(1− p)

If X and Y are random variables, then the covariance and correlation between X
and Y measure how strong the linear relationship is between X and Y .

Definition
Let X and Y be random variables with means µX and µY and standard deviations
σX and σY . Define the covariance between X and Y by

Cov(X ,Y ) = E[(X − µX )(Y − µY )]

and the correlation by

ρ(X ,Y ) =
Cov(X ,Y )

σXσY
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Properties of Covariance and Correlation

The covariance satisfies (useful in computations):

Cov(X ,Y ) = E[XY ]− E[X ]E[Y ]

The correlation satisfies:
−1 ≤ ρ(X ,Y ) ≤ 1

If Y = aX + b for some constants a and b, then

ρ(X ,Y ) =

{
1, if a > 0
−1, if a < 0

If X and Y are independent, then Cov(X ,Y ) = ρ(X ,Y ) = 0.
The converse is not true.

For random variables X1, . . . ,Xn

V

[
n∑

i=1

aiXi

]
=

n∑
i=1

a2i V[Xi ] + 2
∑
i<j

aiajCov(Xi ,Xj)

Konstantin Zuev (USC) Math 408, Lecture 6 January 30, 2013 7 / 10



Expectation and Variance of Important Random Variables

Distribution Mean Variance
Point mass at a a 0
Bernoulli(p) p p(1− p)
Bin(n, p) p np(1− p)
Geom(p) 1/p (1− p)/p2

Poisson(λ) λ λ
Uniform(a, b) (a + b)/2 (b − a)2/12
N (µ, σ2) µ σ2

Exp(β) β β2

Gamma(α, β) αβ αβ2

Beta(α, β) α/(α + β) αβ/((α + β)2(α + β + 1))
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Summary

The expected value of X is

µX ≡ E[X ] =

{ ∑
x xfX (x), if X is discrete∫
xfX (x)dx , if X is continuous

I If Y = r(X ), then E[Y ] = E[r(X )] =
∫
r(x)fX (x)dx

I If X1, . . . ,Xn are random variables and a1, . . . , an are constants, then
E
[∑n

i=1 aiXi

]
=
∑n

i=1 aiE[Xi ]
I If X1, . . . ,Xn are independent random variables, then E

[∏n
i=1 Xi

]
=
∏n

i=1 E[Xi ]

The variance of X is

σ2
X ≡ V[X ] = E[(X − µX )2]

I V[X ] = E[X 2]− µ2
X

I If a and b are constants, then V[aX + b] = a2V[X ]
I If X1, . . . ,Xn are independent and a1, . . . , an are constants, then

V
[∑n

i=1 aiXi

]
=
∑n

i=1 a
2
i V[Xi ]
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Summary

Covariance and correlation between X and Y are

Cov(X ,Y ) = E[(X − µX )(Y − µY )] ρ(X ,Y ) =
Cov(X ,Y )

σXσY

I Cov(X ,Y ) = E[XY ]− E[X ]E[Y ]
I −1 ≤ ρ(X ,Y ) ≤ 1

I If Y = aX + b then ρ(X ,Y ) =

{
1, if a > 0
−1, if a < 0

I If X and Y are independent, then Cov(X ,Y ) = ρ(X ,Y ) = 0.
I V

[∑n
i=1 aiXi

]
=
∑n

i=1 a
2
i V[Xi ] + 2

∑
i<j aiajCov(Xi ,Xj)
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Definition

Suppose that X and Y are random variables.

Q: What is the mean of X among those times when Y = y?

A: It is the mean of X as before, but instead of fX (x) we use fX |Y (x |y).

Definition
The conditional expectation of X given Y = y is

E[X |Y = y ] =

{ ∑
x xfX |Y (x |y), discrete case;∫
xfX |Y (x |y)dx , continuous case.

If Z = r(X ,Y ) is a new random variable, then

E[Z |Y = y ] =

{ ∑
x r(x , y)fX |Y (x |y), discrete case;∫
r(x , y)fX |Y (x |y)dx , continuous case.

Important Remark:

E[X ] is a number

E[X |Y = y ] is a function of y
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Conditional Expectation

Question: What is E[X |Y = y ] before we observe the value y of Y ?

Answer: Before we observe Y , we don’t know the value of E[X |Y = y ], it is
uncertain, so it is a random variable which we denote E[X |Y ].

E[X |Y ] is the random variable whose value is E[X |Y = y ] when Y = y .

Example 1:
Suppose we draw

X ∼ U(0, 1)

After we observe X = x , we draw

Y |X = x ∼ U(x , 1)

Find E[Y |X = x ].
Answer:

E[Y |X = x ] =
x + 1

2
, as intuitively expected

Note that E[Y |X ] = X+1
2 is a random variable whose value is the number

E[Y |X = x ] = x+1
2 once X = x is observed.
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The Rule of Iterated Expectations

Theorem
For random variables X and Y , assuming the expectations exist, we have

E[E[Y |X ]] = E[Y ] and E[E[X |Y ]] = E[X ]

More generally, for any function r(x , y) we have

E[E[r(X ,Y )|X ]] = E[r(X ,Y )] and E[E[r(X ,Y )|Y ]] = E[r(X ,Y )]

Example 2: Compute E[Y ] in Example 1.

Answer:

E[Y ] = E[E[Y |X ]] = E
[
X + 1

2

]
=

1/2 + 1

2
=

3

4
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Conditional Variance

Recall, that “unconditional” variance of random variable Y is

V[Y ] = E[(Y − E[Y ])2]

Therefore, it is natural to define conditional variance of Y given that X = x as
follows (replace all expectations by conditional expectations):

V[Y |X = x ] = E[(Y − E[Y |X = x ])2|X = x ]

Denote E[Y |X = x ] by µY (x). Then

V[Y |X = x ] =

∫
(y − µY (x))2fY |X (y |x)dy

V[Y ] is a number, V[Y |X = x ] is a function of x

Theorem
For random variables X and Y

V[Y ] = E[V[Y |X ]] + V[E[Y |X ]]
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Example: Statistical Analysis of a Disease

Draw a state at random from the US.

Let Q be the proportion of people in that state with a certain disease.
Q is a random variable since it varies from state to state, and state is picked
at random.

I Suppose that Q has a uniform distribution on (0, 1), Q ∼ U(0, 1).
I This assumption is natural if we don’t have any information about the disease.

Draw n people at random from the state, and let X be the number of those
people who have the disease.

I Given Q = q, it is natural to model X as a Binomial variable,
X |Q = q ∼ Bin(n, q).

Problem: Find E[X ] and V[X ]

Answer:

E[X ] =
n

2

V[X ] =
n

6
+

n2

12
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Summary

The conditional expectation of X given Y = y is

E[X |Y = y ] =

{ ∑
x xfX |Y (x |y), discrete case;∫
xfX |Y (x |y)dx , continuous case.

I E[X ] is a number
I E[X |Y = y ] is a function of y
I E[X |Y ] is the random variable whose value is E[X |Y = y ] when Y = y

The Rule of Iterated Expectations

EE[Y |X ] = E[Y ] and EE[X |Y ] = E[X ]

The conditional variance of X given Y = y is

V[X |Y = y ] = E[(X − E[X |Y = y ])2|Y = y ]

I V[X ] is a number
I V[X |Y = y ] is a function of y
I V[X |Y ] is the random variable whose value is V[X |Y = y ] when Y = y

For random variables X and Y

V[X ] = EV[X |Y ] + VE[X |Y ]
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Agenda

Markov Inequality

Chebyshev Inequality

Hoeffding Inequality

Cauchy-Schwarz Inequality

Jensen Inequality

Summary
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Markov Inequality

Inequalities are useful for bounding quantities that might otherwise be hard to
compute. They will be used in the large sample theory (next two Lectures) which
is extremely important for statistical inference.

Markov Inequality

Let X be a non-negative random variable and suppose that E[X ] exists.
Then for any a > 0

P(X ≥ a) ≤ E[X ]

a

Remark:

This result says that the probability that X is much bigger than E[X ] is small:
Let

a = kE[X ]

Then

P(X ≥ kE[X ]) ≤ 1

k
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Chebyshev Inequality

Chebyshev Inequality

Let X be a random variable with mean µ and variance σ2. Then for any a > 0

P(|X − µ| ≥ a) ≤ σ2

a2

Remarks:

This result says that if σ2 is small, then there is a high probability that X will
not deviate much from µ.

If a = kσ, then

P(|X − µ| ≥ kσ) ≤ 1

k2

If Z = X−µ
σ , then

P(|Z | ≥ a) ≤ 1

a2
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Example

Suppose we test a prediction method on a set of n new test cases. Let

Xi =

{
1, if the predictor is wrong;
0, if the predictor is right.

Then

X n =
1

n

n∑
i=1

Xi

is the observed error rate. Let p be the true error rate. We hope that X n ≈ p.

Question: Estimate the probability P(|X n − p| ≥ ε)

Answer:

P(|X n − p| ≥ ε) ≤ 1

4nε2
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Hoeffding Inequality

Hoeffding inequality is similar in spirit to Chebyshev inequality but it is sharper.
This is how it looks in a special case for Bernoulli random variables:

Hoeffding Inequality

Let X1, . . . ,Xn ∼ Bernoulli(p). Then for any ε > 0

P(|X n − p| ≥ ε) ≤ 2e−2nε2

Remark: Hoeffding inequality gives us a simple way to create a confidence interval
for a binomial parameter p.

Definition

A 100(1−α)% confidence interval for a parameter p is an interval calculated from
the sample X1, . . . ,Xn ∼ Bernoulli(p), which contains p with probability 1− α.

Example: Construct a 100(1− α)% confidence interval for p using Hoeffding
inequality.

Answer: X n ±
√

1
2n ln

(
2
α

)
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Cauchy-Schwarz and Jensen Inequalities

These are two inequalities on expected values that are often useful.

Cauchy-Schwarz Inequality

If X and Y have finite variances, then

E[|XY |] ≤
√
E[X 2]E[Y 2]

Jensen Inequality

If g is convex (x2, ex , etc), then

E[g(X )] ≥ g(E[X ])

If g is concave (−x2, log x, etc), then

E[g(X )] ≤ g(E[X ])

Examples: E[X 2] ≥ (E[X ])2, E(1/X ) ≥ 1/E[X ], E[log X ] ≤ logE[X ].
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Summary

Markov inequality: If X is a non-negative random variable, then for any a > 0

P(X ≥ a) ≤ E[X ]

a

Chebyshev inequality: If X is a random variable with mean µ and variance
σ2, then for any a > 0

P(|X − µ| ≥ a) ≤ σ2

a2

Hoeffding inequality: Let X1, . . . ,Xn ∼ Bernoulli(p), then for any ε > 0

P(|X n − p| ≥ ε) ≤ 2e−2nε2

Cauchy-Schwarz inequality: If X and Y have finite variances, then

E[|XY |] ≤
√
E[X 2]E[Y 2]

Jensen Inequality:
I If g is convex, then E[g(X )] ≥ g(E[X ])
I If g is concave, then E[g(X )] ≤ g(E[X ])
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Agenda

Large Sample Theory

Types of Convergence
I Convergence in Probability
I Convergence in Distribution

The Law of Large Numbers
I The Monte Carlo Method

The Central Limit Theorem
I Multivariate version

Summary
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Large Sample Theory

The most important aspect of probability theory concerns the behavior of
sequences of random variables. This part of probability is called large sample
theory or limit theory or asymptotic theory. This theory is extremely important for
statistical inference.

The basic question is this:
What can we say about the limiting behavior of a sequence of random variables?

X1,X2,X3 . . .

In the statistical context: What happens as we gather more and more data?

In Calculus, we say that a sequence of real numbers x1, x2, . . . converges to a limit
x if, for every ε > 0, we can find N such that |xn − x | < ε for all n > N.

In Probability, convergence is more subtle.
Going back to calculus, suppose that xn = 1/n. Then trivially, limn→∞ xn = 0.
Consider a probabilistic version of this example: suppose that X1,X2, . . . are
independent and Xn ∼ N (0, 1/n). Intuitively, Xn is very concentrated around 0 for
large n, and we are tempted to say that Xn “converges” to zero. However,
P(Xn = 0) = 0 for all n!
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Types of Convergence

There are two main types of convergence:
convergence in probability and convergence in distribution

Definition
Let X1,X2, . . . be a sequence of random variables and let X be another random
variable. Let Fn denote the CDF of Xn and let F denote the CDF of X .

Xn converges to X in probability, written Xn
P−→ X ,

if for every ε > 0
lim

n→∞
P(|Xn − X | ≥ ε) = 0

Xn converges to X in distribution, written Xn
D−→ X ,

if
lim

n→∞
Fn(x) = F (x)

for all x for which F is continuous.
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Relationships Between the Types of Convergence

Example: Let Xn ∼ N (0, 1/n). Then

Xn
P−→ 0

Xn
D−→ 0

Question: Is there any relationship between
P−→ and

D−→ ?

Answer: Yes:

Xn
P−→ X implies that Xn

D−→ X

Important Remark: The reverse implication does not hold:
convergence in distribution does not imply convergence in probability.

Example: Let X ∼ N (0, 1) and let Xn = −X for all n. Then

Xn
D−→ X

Xn
P9 X
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The Law of Large Numbers

The law of large numbers is one of the main achievements in probability. This
theorem says that the mean of a large sample is close to the mean of the
distribution.

The Law of Large Numbers

Let X1,X2, . . . be an i.i.d. sample and let µ = E[X1] and σ2 = V[X1] <∞. Then

X n =
1

n

n∑
i=1

Xi
P−→ µ

Useful Interpretation:

The distribution of X n becomes more concentrated around µ as n gets larger.

Example: Let Xi ∼ Bernoulli(p). The fraction of heads after n tosses is X n.

According to the LLN, X n
P−→ E[Xi ] = p. It means that, when n is large, the

distribution of X n is tightly concentrated around p.
Q: How large should n be so that P(|X n − p| < ε) ≥ 1− α?

Answer: n ≥ p(1−p)
αε2
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The Monte Carlo Method

Suppose we want to calculate

I (f ) =

∫ 1

0

f (x)dx

where the integration cannot be done by elementary means.
The Monte Carlo method works as follows:

1 Generate independent uniform random variables on [0,1], X1, . . . ,Xn ∼ U[0, 1]

2 Compute Y1 = f (X1), . . . ,Yn = f (Xn). Then Y1, . . . ,Yn are i.i.d.

3 By the law of large numbers Y n should be close to E[Y1]. Therefore:

1

n

n∑
i=1

f (Xi ) = Y n ≈ E[Y1] = E[f (X1)] =

∫ 1

0

f (x)dx
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Monte Carlo method: Example

Suppose we want to compute the following integral:

I =

∫ 1

0

x2dx

From calculus: I = 1/3
Using Monte Carlo method: I (n) = 1

n

∑n
i=1 X

2
i , where Xi ∼ U[0, 1]
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Accuracy of the Monte Carlo method

1

n

n∑
i=1

f (Xi ) ≈
∫ 1

0

f (x)dx , X1, . . . ,Xn ∼ U[0, 1]

Question: How large should n be to achieve a desired accuracy?

Answer: Let f : [0, 1]→ [0, 1]. To get 1
n

∑n
i=1 f (Xi ) within ε of the true value I (f )

with probability at least p, we should choose n so that

n ≥ 1

ε2(1− p)

Thus, the Monte Carlo method tells us how large to take n to get a desired
accuracy.
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The Central Limit Theorem

Suppose that X1, . . . ,Xn are i.i.d. with mean µ and variance σ2. The central
limit theorem (CLT) says that X n has a distribution which is approximately
Normal. This is remarkable since nothing is assumed about the distribution of Xi ,
except the existence of the mean and variance.

The Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. with mean µ and variance σ2. Let X n = 1
n

∑n
i=1 Xi . Then

Zn ≡
X n − µ
σ/
√
n

D−→ Z ∼ N (0, 1)

Useful Interpretation:

Probability statements about X n can be approximated using a Normal
distribution.
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The Central Limit Theorem

Zn ≡
X n − µ
σ/
√
n

D−→ Z ∼ N (0, 1)

There are several forms of notation to denote the fact that the distribution of Zn

is converging to a Normal. They all mean the same thing:

Zn ∼̇ N (0, 1)

X n ∼̇ N
(
µ,
σ2

n

)

X n − µ ∼̇ N
(

0,
σ2

n

)
√
n(X n − µ) ∼̇ N (0, σ2)

X n − µ
σ/
√
n
∼̇ N (0, 1)
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The Central Limit Theorem: Remarks

The CLT asserts that the CDF of X n, suitably normalized to have mean 0
and variance 1, converges to the CDF of N (0, 1).

Q: Is the corresponding result valid at the level of PDFs and PMFs?

Broadly speaking the answer is yes, but some condition of smoothness is
necessary (generally, Fn(x)→ F (x) does not imply F ′n(x)→ F ′(x)).

The CLT does not say anything about the rate of convergence.

The CLT tells us that in the long run we know what the distribution must be.
I Even better: it is always the same distribution.

F Still better: it is one which is remarkably easy to deal with, and for which we
have a huge amount of theory.

Historic Remark:

For the special case of Bernoulli variables with p = 1/2, CLT was proved by
de Moivre around 1733.

General values of p were treated later by Laplace.

The first rigorous proof of CLT was discovered by Lyapunov around 1901.
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The Central Limit Theorem: Example

Suppose that the number of errors per computer program has a Poisson

distribution with mean λ = 5. f (k |λ) = e−λ λk

k!

We get n = 125 programs; n is sample size

Let X1, . . . ,Xn be the number of errors in the programs, Xi ∼ Poisson(λ).

Estimate probability P(X n ≤ λ+ ε), where ε = 0.5.

Answer:

P(X n ≤ λ+ ε) ≈ Φ

(
ε

√
n

λ

)
= Φ(2.5) ≈ 0.994
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The Central Limit Theorem: Example

A tourist in Las Vegas was attracted by a certain gambling game in which
I the customer stakes 1 dollar on each play
I a win then pays the customer 2 dollars plus the return of her stake
I a loss costs her only her stake

The probability of winning at this game is p = 1/4.

The tourist played this game n = 240 times.

Assuming that no near miracles happened,

about how much poorer was the tourist upon leaving the casino?
Answer:

E[payoff] = −$60

what is the probability that she lost no money?
Answer:

P[payoff ≥ 0] ≈ 0
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The Central Limit Theorem

The central limit theorem tells us that

Zn =
X n − µ
σ/
√
n
∼̇ N (0, 1)

However, in applications, we rarely know σ. We can estimate σ2 from X1, . . . ,Xn

by sample variance

S2
n =

1

n − 1

n∑
i=1

(Xi − X n)2

Question: If we replace σ with Sn is the central limit theorem still true?

Answer: Yes!

Theorem
Assume the same conditions as the CLT. Then,

X n − µ
Sn/
√
n

D−→ Z ∼ N (0, 1)
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Multivariate Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. random vectors with mean µ and covariance matrix Σ:

Xi =


X1i

X2i

...
Xki

 µ =


µ1

µ2

...
µk

 =


E[X1i ]
E[X2i ]

...
E[Xki ]



Σ =


V[X1i ] Cov(X1i ,X2i ) . . . Cov(X1i ,Xki )

Cov(X2i ,X1i ) V[X2i ] . . . Cov(X2i ,Xki )
...

...
. . .

...
Cov(Xki ,X1i ) . . . Cov(Xki ,Xk−1i ) V[Xki ]


Let X n = (X 1n, . . . ,X kn)T . Then

√
n(X n − µ)

D−→ N (0,Σ)
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Summary

Xn
P−→ X : Xn converges to X in probability, if for every ε > 0

lim
n→∞

P(|Xn − X | ≥ ε) = 0

Xn
D−→ X : Xn converges to X in distribution, if for all x for which F is

continuous
lim

n→∞
Fn(x) = F (x)

Xn
P−→ X implies that Xn

D−→ X
The Law of Large Numbers: Let X1,X2, . . . be an i.i.d. sample and let
µ = E[X1]. Then

X n =
1

n

n∑
i=1

Xi
P−→ µ

The Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. with mean µ and
variance σ2. Then

Zn ≡
X n − µ
σ/
√
n

D−→ Z ∼ N (0, 1)
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The starting point in developing the probability theory is the notion of a
sample space = the set of possible outcomes.

Definition
The sample space Ω is the set of possible outcomes of an “experiment”

Points ω ∈ Ω are called realizations

Events are subsets of Ω

Next, to every event A ⊂ Ω, we assign a real number P(A), called the probability
of A. We call function P : {subsets of Ω} → R a probability distribution.

Function P is not arbitrary, it satisfies several natural properties
(called axioms of probability):

1 0 ≤ P(A) ≤ 1 (Events range from never happening to always happening)

2 P(Ω) = 1 (Something must happen)

3 P(∅) = 0 (Nothing never happens)

4 P(A) + P(Ā) = 1 (A must either happen or not-happen)

5 P(A + B) = P(A) + P(B)− P(AB)
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Statistical Independence

Definition
Two events A and B are independent if

P(AB) = P(A)P(B)

Independence can arise in two distinct ways:

1 We explicitly assume that two events are independent.

2 We derive independence of A and B by verifying that P(AB) = P(A)P(B).
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Conditional Probability

Definition

If P(A) > 0, then the conditional probability of B given A is

P(B|A) =
P(AB)

P(A)

Useful Interpretation:

Think of P(B|A) as the

fraction of times B occurs among those in which A occurs

Properties of Conditional Probabilities:
1 For any fixed A such that P(A) > 0, P(·|A) is a probability, i.e. it satisfies

the rules of probability.
2 In general P(B|A) 6= P(A|B)

3 If A and B are independent then P(B|A) = P(AB)
P(A) = P(A)P(B)

P(A) = P(B)

Thus, another interpretation of independence is that knowing A does not
change the probability of B.
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Law of Total Probability and Bayes’ Theorem

Law of Total Probability

Let A1, . . . ,An be a partition of Ω, i.e.⋃n
i=1 Ai = Ω (A1, . . . ,An are jointly exhaustive events)

Ai

⋂
Aj = ∅ for i 6= j (A1, . . . ,An are mutually exclusive events)

P(Ai ) > 0

Then for any event B

P(B) =
n∑

i=1

P(B|Ai )P(Ai )

Bayes’ Theorem

Conditional probabilities can be inverted. That is,

P(A|B) =
P(B|A)P(A)

P(B)
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Random Variables

We need the random variables to link sample spaces and events to data.

Definition

A random variable is a mapping X : Ω→ R that assigns a real number X (ω) to
each outcome ω ∈ Ω.

This mapping induces probability on R from Ω as follows:
Given a random variable X and a set A ⊂ R, define

X−1(A) = {ω ∈ Ω : X (ω) ∈ A}

and let
P(X ∈ A) = P(X−1(A)) = P({ω ∈ Ω : X (ω) ∈ A})

Definition

The cumulative distribution function (CDF) FX : R→ [0, 1] is defined by

FX (x) = P(X ≤ x)

CDF contains all the information about the random variable
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Properties of CDFs

Theorem

A function F : R→ [0, 1] is a CDF for some random variable if and only if it
satisfies the following three conditions:

1 F is non-decreasing:

x1 < x2 ⇒ F (x1) ≤ F (x2)

2 F is normalized:

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1

3 F is right-continuous:
lim

y→x+0
F (y) = F (x)
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Discrete Random Variables

Definition

X is discrete if it takes countable many values {x1, x2, . . .}.
We define the probability mass function (PMF) for X by

fX (x) = P(X = x)

Relationships between CDF and PMF:

The CDF of X is related to the PMF fX by

FX (x) = P(X ≤ x) =
∑
xi≤x

fX (xi )

The PMF fX is related to the CDF FX by

fX (x) = FX (x)− FX (x−) = FX (x)− lim
y→x−0

F (y)
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Continuous Random Variables

Definition
A random variable is continuous if there exists a function fX such that

fX (x) ≥ 0 for all x∫ +∞
−∞ fX (x)dx = 1, and

For every a ≤ b

P(a < X ≤ b) =

∫ b

a

fX (x)dx

The function fX (x) is called the probability density function (PDF)

Relationship between the CDF FX (x) and PDF fX (x):

FX (x) =

∫ x

−∞
fX (t)dt fX (x) = F ′X (x)
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Transformation of Random Variables

Suppose that X is a random variable with PDF fX and CDF FX .
Let Y = r(X ) be a function of X .

Q: How to compute the PDFand CDF of Y ?

1 For each y , find the set Ay = {x : r(x) ≤ y}
2 Find the CDF FY (y)

FY (y) = P(Y ≤ y) = P(r(X ) ≤ y) = P(X ∈ Ay ) =

∫
Ay

fX (x)dx

3 The PDF is then fY (y) = F ′Y (y)

Important Fact: When r is strictly monotonic, then r has an inverse s = r−1 and

fY (y) = fX (s(y))

∣∣∣∣ds(y)

dy

∣∣∣∣
Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 10 / 24



Joint Distributions

Discrete Case

Definition
Given a pair of discrete random variables X and Y , their joint PMF is defined by

fX ,Y (x , y) = P(X = x ,Y = y)

Continuous Case

Definition

A function fX ,Y (x , y) is called the joint PDF of continuous random variables X
and Y if

I fX ,Y (x , y) ≥ 0,
∫ +∞
−∞

∫ +∞
−∞ fX ,Y (x , y)dxdy = 1

I For any set A ⊂ R× R

P((X ,Y ) ∈ A) =

∫ ∫
A

fX ,Y (x , y)dxdy

The joint CDF of X and Y is defined as FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)
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Marginal Distributions

Discrete Case
If X and Y have joint PMF fX ,Y , then the marginal PMF of X is

fX (x) = P(X = x) =
∑
y

P(X = x ,Y = y) =
∑
y

fX ,Y (x , y)

Similarly, the marginal PMF of Y is

fY (y) = P(Y = y) =
∑
x

P(X = x ,Y = y) =
∑
x

fX ,Y (x , y)

Continuous Case
If X and Y have joint PDF fX ,Y , then the marginal PDFs of X and Y are

fX (x) =

∫
fX ,Y (x , y)dy and fY (y) =

∫
fX ,Y (x , y)dx
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Independent Random Variables

Definition
Two random variables X and Y are independent if, for every A and B

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

Criterion of independence:

Theorem

Let X and Y have joint PDF/PMF fX ,Y . Then X and Y are independent if and
only if

fX ,Y (x , y) = fX (x)fY (y)
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Conditional Distributions

Discrete Case
The conditional PMF:

fX |Y (x |y) = P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

fX ,Y (x , y)

fY (y)

Continuous Case
The conditional PDF is

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)

Then,

P(X ∈ A|Y = y) =

∫
A

fX |Y (x |y)dx
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Expectation and its Properties
The expectation (or mean) of a random variable X is the average value of X .

Definition
The expected value, or mean, or first moment of X is

µX ≡ E[X ] =

{ ∑
x xfX (x), if X is discrete∫
xfX (x)dx , if X is continuous

assuming that the sum (or integral) is well-defined.

Let Y = r(X ), then E[Y ] = E[r(X )] =
∫

r(x)fX (x)dx
If X1, . . . ,Xn are random variables and a1, . . . , an are constants, then

E

[
n∑

i=1

aiXi

]
=

n∑
i=1

aiE[Xi ]

Let X1, . . . ,Xn be independent random variables. Then,

E

[
n∏

i=1

Xi

]
=

n∏
i=1

E[Xi ]
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Variance and its Properties

The variance measures the “spread” of a distribution.

Definition
Let X be a random variance with mean µX .
The variance of X , denoted V[X ] or σ2

X , is defined by

σ2
X ≡ V[X ] = E[(X − µX )2] =

{ ∑
x(x − µX )2fX (x), if X is discrete∫

(x − µX )2fX (x)dx , if X is continuous

The standard deviation is σX =
√
V[X ]

Important Properties of V[X ]:

V[X ] = E[X 2]− µ2
X

If a and b are constants, then V[aX + b] = a2V[X ]
If X1, . . . ,Xn are independent and a1, . . . , an are constants, then

V

[
n∑

i=1

aiXi

]
=

n∑
i=1

a2i V[Xi ]
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Covariance and Correlation

If X and Y are random variables, then the covariance and correlation between X
and Y measure how strong the linear relationship is between X and Y .

Definition
Let X and Y be random variables with means µX and µY and standard deviations
σX and σY . Define the covariance between X and Y by

Cov(X ,Y ) = E[(X − µX )(Y − µY )]

and the correlation by

ρ(X ,Y ) =
Cov(X ,Y )

σXσY
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Properties of Covariance and Correlation

The covariance satisfies (useful in computations):

Cov(X ,Y ) = E[XY ]− E[X ]E[Y ]

The correlation satisfies:
−1 ≤ ρ(X ,Y ) ≤ 1

If Y = aX + b for some constants a and b, then

ρ(X ,Y ) =

{
1, if a > 0
−1, if a < 0

If X and Y are independent, then Cov(X ,Y ) = ρ(X ,Y ) = 0.
The converse is not true.

For random variables X1, . . . ,Xn

V

[
n∑

i=1

aiXi

]
=

n∑
i=1

a2i V[Xi ] + 2
∑
i<j

aiajCov(Xi ,Xj)
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Conditional Expectation and Conditional Variance

The conditional expectation of X given Y = y is

E[X |Y = y ] =

{ ∑
x xfX |Y (x |y), discrete case;∫
xfX |Y (x |y)dx , continuous case.

I E[X ] is a number
I E[X |Y = y ] is a function of y
I E[X |Y ] is the random variable whose value is E[X |Y = y ] when Y = y

The Rule of Iterated Expectations

EE[Y |X ] = E[Y ] and EE[X |Y ] = E[X ]

The conditional variance of X given Y = y is

V[X |Y = y ] = E[(X − E[X |Y = y ])2|Y = y ]

I V[X ] is a number
I V[X |Y = y ] is a function of y
I V[X |Y ] is the random variable whose value is V[X |Y = y ] when Y = y

For random variables X and Y

V[X ] = EV[X |Y ] + VE[X |Y ]
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Inequalities

Markov inequality: If X is a non-negative random variable, then for any a > 0

P(X ≥ a) ≤ E[X ]

a

Chebyshev inequality: If X is a random variable with mean µ and variance
σ2, then for any a > 0

P(|X − µ| ≥ a) ≤ σ2

a2

Hoeffding inequality: Let X1, . . . ,Xn ∼ Bernoulli(p), then for any ε > 0

P(|X n − p| ≥ a) ≤ 2e−2na
2

Cauchy-Schwarz inequality: If X and Y have finite variances, then

E[|XY |] ≤
√
E[X 2]E[Y 2]

Jensen Inequality:
I If g is convex, then E[g(X )] ≥ g(E[X ])
I If g is concave, then E[g(X )] ≤ g(E[X ])
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Convergence of Random Variables

There are two main types of convergence: convergence in probability and
convergence in distribution.

Definition
Let X1,X2, . . . be a sequence of random variables and let X be another random
variable. Let Fn denote the CDF of Xn and let F denote the CDF of X .

Xn converges to X in probability, written Xn
P−→ X ,

if for every ε > 0
lim

n→∞
P(|Xn − X | ≥ ε) = 0

Xn converges to X in distribution, written Xn
D−→ X ,

if
lim

n→∞
Fn(x) = F (x)

for all x for which F is continuous.

Xn
P−→ X implies that Xn

D−→ X
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Law of Large Numbers and Central Limit Theorem

The LLN says that the mean of a large sample is close to the mean of the
distribution.

The Law of Large Numbers

Let X1, . . . ,Xn be i.i.d. with mean µ and variance σ2. Let X n = 1
n

∑n
i=1 Xi . Then

X n =
1

n

n∑
i=1

Xi
P−→ µ as n→∞

The CLT says that X n has a distribution which is approximately Normal with
mean µ and variance σ2/n. This is remarkable since nothing is assumed about the
distribution of Xi , except the existence of the mean and variance.

The Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. with mean µ and variance σ2. Then

Zn ≡
X n − µ
σ/
√

n

D−→ Z ∼ N (0, 1) as n→∞
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The Central Limit Theorem

The central limit theorem tells us that

Zn =
X n − µ
σ/
√

n
∼̇ N (0, 1)

However, in applications, we rarely know σ. We can estimate σ2 from X1, . . . ,Xn

by sample variance

S2
n =

1

n − 1

n∑
i=1

(Xi − X n)2

Question: If we replace σ with Sn is the central limit theorem still true?

Answer: Yes!

Theorem
Assume the same conditions as in the CLT. Then,

X n − µ
Sn/
√

n

D−→ Z ∼ N (0, 1) as n→∞
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Multivariate Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. random vectors with mean µ and covariance matrix Σ:

Xi =


X1i

X2i

...
Xki

 µ =


µ1

µ2

...
µk

 =


E[X1i ]
E[X2i ]

...
E[Xki ]



Σ =


V[X1i ] Cov(X1i ,X2i ) . . . Cov(X1i ,Xki )

Cov(X2i ,X1i ) V[X2i ] . . . Cov(X2i ,Xki )
...

...
. . .

...
Cov(Xki ,X1i ) . . . Cov(Xki ,Xk−1i ) V[Xki ]


Let X n = (X 1n, . . . ,X kn)T . Then

√
n(X n − µ)

D−→ N (0,Σ) as n→∞
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Math 408 - Mathematical Statistics

Lecture 12. Introduction to Survey Sampling

February 15, 2013
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Agenda

Goals of Survey Sampling

Population Parameters

Simple Random Sampling

Estimation of the population mean

Summary

Konstantin Zuev (USC) Math 408, Lecture 12 February 15, 2013 2 / 10



Survey Sampling

Sample surveys are use to obtain information about a large population.
The purpose of survey sampling is to reduce the cost and the amount of work
that it would take to survey the entire population.

By a small sample
we may judge of the whole piece

Miguel de Cervantes
“Don Quixote”

Familiar Examples of Survey Sampling:

the cook in the kitchen taking a spoonful of soup to determine its taste

the brewer needing only a sip of beer to test its quality
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History of Survey Sampling

The first known attempt to make statements
about a population using only information about
part of it was made by the English merchant
John Graunt. In his famous tract (Graunt, 1662)
he describes a method to estimate the population
of London based on partial information. John
Graunt has frequently been merited as the
founder of demography.

The second time a survey-like method was
applied was more than a century later. Pierre
Simon Laplace realized that it was important to
have some indication of the accuracy of the
estimate of the French population (Laplace,
1812).

Recommended Reading: “The rise of survey sampling,” by J. Bethlehem (2009).
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Survey Sampling: Population Parameters

Suppose that the target population is of size N (N is very large) and a numerical
value of interest xi is associated with i th member of the population, i = 1, . . . ,N.

Examples:

xi = age, weight, etc.

xi = 1 if some characteristic is present, and xi = 0 otherwise.

There are two “standard” parameters of population that we are typically
interested:

Definition
Population mean

µ =
1

N

N∑
i=1

xi

Population variance

σ2 =
1

N

N∑
i=1

(xi − µ)2
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Simple Random Sampling

Important Remark:

Note that µ and σ2 are not random. They are some fixed unknown parameters.
We want to estimate them by picking n out of N members of the population and
constructing estimates of µ and σ2 based only on these n members.

The most elementary form of sampling from a population is simple random
sampling.

Definition
In Simple Random Sampling, each member is chosen entirely by chance and,
therefore, each member has an equal chance of being included in the sample; each
particular sample of size n has the same probability of occurrence.

Let X1, . . . ,Xn be the sample drawn from the population.

Important Remark: Each Xi is a random variable:

Xi is the value of the i th element of the sample that was randomly chosen
from the population

xi is the value of the i th member of the population
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Estimate

We will consider the sample mean

X n =
1

n

n∑
i=1

Xi

as an estimate of the population mean µ. Since Xi are random, X n is also
random. Distribution of X n is called its sampling distribution.The sampling
distribution of X n determines how accurately X n estimates µ: the more tightly
the sampling distribution is centered on µ, the better the estimate.

Our goal: is to investigate the sampling distribution of X n

Since X n depends on Xi , let us start with examining the distribution of a single
sample element Xi .

Konstantin Zuev (USC) Math 408, Lecture 12 February 15, 2013 7 / 10



Basic Lemma

Lemma
Denote the distinct values assumed by the population members by ξ1, . . . , ξm,
m ≤ N, and denote the number of population members that have the value ξi by
ni . Then Xi is a discrete random variable with probability mass function

P(Xi = ξj) =
nj
N

(1)

Also
E[Xi ] = µ V[Xi ] = σ2 (2)
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X n is an unbiased estimator of µ

Theorem
With simple random sampling,

E[X n] = µ (3)

This result can be interpreted as follows: “on average” X n = µ

Definition

Suppose we want to estimate a parameter θ by a function θ̂ of the sample
X1, . . . ,Xn,

θ̂ = θ̂(X1, . . . ,Xn)

The estimator θ̂ is called unbiased if E[θ̂] = θ

Thus, X n is an unbiased estimator of µ
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Summary

Sample surveys are used to obtain information about a large population

Population parameters: µ = 1
N

∑N
i=1 xi and σ2 = 1

N

∑N
i=1(xi − µ)2

We use sample mean X n to estimate the population mean µ.

I µ is unknown fixed parameter
I X n is random

Properties of the sample element Xi :

P(Xi = ξj) =
nj
N

E[Xi ] = µ V[Xi ] = σ2

X n is an unbiased estimator of µ

E[X n] = µ

Our next goal is to study the sampling distribution of X n.
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Math 408 - Mathematical Statistics

Lecture 13-14. The Sample Mean and the Sample
Variance Under Assumption of Normality

February 20, 2013
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Framework

Let X1, . . . ,Xn be a sample drawn from a population.

Suppose that the population is “Gaussian” X1, . . . ,Xn ∼ N (µ, σ2)

We want to estimate population parameters µ and σ2.

Definition

The sample mean is X n = 1
n

∑n
i=1 Xi

The sample variance is S2
n = 1

n−1
∑n

i=1(Xi − X n)2

Theorem

X n and S2
n are unbiased estimators of µ and σ2, respectively,

E[X n] = µ, E[S2
n ] = σ2

Our goal: to describe distributions of X n and S2
n
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Distribution of X n

Theorem

If X1, . . . ,Xn are independent N (µ, σ2) random variables, then

X n ∼ N
(
µ,
σ2

n

)
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Distribution of S2
n

Theorem

If X1, . . . ,Xn are independent N (µ, σ2) random variables, then

(n − 1)S2
n

σ2
∼ χ2

n−1
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The χ2-distribution

Definition
Let Z1, . . . ,Zn be independent standard normal variables,

Z1, . . . ,Zn ∼ N(0, 1)

Then the distribution of

Q = Z 2
1 + Z 2

2 + . . .+ Z 2
n

is called the χ2-distribution with n degrees of freedom,

Q ∼ χ2
n

Probability Density Function:

π(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

I x ≥ 0
I Γ is the gamma function Γ(z) =

∫∞
0

tz−1e−tdt
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The χ2-distribution

The χ2-distribution is especially important in hypothesis testing.

Nice Properties:

If X ∼ N (µ, σ2), then
X − µ
σ

∼ N (0, 1)

and (
X − µ
σ

)2

∼ χ2
1

If U ∼ χ2
n and V ∼ χ2

m, and U and V are independent, then

U + V ∼ χ2
n+m
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Graph of the χ2
n PDF: small n
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Graph of the χ2
n PDF: large n
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CLT: χ2
n converges to a normal distribution as n→∞

χ2
n → N (n, 2n), as n→∞

When n > 50, for many practical purposes, χ2
n = N (n, 2n)
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Distribution of S2
n

Theorem

If X1, . . . ,Xn are independent N (µ, σ2) random variables, then

(n − 1)S2
n

σ2
∼ χ2

n−1

Proof: is based on moment-generating functions...
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Moment-generating functions

Definition

The moment-generating function (MGF) of a random variable X ∼ f (x) is

M(t) = E[etX ] =

∫ ∞
−∞

etx f (x)dx

(if the expectation is defined)

Important Properties of MGFs:

If ∃ ε > 0 such that M(t) exists for all t ∈ (−ε, ε), then M(t) uniquely
determines the probability distribution, M(t) f (x).

If M(t) exists in an open interval containing zero, then

M(r)(0) = E[X r ] (hence the name)

To find moments E[X r ], we must do integration.
Knowing the MGF allows to replace integration by differentiation.

Konstantin Zuev (USC) Math 408, Lecture 13-14 February 20, 2013 10 / 19



Moment-generating functions

Important Properties of MGFs: (continuation)

If X has the MGF MX (t) and Y = a + bX , then

MY (t) = eatMX (bt)

If X and Y are independent, then

MX+Y (t) = MX (t)MY (t)

If X and Y have a joint distribution, then their joint MGF is defined as

MX ,Y (s, t) = E[esX+tY ]

X and Y are independent if and only if

MX ,Y (s, t) = MX (s)MY (t)
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Moment-generating functions: Limitations and Examples

The major limitation of the moment-generating function is that it may not exist.

In this case, the characteristic function may be used:

φ(t) = E[e itX ]

Examples:

N (µ, σ2):

M(t) = eµteσ
2t2/2

χ2
n:

M(t) = (1− 2t)−n/2
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Distribution of S2
n

Theorem

If X1, . . . ,Xn are independent N (µ, σ2) random variables, then

(n − 1)S2
n

σ2
∼ χ2

n−1
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Bringing the t-distribution into the Game

Theorem

If X1, . . . ,Xn are independent N (µ, σ2) random variables, then

X n − µ
Sn/
√
n
∼ tn−1
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The t-distribution

Definition

Let Z ∼ N (0, 1), U ∼ χ2
n, and Z and U are independent. Then the distribution of

T =
Z√
U/n

is called the t-distribution with n degrees of freedom.

Probability Density Function:

π(x) =
Γ ((n + 1)/2)√

nπΓ(n/2)

(
1 +

x2

n

)−(n+1)/2

The t-distribution is symmetric about zero, π(x) = π(−x)

As n→∞, the t-distribution tends to the standard normal distribution. In
fact, when n > 30, the two distributions are very close.
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Graph of the t-distribution PDF: small n
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Graph of the t-distribution PDF: large n
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Bringing the t-distribution into the Game

Theorem

If X1, . . . ,Xn are independent N (µ, σ2) random variables, then

X n − µ
Sn/
√
n
∼ tn−1
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Summary

Under Assumption of Normality, X1, . . . ,Xn ∼ N (µ, σ2),

the sample mean: X n =
1

n

n∑
i=1

Xi

the sample variance: S2
n =

1

n − 1

n∑
i=1

(Xi − X n)2

have the following properties:

X n ∼ N
(
µ,
σ2

n

)

(n − 1)S2
n

σ2
∼ χ2

n−1 χ2
n = N (0, 1)2 + . . .+N (0, 1)2

X n − µ
Sn/
√
n
∼ tn−1 tn = N (0,1)√

χ2
n/n

Konstantin Zuev (USC) Math 408, Lecture 13-14 February 20, 2013 19 / 19



Math 408 - Mathematical Statistics

Lecture 15. Accuracy of estimation of the population
mean X n ≈ µ

February 25, 2013
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In Lecture 12, we discussed the basic mathematical framework of survey sampling:

We have the target population of size N (N is very large).

A numerical value of interest xi (age, weight, income, etc) is associated with
i th member of the population.

We are interested in population parameters:
I Population mean µ = 1

N

∑N
i=1 xi

I Population variance σ2 = 1
N

∑N
i=1(xi − µ)2

We estimate µ by the sample mean X n = 1
n

∑n
i=1 Xi , where X1, . . . ,Xn is a

sample drawn from the population using the simple random sampling.

We proved that X n is an unbiased estimate of µ:

E[X n] = µ

In other words, on average X n ≈ µ.

Our next goal is to investigate how variable X n is
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As a measure of the dispersion of X n about µ, we will use the standard deviation

of X n, σX n
=
√
V[X n].

Thus, we want to find

V[X n] =?

V[X n] = V

[
1

n

n∑
i=1

Xi

]
=

1

n2
V

[
n∑

i=1

Xi

]
Remark: If sampling were done with replacement then Xi would be independent,
and we would have:

V[X n] =
1

n2
V

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

V[Xi ] =
1

n2

n∑
i=1

σ2 =
σ2

n

In simple random sampling, we do sampling without replacement.
This induces dependence among Xi . And therefore

V[X n] =
1

n2
V

[
n∑

i=1

Xi

]
6= 1

n2

n∑
i=1

V[Xi ]
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Recall Lecture 6:

V

[
n∑

i=1

αiXi

]
=

n∑
i=1

n∑
j=1

αiαjCov(Xi ,Xj)

Thus, we have:

V[X n] =
1

n2
V

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

n∑
j=1

Cov(Xi ,Xj)

So, we need to find Cov(Xi ,Xj).

Lemma
If i 6= j , then the covariance between Xi and Xj is

Cov(Xi ,Xj) = − σ2

N − 1
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Theorem

The variance of X n is given by

V[X n] =
σ2

n

(
1− n − 1

N − 1

)

Important observations:

If n << N, then

V[X n] ≈ σ2

n
σX n
≈ σ√

n(
1− n−1

N−1

)
is called finite population correction.

To double the accuracy of µ ≈ X n, the sample size must be quadrupled

If σ is small (the population values are not very dispersed), then a small
sample will be fairly accurate. But if σ is large, then a larger sample will be
required to obtain the same accuracy.
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Summary

The main result of this lecture is the expression for the variance of X n:

V[X n] =
σ2

n

(
1− n − 1

N − 1

)

The corresponding standard deviation

σX n
=

√
V[X n]

measures the dispersion of X n about µ.
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Lecture 16. Estimation of the Population Variance σ

February 27, 2013
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Agenda

Why do we need to estimate σ?

How can we estimate σ?

Summary
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The Need of Estimation of σ

We know that the sample mean X n is an unbiased estimate of the population
mean µ:

E[X n] = µ

Moreover, the accuracy of the approximation X n ≈ µ can be measured by the
standard deviation of X n (also called “standard error”):

σX n
=

√
σ2

n

(
1− n − 1

N − 1

)
, σX n

≈ σ√
n
, if n� N (1)

where σ is the population variance

σ =
1

N

N∑
i=1

(xi − µ)2

Q: What is the main drawback of (1)?

A: We can’t use (1) since σ is unknown.
To use (1), σ must be estimated from the sample X1, . . . ,Xn.
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Estimation of σ

It seems natural to use the following estimate

σ̂2
n =

1

n

n∑
i=1

(Xi − X n)
2

However, this estimate is biased.

Theorem

The expected value of σ̂2
n is given by

E[σ̂2
n] = σ2Nn − N

Nn − n

Important Remark:

Since Nn−N
Nn−n < 1, we have E[σ̂2

n] < σ2

Therefore, σ̂2
n tends to underestimate σ2
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Corollaries

Corollary

Since E[σ̂2
n] = σ2 Nn−N

Nn−n ,

σ̂2
n,unbiased =

Nn − n

Nn − N
σ̂2
n

is an unbiased estimate of σ2

Recall that

V[X n] =
σ2

n

(
1− n − 1

N − 1

)
In practice, σ is unknown, so we need to estimate it.

Corollary

An unbiased estimate of V[X n] is

s2
X n

=
σ̂2
n

n

Nn − n

Nn − N

(
1− n − 1

N − 1

)
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Summary

Let us summarize what we have learned about estimation of population
parameters:

Population mean µ
I Unbiased estimate:

X n =
1

n

n∑
i=1

Xi

I Variance of estimate

V[X n] ≡ σ2
Xn

=
σ2

n

(
1− n − 1

N − 1

)
I Estimated variance

σ2
Xn

≈ s2Xn
=
σ̂2
n

n

Nn − n

Nn − N

(
1− n − 1

N − 1

)
Population variance σ

I Unbiased estimate:

σ̂2
n,unbiased =

Nn − n

Nn − N
σ̂2
n, σ̂2

n =
1

n

n∑
i=1

(Xi − X n)
2
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Conclusion

In simple random sampling, we can not only form estimate of unknown population
parameter (e.g. µ), but also obtain the likely size of errors of these estimates.In

other words, we can obtain the estimate of a parameter as well as the estimate

of the error of that estimate
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Lecture 17. The Normal Approximation
to the Distribution of X n

March 1, 2013
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Agenda

Normal Approximation (theoretical result)

Approximation of the Error Probabilities (application 1)

Confidence Intervals (application 2)

Example: Hospitals

Summary
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We previous Lectures, we found the mean and the variance of the sample mean:

E[X n] = µ V[X n] =
σ2

n

(
1− n − 1

N − 1

)
Ideally, we would like to know the entire distribution of X n (sampling
distribution) since it would tell us everything about the random variable X n

Reminder:

If X1, . . . ,Xn are i.i.d. with the common mean µ and variance σ2, then the sample
mean X n has the following properties:

1 E[X n] = µ, V[X n] = σ2

n

2 CLT:

P
(

X n − µ
σ/
√

n
≤ z

)
→ Φ(z), as n→∞

where Φ(z) is the CDF of N (0, 1)

Q: Can we use these results to obtain the distribution of X n?
A: No. In simple random sampling, Xi are not independent.
Moreover, it makes no sense to have n tend to infinity while N is fixed.
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Nevertheless, it can be shown that if n is large, but still small relative to N, then
X n is approximately normally distributed

X n∼̇N (µ, σ2
X n

) σX n
=

σ√
n

√
1− n − 1

N − 1

How can we use this results?

Suppose we want to find the probability that the error made in estimating µ by
X n is less than ε > 0. In symbols, we want to find

P(|X n − µ| ≤ ε) =?

Theorem

From X n∼̇N (µ, σ2
X n

) it follows that

P(|X n − µ| ≤ ε) ≈ 2Φ

(
ε

σX n

)
− 1
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Confidence Intervals

Let α ∈ [0, 1]

Definition

A 100(1− α)% confidence interval for a population parameter θ is a random
interval calculated from the sample, which contains θ with probability 1− α.

Interpretation:

If we were to take many random samples and construct a confidence interval from
each sample, then about 100(1− α)% of these intervals would contain θ.

Our goal: to construct a confidence interval for µ

Let zα be that number such that the area under the standard normal density
function to the right of zα is α. In symbols, zα is such that

Φ(zα) = 1− α

Useful property:
z1−α = −zα
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Confidence interval for µ

Theorem

An (approximate) 100(1− α)% confidence interval for µ is

(X n − zα
2
σX n

,X n + zα
2
σX n

)

That is the probability that µ lies in that interval is approximately 1− α

P(X n − zα
2
σX n
≤ µ ≤ X n + zα

2
σX n

) ≈ 1− α

Remarks:

This confidence interval is random. The probability that it covers µ is (1−α)

In practice, α = 0.1, 0.05, 0.01 (depends on a particular application)

Since σX n
is not known (it depends on σ), sX n

is used instead of σX n
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Example: Hospitals

Data: Herkson (1976):

The population consists of N = 393 short-stay hospitals

Let xi be the number of patients discharged from the i th hospital during
January 1968.
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Example: Hospitals

Population mean µ = 814.6, and population variance σ2 = (589.7)2

Let us consider two case n1 = 32 and n2 = 64.

True std of X n: σX n
=

√
σ2

n

(
1− n−1

N−1

)
, σX 32

= 100, σX 64
= 67.5
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Example: Hospitals

P(|X n − µ| ≤ ε) ≈ 2Φ

(
ε

σX n

)
− 1

How will this picture change if we use the estimated std sX n
instead of σX n

?
σX 32

= 100, σX 64
= 67.5 s

X
(1)
32

= 124.4, σ
X

(1)
64

= 59.5
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Example: Hospitals
100(1− α)% confidence interval for µ is

(X n − zα
2
σX n

,X n + zα
2
σX n

)

α = 0.1:

Interval width: 329.1 for n = 32 and 222.2 for n = 64
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Summary

The sample mean is approximately normal

X n∼̇N (µ, σ2
X n

) σX n
=

σ√
n

√
1− n − 1

N − 1

Probability of error

P(|X n − µ| ≤ ε) ≈ 2Φ

(
ε

σX n

)
− 1

100(1− α)% confidence interval for µ is

(X n − zα
2
σX n

,X n + zα
2
σX n

)
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Ratio and its Estimate

Suppose that for each member of a population, two values are measured:

i th member (xi , yi )

We are interested in the following ratio:

r =

∑N
i=1 yi∑N
i=1 xi

Ratios arise frequently in sample surveys.

Example:

Households are sampled. If yi is the number of unemployed males in the i th

household, and xi is the total number of males in the i th household, then r is the
proportion of unemployed males.
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Estimate of a Ratio

Let

(
X1 . . . Xn

Y1 . . . Yn

)
be a sample from a population.

Then the natural estimate of

r =

∑N
i=1 yi∑N
i=1 xi

=
1
N

∑N
i=1 yi

1
N

∑N
i=1 xi

=
µy

µx

is

Rn =
Y n

X n

Our goal: to derive expressions for E[Rn] and V[Rn]

Technical problem: since Rn a nonlinear function of X n and Y n, we can’t find

E[Rn] and V[Rn] in closed form.

Idea: To approximate E[Rn] and V[Rn] using the δ-method.
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The δ-method

In many applications, the following scenario is typical:

Problem

X is a random variable, µx and σ2
X are known. The problem is to find the mean

and variance of Y = f (X ), where f is some (typically nonlinear) function.

The δ-method utilizes a strategy that is often used in applied mathematics:
when confronted with a nonlinear problem that we can’t solve, we linearize.

In the δ-method, the linearization is carried out through a Taylor series expansion
of f about µX :

Y = f (X ) ≈ f (µX ) + (X − µX )f ′(µX )

We thus obtain the first order approximations:

µY ≈ f (µX ) σ2
Y ≈ (f ′(µX ))2σ2

X
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The δ-method

To obtain a better approximation for µY , we can use the Taylor series expansion
to the 2nd order:

Y = f (X ) ≈ f (µX ) + (X − µX )f ′(µX ) +
1

2
(X − µX )2f ′′(µX )

Then the second order approximations for µY is

µY ≈ f (µX ) +
1

2
σ2
X f ′′(µX )

We can similarly proceed in the case of two random variables X and Y :

Problem

Suppose that µX , µY , σ
2
X , σ

2
Y , σXY = Cov(X ,Y ) are known.

The problem is to find µZ and σ2
Z , where Z = f (X ,Y ).
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The δ-method

Using the Taylor series expansion to the first order:

Z = f (X ,Y ) ≈ f (µ) + (X − µX )
∂f

∂x
(µ) + (Y − µY )

∂f

∂y
(µ), µ = (µX , µY )

Therefore,

µZ ≈ f (µ) σ2
Z ≈ σ2

X

(
∂f

∂x
(µ)

)2

+ σ2
Y

(
∂f

∂y
(µ)

)2

+ 2σXY
∂f

∂x
(µ)

∂f

∂y
(µ)

To obtain a better approximation for µZ , we can use the Taylor series expansion
to the second order.

µZ ≈ f (µ) +
1

2
σ2
X

∂2f

∂x2
(µ) +

1

2
σ2
Y

∂2f

∂y2
(µ) + σXY

∂2f

∂x∂y
(µ)
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The δ-method: special case Z = Y /X

Example

If Z = Y /X , then

µZ ≈ µY

µX
+

1

µ2
X

(
σ2
X

µY

µX
− σXY

)
(1)

σ2
Z ≈ 1

µ2
X

(
σ2
X

µ2
Y

µ2
X

+ σ2
Y − 2σXY

µY

µX

)
(2)
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Approximations of E[Rn] and V[Rn]

The estimate of r =
µy

µx
is

Rn =
Y n

X n

To use the δ-method to approximate E[Rn] and V[Rn], we need to know
µX n

, µY n
, σ2

X n
, σ2

Y n
, and Cov(X n,Y n). In previous Lectures, we found that

µX n
= µx

µY n
= µy

σ2
X n

=
σ2
x

n

(
1 − n−1

N−1

)
σ2
Y n

=
σ2
y

n

(
1 − n−1

N−1

)
It can be shown that

Cov(X n,Y n) =
σxy

n

(
1 − n−1

N−1

)
, where σxy is the population covariance of x

and y , σxy = 1
N

∑N
i=1(xi − µx)(yi − µy ).
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Approximations of E[Rn] and V[Rn]

Using approximations (1) and (2) from the δ-method, we obtain

Theorem
The expectation and variance of Rn are given by

E[Rn] ≈ r +
1

n

(
1 − n − 1

N − 1

)
1

µ2
x

(rσ2
x − σxy ) (3)

V[Rn] ≈ 1

n

(
1 − n − 1

N − 1

)
1

µ2
x

(r2σ2
x + σ2

y − 2rσxy ) (4)

In applications, population parameters µx , σx , σy , σxy are unknown. To compute
the estimated values of E[Rn] and V[Rn], we use (3) and (4) together with

r ≈ Rn µx ≈ X n

σ2
x ≈ σ̂2

x,unbiased = N−1
Nn−N

∑n
i=1(Xi − X n)2

σ2
y ≈ σ̂2

y ,unbiased = N−1
Nn−N

∑n
i=1(Yi − Y n)2

σxy ≈ N−1
Nn−N

∑n
i=1(Xi − X n)(Yi − Y n)
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Summary

Ratios r = µy/µx arise frequently in sample surveys

The natural estimate of r is Rn = Y n/X n

We can find expressions for E[Rn] and V[Rn] using the δ-method:

E[Rn] ≈ r +
1

n

(
1 − n − 1

N − 1

)
1

µ2
x

(rσ2
x − σxy )

V[Rn] ≈ 1

n

(
1 − n − 1

N − 1

)
1

µ2
x

(r2σ2
x + σ2

y − 2rσxy )

To compute the estimated values of E[Rn] and V[Rn], we use:
I r ≈ Rn µx ≈ X n

I σ2
x ≈ σ̂2

x,unbiased = N−1
Nn−N

∑n
i=1(Xi − X n)

2

I σ2
y ≈ σ̂2

y,unbiased = N−1
Nn−N

∑n
i=1(Yi − Y n)

2

I σxy ≈ N−1
Nn−N

∑n
i=1(Xi − X n)(Yi − Y n)
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Agenda

Definition of the Stratified Random Sampling (StrRS)

Basic statistical properties of estimate of µ obtained under StrRS

Neyman Allocation Scheme

Summary
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Stratified Random Sampling

In stratified random sampling (StrRS), the population is partitioned into
subpopulations, or strata, which are then independently sampled.

In many applications, stratification is natural.

Example:

In samples of human populations, geographical areas form natural strata.

Reasons for using StrRS:

We are often interested in obtaining information about each natural
subpopulation in addition to information about the whole population.

Estimates obtained from StrRS can be considerably more accurate than
estimates from simple random sampling if

I population members within each stratum are relatively homogeneous, and
I there is considerable variation between strata.
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Mathematical Framework of StrRS

Suppose there are L strata. Let Nk be the number of population elements in the
kth stratum. The total population size is

N =
L∑

i=1

Nk

Denote the mean and variance of the kth stratum by µk and σ2
k , respectively.

Let x
(k)
i denote the i th value in the kth stratum, then the overall population mean

µ =
1

N

L∑
k=1

Nk∑
i=1

x
(k)
i =

1

N

L∑
k=1

Nkµk =
L∑

k=1

Nk

N
µk =

L∑
k=1

ωkµk , ωk =
Nk

N

Thus, the overall population mean is

µ =
L∑

k=1

ωkµk , ωk =
Nk

N
,

where ωk is the fraction of the population in the kth stratum.
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Mathematical Framework of StrRS

Within each stratum, a simple random sample X
(k)
1 , . . . ,X

(k)
nk of size nk is taken.

The sample mean is

X
(k)

nk =
1

nk

nk∑
i=1

X
(k)
i , k = 1, . . . , L

Since µ =
∑L

k=1 ωkµk , the natural estimate of µ is

X
∗
n =

L∑
k=1

ωkX
(k)

nk

Remark:

We use star to distinguish X
∗
n (obtained from stratified random sampling) from

X n (obtained from simple random sampling)

Our goal: to study statistical properties of X
∗
n

In particular, we want to find E[X
∗
n] and V[X

∗
n]
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Expectation E[X
∗
n]

Theorem

X
∗
n is an unbiased estimate of µ,

E[X
∗
n] = µ
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Variance V[X
∗
n]

Theorem
Under stratified random sampling,

V[X
∗
n] =

L∑
k=1

ω2
k

σ2
k

nk

(
1− nk − 1

Nk − 1

)

Corollary

If the sampling fractions within each stratum are small, i.e. nk/Nk � 1, then

V[X
∗
n] ≈

L∑
k=1

ω2
k

σ2
k

nk

Our next goal: to decide how to choose sample sizes n1, . . . , nL efficiently
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Neyman Allocation Scheme

So, it was shown that (neglecting the sampling fractions nk/Nk � 1)

V[X
∗
n] =

L∑
k=1

ω2
k

σ2
k

nk
Question:

Suppose that the resources of a survey allow only a total of n units to be sampled.
How to choose n1, . . . , nL to minimize V[X

∗
n] subject to constraint

∑
nk = n?

Optimization problem:

V[X
∗
n]→ min s.t.

L∑
k=1

nk = n (1)

Theorem

The sample sizes n1, . . . , nL that solve the optimization problem (1) are given by

nk = n
ωkσk∑L
j=1 ωjσj

k = 1, . . . , L

This optimal allocation scheme is called Neyman allocation
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Summary

Stratified Random Sampling:
population is partitioned onto strata which are then sampled independently.

Under stratified random sampling, the estimate of µ is

X
∗
n =

L∑
k=1

ωkX
(k)

nk

The expectation and variance (assuming nk/Nk � 1):

E[X
∗
n] = µ V[X

∗
n] =

L∑
k=1

ω2
k

σ2
k

nk

Neyman Allocation Scheme minimizes V[X
∗
n] subject to

∑N
k=1 nk = n:

nk = n
ωkσk∑L
j=1 ωjσj

k = 1, . . . , L
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Neyman Allocation vs Proportional Allocation

and
Stratified Random Sampling vs Simple Random Sampling
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Agenda

Neyman Allocation and its properties

Variance of the optimal stratified estimate X
∗
n,opt

Drawbacks of Neyman Allocation

Proportional Allocation

Neyman vs Proportional

Stratified vs Simple

Summary
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Neyman allocation

In Lecture 19, we described the optimal allocation scheme for stratified random
sampling, called Neyman allocation. Neyman allocation scheme minimizes
variance V[X

∗
n] subject to

∑N
k=1 nk = n.

Theorem
The sample sizes n1, . . . , nL that solve the optimization problem

V[X
∗
n] =

L∑
k=1

ω2
k

σ2
k

nk
→ min s.t.

L∑
k=1

nk = n

are given by
n̂k = n

ωkσk∑L
j=1 ωjσj

k = 1, . . . , L (1)

The theorem says that if ωkσk is large, then the corresponding stratum should be
sampled heavily. This is very natural since

if ωk is large, then the stratum contains a large portion of the population

if σk is large, then the population values in the stratum are quite variable
and, therefore, to estimate µk accurately a relatively large sample size must
be used
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Variance of the optimal stratified estimate

In stratified random sampling, an (unbiased) estimate of µ is

X
∗
n =

L∑
k=1

ωkX
(k)

nk

If Neyman (i.e. optimal) allocation is used (nk = n̂k), then the optimal stratified

estimate of µ, denoted by X
∗
n,opt , is

X
∗
n,opt =

L∑
k=1

ωkX
(k)

n̂k

Theorem
The variance of the optimal stratified estimate is

V[X
∗
n,opt ] =

1

n

(
L∑

k=1

ωkσk

)2
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Proportional Allocation

There are two main disadvantages of Neyman allocation:

1 Optimal allocations n̂k depends on σk which generally will not be known

2 If a survey measures several values for each population member, then it is
usually impossible to find an allocation that is simultaneously optimal for all
values

A simple and popular alternative method of allocation is proportional allocation:
to choose n1, . . . , nL such that

n1

N1
=

n2

N2
= . . . =

nL

NL

This holds if

ñk = n
Nk

N
= nωk k = 1, . . . , L (2)
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Proportional Allocation

If proportional allocation is used (nk = ñk = nωk), then the corresponding

stratified estimate of µ, denoted by X
∗
n,p, is

X
∗
n,p =

L∑
k=1

ωkX
(k)

ñk =
L∑

k=1

ωk
1

ñk

ñk∑
i=1

X
(k)
i =

1

n

L∑
k=1

ñk∑
i=1

X
(k)
i

Thus, X
∗
n,p is simply the unweighted mean of the sample values.

Theorem

The variance of X
∗
n,p is given by

V[X
∗
n,p] =

1

n

L∑
k=1

ωkσ
2
k
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Neyman vs Proportional

By definition, Neyman allocation is always better than proportional allocation
(since Neyman allocation is optimal).

Question: When is it substantially better?

Proposition

V[X
∗
n,p]− V[X

∗
n,opt ] =

1

n

L∑
k=1

ωk(σk − σ̄)2, σ̄ =
L∑

k=1

ωkσk

Therefore,

if the variances σk of the strata are all the same, then proportional allocation
is as efficient as Neyman allocation, V[X

∗
n,p] = V[X

∗
n,opt ]

the more variable σk , the more efficient the Neyman allocation scheme
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Stratified vs Simple

Let us now compare simple random sampling and stratified random sampling with
proportional allocation.

Question: What is more efficient? (more efficient = has smaller variance)

Proposition

V[X n]− V[X
∗
n,p] =

1

n

L∑
k=1

ωk(µk − µ)2

Thus, stratified random sampling with proportional allocation always gives a
smaller variance than simple random sampling does (providing that the finite
population correction is ignored, (n − 1)/(N − 1) ≈ 0).
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Summary

The variance of the optimal stratified estimate (Neyman allocation) of µ is

V[X
∗
n,opt ] =

1

n

(
L∑

k=1

ωkσk

)2

Neyman allocation is difficult to implement in practice

Proportional allocation: ñk = nNk

N = nωk

The variance of the stratified estimate under proportional allocation:

V[X
∗
n,p] =

1

n

L∑
k=1

ωkσ
2
k

By definition, Neyman allocation is better than proportional allocation, but
if the variances σk of the strata are all the same, then proportional allocation
is as efficient as Neyman allocation

Stratified random sampling with proportional allocation is always more
efficient than simple random sampling.
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Survey Sampling: What and Why

In surveys sampling we try to obtain information about a large population based
on a relatively small sample of that population.

The main goal of survey sampling is to reduce the cost and the amount of work
that it would take to explore the entire population.

First examples: Graunt (1662) and Laplace (1812) used survey sampling to
estimate the population of London and France, respectively.

Mathematical Framework

Suppose that the target population is of size N (N is large) and a numerical value
of interest xi (age, weight, income, etc) is associated with i th member of the
population, i = 1, . . . ,N. Population parameters (quantities we are interested in):

Population mean

µ =
1

N

N∑
i=1

xi

Population variance

σ2 =
1

N

N∑
i=1

(xi − µ)2
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There are several ways to sample from a population. We discussed two:
1 Simple Random Sampling

Definition
In Simple Random Sampling, each member is chosen entirely by chance and,
therefore, each member has an equal chance of being included in the sample; each
particular sample of size n has the same probability of occurrence.

If X1, . . . ,Xn is the sample drawn from the population, then the sample mean
is a natural estimate of the population mean µ:

X n =
1

n

n∑
i=1

Xi ≈ µ
2 Stratified Random Sampling

Definition
In Stratified Random Sampling, the population is partitioned into subpopulations,
or strata, which are then independently sampled using simple random sampling.

If X
(k)
1 , . . . ,X

(k)
nk is the sample drawn from the kth stratum, then the natural

estimate of µ is

X
∗
n =

L∑
k=1

ωkX
(k)

nk ≈ µ
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Statistical Properties of X n

Since X n = 1
n

∑n
i=1 Xi , statistical properties of X n are completely determined by

statistical properties of Xi .

Lemma
Denote the distinct values assumed by the population members by ξ1, . . . , ξm,
m ≤ N, and denote the number of population members that have the value ξi by
ni . Then Xi is a discrete random variable with probability mass function

P(Xi = ξj) =
nj

N

Also
E[Xi ] = µ V[Xi ] = σ2

From this lemma, it follows immediately that X n is an unbiased estimate of µ:

E[X n] = µ

Thus, on average X n = µ.
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Statistical Properties of X n

The next important question is how variable X n is.

As a measure of the dispersion of X n about µ, we use the standard deviation of

X n, denoted as σX n
=
√

V[X n].

Theorem

The variance of X n is given by

V[X n] =
σ2

n

(
1− n − 1

N − 1

)

Important observations:

If n << N, then

V[X n] ≈ σ2

n
σX n
≈ σ√

n(
1− n−1

N−1

)
is called finite population correction. This factor arises because of

dependence among Xi .
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Statistical Properties of X n

σX n
≈ σ√

n
(1)

To double the accuracy, the sample size must be quadrupled.

If σ is small (the population values are not very dispersed), then a small
sample will be fairly accurate. But if σ is large, then a larger sample will be
required to obtain the same accuracy.

We can’t use (1) in practice, since σ is unknown. To use (1), σ must be
estimated from sample X1, . . . ,Xn.

At first glance, it seems natural to use the following estimate

σ̂2
n =

1

n

n∑
i=1

(Xi − X n)2 ≈ σ2 =
1

N

N∑
i=1

(xi − µ)2

However, this estimate is biased.
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Statistical Properties of X n

Theorem

The expected value of σ̂2
n is given by

E[σ̂2
n] = σ2 Nn − N

Nn − n

In particular, σ̂2
n tends to underestimate σ2.

Corollary

An unbiased estimate of σ2 is

σ̂2
n,unbiased =

Nn − n

Nn − N
σ̂2
n

An unbiased estimate of V[X n] is

s2
X n

=
σ̂2
n

n

Nn − n

Nn − N

(
1− n − 1

N − 1

)
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Normal Approximation to the Distribution of X n

So, we know that the sample mean X n is an unbiased estimate of µ, and we know
how to approximately find its standard deviation σX n

≈ sX n
.

Ideally, we would like to know the entire distribution of X n (sampling
distribution) since it would tell us everything about the accuracy of the estimation
X n ≈ µ

It can be shown that if n is large, but still small relative to N, then X n is
approximately normally distributed

X n∼̇N (µ, σ2
X n

) σX n
=

σ√
n

√
1− n − 1

N − 1

From this result, it is easy to find the probability that the error made in estimating
µ by X n is less than ε > 0:

P(|X n − µ| ≤ ε) ≈ 2Φ

(
ε

σX n

)
− 1
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Confidence Intervals

Let α ∈ [0, 1]

Definition

A 100(1− α)% confidence interval for a population parameter θ is a random
interval calculated from the sample, which contains θ with probability 1− α.

Interpretation:

If we were to take many random samples and construct a confidence interval from
each sample, then about 100(1− α)% of these intervals would contain θ.

Theorem

An (approximate) 100(1− α)% confidence interval for µ is

(X n − zα
2
σX n

,X n + zα
2
σX n

)

That is the probability that µ lies in that interval is approximately 1− α

P(X n − zα
2
σX n
≤ µ ≤ X n + zα

2
σX n

) ≈ 1− α
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Estimation of a Ratio

Suppose that for each member of a population, two values are measured:

i th member (xi , yi )

We are interested in the following ratio:

r =

∑N
i=1 yi∑N
i=1 xi

=
µy

µx

Let

(
X1 . . . Xn

Y1 . . . Yn

)
be a simple random sample from a population.

Then the natural estimate of r is

Rn =
Y n

X n

To obtain expressions for E[Rn] and V[Rn] we use the δ-method.
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The δ-method

The δ-method is developed to address the following problem

Problem

Suppose that X and Y are random variables, and that µX , µY , σ
2
X , σ

2
Y , and

σXY = Cov(X ,Y ) are known. The problem is to find µZ and σ2
Z , where

Z = f (X ,Y ).

Using the Taylor series expansion to the first order:

Z = f (X ,Y ) ≈ f (µ) + (X − µX )
∂f

∂x
(µ) + (Y − µY )

∂f

∂y
(µ), µ = (µX , µY )

Therefore,

µZ ≈ f (µ) σ2
Z ≈ σ2

X

(
∂f

∂x
(µ)

)2

+ σ2
Y

(
∂f

∂y
(µ)

)2

+ 2σXY
∂f

∂x
(µ)

∂f

∂y
(µ)

To obtain a better approximation for µZ , we can use the Taylor series expansion
to the second order.
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Approximations of E[Rn] and V[Rn]

Using the δ-method, we obtain

Theorem
The expectation and variance of Rn are given by

E[Rn] ≈ r +
1

n

(
1− n − 1

N − 1

)
1

µ2
x

(rσ2
x − σxy ) (2)

V[Rn] ≈ 1

n

(
1− n − 1

N − 1

)
1

µ2
x

(r2σ2
x + σ2

y − 2rσxy ) (3)

In applications, population parameters µx , σx , σy , σxy are unknown. To compute
the estimated values of E[Rn] and V[Rn], we use (2) and (3) together with

r ≈ Rn µx ≈ X n

σ2
x ≈ σ̂2

x,unbiased = N−1
Nn−N

∑n
i=1(Xi − X n)2

σ2
y ≈ σ̂2

y ,unbiased = N−1
Nn−N

∑n
i=1(Yi − Y n)2

σxy ≈ N−1
Nn−N

∑n
i=1(Xi − X n)(Yi − Y n)
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Stratified Random Sampling

In Stratified Random Sampling, a population is partitioned into strata, which are
then independently sampled using simple random sampling.

If X
(k)
1 , . . . ,X

(k)
nk is the sample drawn from the kth stratum, then the estimate of

µ is

X
∗
n =

L∑
k=1

ωkX
(k)

nk ≈ µ,

where ωk = Nk/N is the fraction of the population in the kth stratum.

X
∗
n is an unbiased estimate of µ

E[X
∗
n] = µ

The variance of X
∗
n is

V[X
∗
n] =

L∑
k=1

ω2
k

σ2
k

nk

(
1− nk − 1

Nk − 1

)
≈

L∑
k=1

ω2
k

σ2
k

nk
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Neyman (=Optimal) Allocation Scheme

Question:

Suppose that the resources of a survey allow only a total of n units to be sampled.
How to choose n1, . . . , nL to minimize V[X

∗
n] subject to constraint

∑
nk = n?

Optimization problem:

V[X
∗
n]→ min s.t.

L∑
k=1

nk = n (4)

Theorem

The sample sizes n1, . . . , nL that solve the optimization problem (4) are given
by

n̂k = n
ωkσk∑L
j=1 ωjσj

k = 1, . . . , L

The variance of the optimal stratified estimate is

V[X
∗
n,opt ] =

1

n

(
L∑

k=1

ωkσk

)2
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Proportional Allocation

There are two main disadvantages of Neyman allocation:
1 Optimal allocations n̂k depends on σk which generally will not be known
2 If a survey measures several values for each population member, then it is

usually impossible to find an allocation that is simultaneously optimal for all
values

A simple and popular alternative method of allocation is proportional allocation:
to choose n1, . . . , nL such that

n1

N1
=

n2

N2
= . . . =

nL

NL

This holds if

ñk = n
Nk

N
= nωk k = 1, . . . , L (5)

Theorem

The variance of X
∗
n,p is given by

V[X
∗
n,p] =

1

n

L∑
k=1

ωkσ
2
k
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Neyman vs Proportional and Simple vs Stratified

By definition, Neyman allocation is always better than proportional allocation.

Question: When is it substantially better?

V[X
∗
n,p]− V[X

∗
n,opt ] =

1

n

L∑
k=1

ωk(σk − σ̄)2, σ̄ =
L∑

k=1

ωkσk

if the variances σk of the strata are all the same, then proportional allocation
is as efficient as Neyman allocation, V[X

∗
n,p] = V[X

∗
n,opt ]

the more variable σk , the more efficient the Neyman allocation scheme

Question: What is more efficient: simple random sampling or stratified random
sampling with proportional allocation?

V[X n]− V[X
∗
n,p] =

1

n

L∑
k=1

ωk(µk − µ)2

Thus, stratified random sampling with proportional allocation always gives a
smaller variance than simple random sampling does (providing that the finite
population correction is ignored, (n − 1)/(N − 1) ≈ 0).
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Statistical Inference

Statistical inference, or “learning”, is the process of using data to infer the
distribution that generated the data. The basic statistical inference problem is the
following:

Basic Problem

We observe X1, . . . ,Xn ∼ π. We want to infer (or estimate, or learn) π or some
features of π such as its mean.

Definition
A statistical model is a set of distributions or a set of densities F .

A parametric model is a set F that can be parameterized by a finite
number of parameters.

A nonparametric model is a set F that cannot be parameterized by a finite
set of parameters.
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Examples of Statistical Models

Examples:

If we assume that the data come from a normal distribution, then the model
is

F =

{
π(x |µ, σ2) =

1√
2πσ

exp

(
− (x − µ)2

2σ2

)
, µ, σ2 ∈ R

}
This is a two-parameter model. In π(x |µ, σ2), x is a value of the random
variable, whereas µ and σ2 are parameters.

A nonparametric model:
Fall = {all PDFs}

We will focus on parametric models.
In general, a parametric model takes the form

F = {π(x |θ), θ ∈ Θ}

where θ is an unknown parameter and Θ is the parameter space.

Remark: θ can be a vector, for instance, θ = (µ, σ2)
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Point Estimation

Given a parametric model, F = {π(x |θ), θ ∈ Θ}, the problem of inference is
then to estimate (to learn) the parameter θ from the data.

Almost all problems in statistical inference can be identified as being one of three
types: point estimates, confidence intervals, and hypothesis testing.

Point Estimation refers to providing a single “best guess.”
Suppose X1, . . . ,Xn ∼ π(x |θ), where π(x |θ) ∈ F .
A point estimator θ̂n of a parameter θ is some function of X1, . . . ,Xn:

θ̂n = f (X1, . . . ,Xn)

Remember: θ is fixed but unknown, θ̂n is random since depends on
X1, . . . ,Xn. We say that θ̂n is unbiased if

E[θ̂n] = θ
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Confidence Intervals and Hypothesis Testing

A 100(1− α)% Confidence Interval for a parameter θ is a random interval
In = (a, b) where a = a(X1, . . . ,Xn) and b = b(X1, . . . ,Xn) such that

P(θ ∈ In) = 1− α

In words: (a, b) traps θ with probability 1− α.
(1− α) is called coverage of the confidence interval.
In practice, α = 0.05 is often used.

In Hypothesis Testing, we start with some default theory, called a null
hypothesis, and we ask if the data provide sufficient evidence to reject the
theory. If not, we accept the null hypothesis.
Example:

X1, . . . ,Xn ∼ Bernoulli(p): n independent coin flips.
We want to test if the coin is fair ⇒ the null hypothesis H0 : p = 1/2
The alternative hypothesis is then: H1 : p 6= 1/2
It seems reasonable to reject H0 if∣∣∣∣∣1n

n∑
i=1

Xi −
1

2

∣∣∣∣∣ is large
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Summary

A parametric model is a set F that can be parameterized by a finite number
of parameters.

I General parametric model:

F = {π(x |θ), θ ∈ Θ}

A nonparametric model is a set F that cannot be parameterized by a finite
set of parameters.

Almost all problems in statistical inference can be identified as being one of
three types:

I Point Estimates
I Confidence Intervals
I Hypothesis Testing
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Method of Moments: Problem Formulation

Suppose that
X1, . . . ,Xn ∼ π(x |θ)

where θ ∈ Θ, and we want to estimate θ based on the data X1, . . . ,Xn.

The first method for constructing parametric estimators that we will study is
called the method of moments.

The estimators produced by this method are not optimal, but that are often
easy to compute.

They are also useful as starting values for other methods that require
iterative numerical routines.
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Method of Moments

Recall that the kth moment of a probability distribution π(x |θ) is

µk(θ) = Eθ[X k ]

where Eθ denotes expectation with respect to π(x |θ), i.e.

Eθ[f (X )] =

∫
f (x)π(x |θ)dx

If X1, . . . ,Xn are i.i.d from π(x |θ), then the kth sample moment if defined as

µ̂k =
1

n

n∑
i=1

X k
i

We can view µ̂k as an estimate of µk . Suppose that the parameter θ has k
components:

θ = (θ1, . . . , θk)
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Method of Moments

Method of Moments

The method of moments estimator θ̂ is defined to be the value of θ such that
µ1(θ) = µ̂1

µ2(θ) = µ̂2

. . . . . .

µk(θ) = µ̂k

(1)

System (1) is a system of k equations with k unknowns: θ1, . . . , θk

The solutions of this system θ̂ is the method of moments estimate of the
parameter θ.
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Example 1: Bernoulli

Let X1, . . . ,Xn ∼ Bernoulli(p).
Find the method of moments estimate of the parameter p.
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Example 2: Normal

Let X1, . . . ,Xn ∼ N (µ, σ2).
Find the method of moments estimates of µ and σ2.
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Consistency of the MoM estimator

Question: How good is the estimator θ̂ obtained by the method of moments?

Definition

Let θ̂n be an estimate of a parameter θ based on a sample of size n. Then θ̂n is
consistent if

θ̂n
P−→ θ

That is, for any ε > 0,

P(|θ̂n − θ| ≥ ε)→ 0 as n→∞

Theorem
The method of moments estimate is consistent.
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Summary

If X1, . . . ,Xn ∼ π(x |θ), then the method of moments estimate θ̂ of
θ = (θ1, . . . , θk) is the solution of

µ1(θ) = µ̂1

µ2(θ) = µ̂2

. . . . . .

µk(θ) = µ̂k

where
I µk(θ) is the kth moment

µk(θ) = Eθ[X
k ]

I µ̂k is the kth sample moment

µ̂k =
1

n

n∑
i=1

X k
i

The method of moments estimate θ̂ is a consistent estimate of θ.
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The Likelihood Function

The most common method for estimating parameters in a parametric model is the
method of maximum likelihood.

Suppose X1, . . . ,Xn are i.i.d. from π(x |θ).

Definition
The likelihood function is defined by

L(θ) =
n∏

i=1

π(Xi |θ)

Important Remarks:

The likelihood function is just the joint pdf/pmf of the data, except that we
treat it as a function of the parameter θ.

Thus, L : Θ→ [0,∞)

The likelihood function is not a density function: it is not true that L
integrates to one, i.e

∫
Θ
L(θ)dθ 6= 1.

Konstantin Zuev (USC) Math 408, Lecture 24 April 1, 2013 3 / 10



Maximum Likelihood Estimate

Definition

The maximum likelihood estimate (MLE) of θ, denoted θ̂MLE, is the value of θ
that maximizes the likelihood L(θ)

θ̂MLE = arg max
θ∈Θ
L(θ)

θ̂MLE makes the observed data X1, . . . ,Xn “most probable” or “most likely”

Important Remark:

Rather than maximizing the likelihood itself, it is often easier to maximize its
natural logarithm (which is equivalent since the log is a monotonic function).
The log-likelihood is

l(θ) = logL(θ) =
n∑

i=1

log π(Xi |θ)
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Example: Bernoulli

X1, . . . ,Xn ∼ Bernoulli(p). Find the MLE of p.

Answer:

p̂MLE =
1

n

n∑
i=1

Xi = X n

In this example, p̂MLE = p̂MoM
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Example: Normal

X1, . . . ,Xn ∼ N (µ, σ2). Find the MLEs of µ and σ2.

Answer:

µ̂MLE =
1

n

n∑
i=1

Xi = X n σ̂2
MLE =

1

n

n∑
i=1

(Xi − X n)2

Again, in this example, MLEs are the same as the MoM estimates.
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Properties of MLE

Under certain conditions on the model

F = {π(x |θ), θ ∈ Θ}

(under some smoothness conditions of π), the MLE θ̂MLE possesses many
attractive properties that make it an appealing choice of estimate.

Main properties of the MLE:

MLE is consistent:
θ̂MLE

P−→ θ0

where θ0 denotes the true value of θ.

MLE is equivariant:
if θ̂MLE is the MLE of θ ⇒ f (θ̂MLE) is the MLE of f (θ).

MLE is asymptotically optimal: the MLE has the smallest variance for large
sample sizes n.
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Properties of MLE

Main properties of the MLE (cont):

MLE is asymptotically Normal:

θ̂MLE → N
(
θ0,

1

nI (θ0)

)
where

I (θ)
def
= Eθ

[(
∂

∂θ
log π(X |θ)

)2
]

=

∫ (
∂

∂θ
log π(x |θ)

)2

π(x |θ)dx

I I (θ) is called Fisher Information.

MLE is asymptotically unbiased:

lim
n→∞

E[θ̂MLE] = θ0
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Example: when MoM and MLE produce different estimates

X1, . . . ,Xn ∼ U(0, θ). Find the MoM estimate and MLE of θ.

Answer:
θ̂MoM = 2X n θ̂MLE = X(n)

In this example, the MLE and MoM estimate are different.

Konstantin Zuev (USC) Math 408, Lecture 24 April 1, 2013 9 / 10



Summary

The Likelihood Function:

L(θ) =
n∏

i=1

π(Xi |θ) X1, . . . ,Xn ∼ π(x |θ)

The Maximum Likelihood Estimate:

θ̂MLE = arg max
θ∈Θ
L(θ) = arg max

θ∈Θ
logL(θ)

MLE is consistent, equivariant, asymptotically optimal, asymptotically
normal, and asymptotically unbiased.

Examples: Bernoulli(p), N(µ, σ2), and U(0, θ).
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Three Methods

Recall the definition of a confidence interval (see also Lectures 8,17,23):

Definition

A 100(1− α)% confidence interval for a parameter θ is a random interval
calculated from the sample,

X1, . . . ,Xn ∼ π(x |θ)

which contains θ with probability 1− α.

There are three methods for constructing confidence intervals using MLEs θ̂MLE:

Exact Method

Approximate Method

Bootstrap Method
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Exact Method. Example: Normal distribution N (µ, σ2)

Let X1, . . . ,Xn ∼ N (µ, σ2), then the MLEs for µ and σ2 are (Lecture 24):

µ̂MLE =
1

n

n∑
i=1

Xi = X n σ̂2
MLE =

1

n

n∑
i=1

(Xi − X n)2

A confidence interval for µ is based on the following fact (Lecture 13-14):
√

n(X n − µ)

Sn
∼ tn−1

where S2
n is the sample variance S2

n = 1
n−1

∑n
i=1(Xi − X n)2 = n

n−1 σ̂
2
MLE

Result

A 100(1− α)% confidence interval for µ is

µ̂MLE ±
1√

n − 1
σ̂MLEtn−1(α/2)

where tn−1(α) is the point beyond which the t-distribution with (n− 1) degrees of
freedom has probability α.
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Exact Method. Example: Normal distribution N(µ, σ2)

A confidence interval for σ2 is based on the following fact (Lecture 13-14):

(n − 1)S2
n

σ2
∼ χ2

n−1

Result

A 100(1− α)% confidence interval for σ2 is(
nσ̂2

MLE

χ2
n−1(α2 )

,
nσ̂2

MLE

χ2
n−1(1− α

2 )

)
where χ2

n−1(α) is the point beyond which the χ2-distribution with (n − 1) degrees
of freedom has probability α.

Remark:

The main drawback of the exact method is that in practice the sampling
distributions — like tn−1 and χ2

n−1 in our example — are not known.
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Approximate Method

One of the most important properties of MLE is that it is asymptotically normal:

θ̂MLE → N
(
θ0,

1

nI (θ0)

)
, as n→∞

where I (θ0) is Fisher information

I (θ) = Eθ

[(
∂

∂θ
log π(X |θ)

)2
]

Since the true value θ0 is unknown, we will use I (θ̂MLE) instead of I (θ0):

Result

An approximate 100(1− α)% confidence interval for θ0 is

θ̂MLE ±
zα/2√

nI (θ̂MLE)

where zα is the point beyond which the standard normal distribution has
probability α.
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Approximate Method. Example: Bernoulli(p)

Let X1, . . . ,Xn ∼ Bernoulli(p).
Find an approximate confidence interval for p

Answer:

X n ± zα/2

√
X n(1− X n)

n
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Bootstrap Method

Suppose θ̂ is an estimate of a parameter θ, the true unknown value of which is θ0.
θ̂ can be any estimate, not necessarily MLE,

X1, . . . ,Xn ∼ π(x |θ) θ̂ = θ̂(X1, . . . ,Xn)

Define a new random variable
∆ = θ̂ − θ0

Step 1: Assume (for the moment) that the distribution of ∆ is known.
Let (as before) qα be the number such that P(∆ > qα) = α.Then

P(q1−α
2
≤ θ̂ − θ0 ≤ qα

2
) = 1− α

And therefore a 100(1− α)% confidence interval for θ0 is(
θ̂ − qα

2
, θ̂ − q1−α

2

)
The problem is that the distribution of ∆ is not known and, therefore, qα are
not known.
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Bootstrap Method

Step 2: Assume that the distribution of ∆ is not known, but θ0 is known.
Then we can approximate the distribution of ∆ as follows:

X
(1)
1 , . . . ,X (1)

n ∼ π(x |θ0)  θ̂(1) − θ0 = ∆(1)

X
(2)
1 , . . . ,X (2)

n ∼ π(x |θ0)  θ̂(2) − θ0 = ∆(2)

. . . . . .

X
(B)
1 , . . . ,X (B)

n ∼ π(x |θ0)  θ̂(B) − θ0 = ∆(B)

From these realizations ∆(1), . . . ,∆(B) of ∆ we can approximate the
distribution of ∆ by its empirical distribution, and, therefore, we can
approximate qα. The problem is that θ0 is not known!
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Bootstrap Method

Step 3: Bootstrap strategy: Use θ̂ instead of θ0.

X
(1)
1 , . . . ,X (1)

n ∼ π(x |θ0)  θ̂(1) − θ̂ ≈ ∆(1)

X
(2)
1 , . . . ,X (2)

n ∼ π(x |θ0)  θ̂(2) − θ̂ ≈ ∆(2)

. . . . . .

X
(B)
1 , . . . ,X (B)

n ∼ π(x |θ0)  θ̂(B) − θ̂ ≈ ∆(B)

Distribution of ∆ is approximated from realizations ∆(1), . . . ,∆(B).

Remark:

θ̂(i) is the estimate of θ that is obtained from X
(i)
1 , . . . ,X

(i)
n by the same method

(for example, MLE) as θ̂ was obtained from X1, . . . ,Xn.
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Summary

We considered three methods for constructing confidence intervals using
MLEs: Exact Method, Approximate Method, Bootstrap Method

Exact Method provides exact confidence intervals, but it is difficult to use in
practice

I Example: X1, . . . ,Xn ∼ N (µ, σ2)

µ : µ̂MLE ±
1√
n − 1

σ̂2
MLEtn−1(α/2)

σ2 :

(
nσ̂2

MLE

χ2
n−1(

α
2
)
,

nσ̂2
MLE

χ2
n−1(1− α

2
)

)

Approximate method provides an approximate confidence interval for θ0,
which is constructed using asymptotical properties of MLE:

θ̂MLE ±
zα/2√

nI (θ̂MLE)

Bootstrap Method provides an approximate confidence interval. Bootstrap is
the most popular method in practice since it is easy to implement.
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Measure of Efficiency: Mean Squared Error

In most estimation problems, there are many possible estimates θ̂ of θ.
For example, the MoM estimate θ̂MoM or the MLE estimate θ̂MLE.

Question: How would we choose which estimate to use?

Qualitatively, it is reasonable to choose that estimate whose distribution is most
highly concentrated about the true parameter value θ0. To make this idea work,
we need to define a quantitative measure of such concentration.

Definition

The mean squared error of θ̂ as an estimate of θ0 is

MSE(θ̂) = E[(θ̂ − θ0)2]

The mean squared error can be also written as follows:

MSE(θ̂) = V[θ̂] + (E(θ̂)− θ0)2︸ ︷︷ ︸
squared bias

If θ̂ is unbiased, then MSE(θ̂) = V[θ̂].
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Cramer-Rao Inequality

Given two unbiased estimates, θ̂ and θ̃, the efficiency of θ̂ relative to θ̃ is
defined to be

eff(θ̂, θ̃) =
V[θ̃]

V[θ̂]

θ̂ is more efficient than θ̃ ⇔ eff(θ̂, θ̃) > 1

In general, the mean squared error is a measure of efficiency of an estimate:

the smaller MSE(θ̂), the better the estimate θ̂

Cramer-Rao Inequality

Let X1, . . . ,Xn be i.i.d. from π(x |θ). Let θ̂ = θ̂(X1, . . . ,Xn) be any unbiased
estimate of a parameter θ whose true values is θ0. Then, under smoothness
assumptions on π(x |θ),

MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)
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Cramer-Rao Inequality

Cramer-Rao: MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)

Important Remarks:

θ̂ can’t have arbitrary small MSE

The Cramer-Rao inequality gives a lower bound on the variance of any
unbiased estimate.

Definition
An unbiased estimate whose variance achieves this lower bound is said to be
efficient.

Recall that MLE is asymptotically Normal: θ̂MLE → N
(
θ0,

1
nI (θ0)

)
Therefore, MLE is asymptotically efficient

However, for a finite sample size n, MLE may not be efficient

MLEs are not the only asymptotically efficient estimates.
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Example: Poisson Distribution

Recall that the Poisson distribution is a discrete probability distribution that
expresses the probability of a given number of events k occurring in a fixed
interval of time if these events occur with a known average rate λ and
independently of the time since the last event.

P(X = k|λ) =
λk

k!
e−λ E[X ] = λ V[X ] = λ

Example

Let X1, . . . ,Xn ∼ Pois(λ).

Find the MLE of λ

Show that λ̂MLE is efficient.

The theorem does not exclude the possibility that there is a biased estimator
of λ that has a smaller MSE than λ̂MLE
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Summary

Mean squared error is a measure of efficiency of an estimate

MSE(θ̂) = E[(θ̂ − θ0)2]

If θ̂ is unbiased, then
MSE(θ̂) = V[θ̂]

Cramer-Rao Inequality:

MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)

An unbiased estimate whose variance achieves this lower bound is said to be
efficient

Any MLE is asymptotically efficient (as n→∞)

Example: if X1, . . . ,Xn ∼ Poisson(λ), then λ̂MLE is efficient
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Example: Two Coins Tossing

Suppose Bob has two coins:

Coin “0” has probability of heads p0 = 0.5

Coin “1” has probability of heads p1 = 0.7

Bob chooses one of the coins, tosses it n = 10 times and tells Alice the number of
heads, but does not tell her whether it was coin 0 or coin 1.

On the basis of the number of heads, Alice has to decide which coin it was.
How should her decision rule be?

Let X denote the number of heads.

X ∈ X = {0, 1, 2, . . . , 10}

Then for each coin we can compute the probability that Bob got exactly x heads:

Pi (X = x) =

(
n
x

)
px
i (1− pi )

n−x , i = 0, 1.
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Example: Two Coins Tossing

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Heads

P
ro

ba
bi

ity

Coin 0
Coin 1

Suppose that Bob observed 2 heads. Then P0(X=2)
P1(X=2) ≈ 30, and, therefore, coin 0

was about 30 times more likely to produce this result than was coin 1.

On the other hand, if there were 8 heads, then P0(X=8)
P1(X=8) ≈ 0.19, which would favor

coin 1.
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Hypothesis Testing

The example with two coins is an example of hypothesis testing:

The Null Hypothesis H0: Bob tossed coin 0

The Alternative Hypothesis H1: Bob tossed coin 1

Alice would accept H0 if the likelihood ratio

L(Data|Coin 0)

L(Data|Coin 1)
=

P0(X = x)

P1(X = x)
> 1

and she would reject H0 if the likelihood ratio

L(Data|Coin 0)

L(Data|Coin 1)
=

P0(X = x)

P1(X = x)
< 1

In this example, Alice would accept H0 if

x ≤ 6

and she would reject H0 if
x > 6
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Hypothesis Testing: General Framework

More formally, suppose that we partition the parameter space Θ into two disjoint
sets Θ0 and Θ1 and that we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

We call H0 the null hypothesis and H1 the alternative hypothesis.

Let X be data and let X be the range of X . We test a hypothesis by finding an
appropriate subset of outcomes R ⊂ X called the rejection region. If X ∈ R we
reject the null hypothesis, otherwise, we do not reject the null hypothesis:

X ∈ R ⇒ reject H0

X /∈ R ⇒ accept H0

In the Two Coins Example,

X is the number of heads

X is {0, 1, 2, . . . , 10}
R is {7, 8, 9, 10}
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Hypothesis Testing: General Framework

Usually the rejection region R is of the form

R = {x ∈ X : T (x) < c}

where T is a test statistic and c is a critical value. The main problem in
hypothesis testing is

to find an appropriate test statistic T and an appropriate cutoff value c

In the Two Coins Example,

T (x) = P0(X=x)
P1(X=x) is the likelihood ratio

c = 1
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Main Definitions

In hypothesis testing, there are two types of errors we can make:

Rejecting H0 when H0 is true is called a type I error
Accepting H0 when H1 is true is called a type II error

Definition
The probability of a type I error is called the significance level of the test
and is denoted by α

α = P(type I error) = P(Reject H0|H0)

The probability of a type II error is denoted by β

β = P(type II error) = P(Accept H0|H1)

(1− β) is called the power of the test

power = 1− β = 1− P(Accept H0|H1) = P(Reject H0|H1)

Thus, the power of the test is the probability of rejecting H0 when it is false.
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Neyman-Pearson Lemma

Definition
A hypothesis of the form θ = θ0 is called a simple hypothesis.

A hypothesis of the form θ > θ0 or θ < θ0 is called a composite hypothesis.

The Neyman-Pearson Lemma shows that the test that is based on the likelihood
ratio (as in the Two Coins Example) is optimal for simple hypotheses:

Neyman-Pearson Lemma

Suppose that H0 and H1 are simple hypotheses, H0 : θ = θ0 and H1 : θ = θ1.
Suppose that the likelihood ratio test that rejects H0 whenever the likelihood
ratio is less than c,

Reject H0 ⇔ L(Data|θ0)

L(Data|θ1)
< c

has significance level αLR. Then any other test for which the significance level
α ≤ αLR has power less than or equal to that of the likelihood ratio test

1− β ≤ 1− βLR
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Example

Example

Let X1, . . . ,Xn ∼ N(µ, σ2), where σ2 is known. Consider two simple hypotheses:

H0 : µ = µ0

H1 : µ = µ1 > µ0

Construct the likelihood ratio test with significance level α.

Answer:

Reject H0 ⇔ X n > µ0 + zα
σ√
n

Neyman-Pearson: this test is the most powerful test among all tests with
significance level α.
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The Concept of p-value

Reporting “reject H0” or “accept H0” is not very informative.
For example, if the test just reposts to reject H0, this does not tell us how strong
the evidence against H0 is. This evidence is summarized in terms of p-value.

Definition

Suppose for every α ∈ (0, 1) we have a test of significance level α with rejection
region Rα. Then, the p-value is the smallest significance level at which we can
reject H0:

p-value = inf{α : X ∈ Rα}

Informally, the p-value is a measure of the evidence against H0:
the smaller the p-value, the stronger the evidence against H0

Typically, researchers use the following evidence scale:

p-value < 0.01: very string evidence against H0

0.01 < p-value < 0.05: strong evidence against H0

0.05 < p-value < 0.10: weak evidence against H0

p-value > 0.10: little or no evidence against H0
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Summary

In general, we partition the parameter space Θ into two disjoint sets Θ0 and
Θ1 and test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

I H0 is called the null hypothesis
I H1 is called the alternative hypothesis
I If Hi : θ = θi , then the hypothesis is called simple

If X is data and X is the range of X , then we reject H0 ⇔ X ∈ R ⊂ X .
I Rejection region R = {x : T (x) < c}
I For the likelihood ratio test, T (x) = P(X=x|H0)

P(X=x|H1)

Type I Error: Rejecting H0 when H0 is true
I α = P(Reject H0|H0) is called significance level (small α is good)

Type II Error: Accepting H0 when H1 is true
I 1− β = 1− P(Accept H0|H1) is called power (large power is good)

Neyman-Pearson Lemma: basing the test on the likelihood ratio is optimal.

p-value summarizes the evidence against the null hypothesis,
p-value = inf{α : X ∈ Rα}.
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Generalization of the Likelihood Ratio Test

The Neyman-Pearson Lemma says that the likelihood ratio test is
optimal for simple hypotheses.

Goal: to develop a generalization of this test for use

in situations in which the hypotheses are not simple

Generalized likelihood ratio tests are not generally optimal, but they perform
reasonably well.

I Often there are no optimal tests at all.

Generalized likelihood ratio tests have wide utility.
I They play the same role in testing as MLEs do in estimation
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Generalized Likelihood Ratio Test

Let X = (X1, . . . ,Xn) be data and let π(x |θ) be the joint density of the data. The
likelihood function is then

L(θ) = π(X |θ)

Suppose we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

where Θ0 and Θ1 are two disjoint sets of the parameter space Θ, Θ = Θ0 tΘ1.

Based on the data, a measure of relative plausibility of the hypotheses is the
ratio of their likelihoods.

If the hypotheses are composite, each likelihood is evaluated at that value of
θ that maximizes it.

This yields the generalized likelihood ratio:

Λ∗ =
maxθ∈Θ0 L(θ)

maxθ∈Θ1 L(θ)

Small values of Λ∗ tend to discredit H0.
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Generalized Likelihood Ratio Test

For technical reasons, it is preferable to use the following statistic instead of Λ∗:

Λ =
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

Λ is called the likelihood ratio statistic.

Note that
Λ = min{Λ∗, 1}

Thus, small values of Λ∗ correspond to small values of Λ.

The rejection region R for a generalized likelihood test has the following form:

reject H0 ⇔ X ∈ R = {X : Λ(X ) < λ}

The threshold λ is chosen so that

P(Λ(X ) < λ|H0) = α,

where α is the desired significance level of the test.
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Example

Let X1, . . . ,Xn be i.i.d. from N (µ, σ2), where variance σ2 is known. Consider
testing the following hypothesis:

H0 : µ = µ0 and H1 : µ 6= µ0

Construct the generalized likelihood test with significance level α.

Answer:

Reject H0 ⇔
√
n|X n − µ0|

σ
> zα

2

Konstantin Zuev (USC) Math 408, Lecture 31 April 17, 2013 5 / 7



Distribution of Λ(X )

In order for the generalized likelihood ratio test to have the significance level α,
the threshold λ must be chosen so that

P(Λ(X ) < λ|H0) = α

If the distribution of Λ(X ) under H0 is known, then we can determine λ.

In the Example, −2 log Λ(X ) ∼ χ2
1.

Generally, the distribution of Λ is not of a simple form, but in many situations the
following theorem provides the basis for an approximation of the distribution.

Theorem

Under smoothness conditions on π(x |θ), the null distribution of −2 log Λ(X ) (i.e.
distribution under H0) tends to a χ2

d as the sample size n→∞, where

d = dim Θ− dim Θ0,

where dim Θ and dim Θ0 are the numbers of free parameters in Θ and Θ0.

In the Example, dim Θ = 1 and dim Θ0 = 0.
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Summary

Generalized likelihood ratio tests are used when the hypothesis are composite
I They are not generally optimal, but perform reasonably well.
I They play the same role in testing as MLEs do in estimation.

The rejection region R for a generalized likelihood test has the following form:

reject H0 ⇔ X ∈ R = {X : Λ(X ) < λ}

I Λ is the likelihood ratio statistic,

Λ =
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

I The threshold λ is chosen so that

P(Λ(X ) < λ|H0) = α,

where α is the desired significance level of the test.

As sample size n→∞, the null distribution of −2 log Λ(X ) tends to a χ2
d ,

where
d = dim Θ− dim Θ0
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Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution.

Consider drawing a ball from a box which has balls with k different colors labeled
color 1, color 2,. . ., color k . Let p = (p1, . . . , pk), where pi is the probability of
drawing a ball of color i ,

pi ≥ 0 and
k∑

i=1

pi = 1

Draw n times (independent draws with replacement) and let X = (X1, . . . ,Xk),
where Xi is the number of times that color i appeared.

k∑
i=1

Xi = n

We say that X has a Multinomial(n, p) distribution.

Application: Multinomial distributions are useful when a “success-failure”
description is insufficient to understand a system. Multinomial distributions are
relevant to situations where there are more than two possible outcomes. For
example, temperature = high, med, low.
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Properties of the Multinomial Distribution
X ∼ Multinomial(n, p)

n is the number of trials
k is the number of possible outcomes
p = (p1, . . . , pk), where pi is the probability of observing outcome i
X = (X1, . . . ,Xk), where Xi is the number of occurrences of outcome i

Theorem
The probability mass function of X is

πX (x |n, p) =
n!

x1! . . . xk !
px1

1 . . . pxk
k

The marginal distribution of Xi is Binomial(n, pi )

The mean and covariance matrix of X are

E[X ] =

np1

...
npk

 V[X ] =


np1(1− p1) −np1p2 . . . −np1pk

−np1p2 np2(1− p2) . . . −np2pk

...
...

. . .
...

−np1p2 −np2pk . . . npk(1− pk)


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Constructing the GLRT

Suppose that X ∼ Multinomial(n, p), where p is unknown, and we want to test

H0 : (p1, . . . , pk) = (p̃1, . . . , p̃k) ≡ p̃ v.s. H1 : (p1, . . . , pk) 6= (p̃1, . . . , p̃k)

To construct the generalized likelihood ratio test, first, we need to determine the
likelihood function L(p). In this case:

L(p1, . . . , pk) = πX (X |n, p) =
n!

X1! . . .Xk !
pX1

1 . . . pXk

k

The likelihood ratio statistic is

Λ =
maxp∈Θ0 L(p)

maxp∈Θ L(p)
=
L(p̃)

L(p̂MLE )

Θ0 = {p : p = p̃}, dim Θ0 = 0

Θ = {p :
∑k

i=1 pi = 1}, dim Θ = k − 1

Thus, to proceed, we need to find the MLE of p.
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The MLE of p and the GLRT with level α

Theorem

Let X ∼ Multinomial(n, p). The maximum likelihood estimator of p is

p̂MLE =


X1

n
...
Xk

n

 =
X

n

Therefore, the likelihood ratio statistic is

Λ =
k∏

i=1

(
np̃i

Xi

)Xi

and
−2 log Λ = 2

k∑
i=1

Xi log

(
Xi

np̃i

)
∼̇ χ2

k−1, when n→∞

The GLRT with significance level α rejects H0 if and only if

2
k∑

i=1

Xi log

(
Xi

np̃i

)
> χ2

k−1(α)

Konstantin Zuev (USC) Math 408, Lecture 32-33 April 19-22, 2013 6 / 9



Pearson’s χ2 Test

In practice, the Pearson’s χ2 test is often used. The test is based on the following
statistic:

T =
k∑

i=1

(Xi − np̃i )
2

np̃i
=

k∑
i=1

(Oi − Ei )
2

Ei

Oi = Xi is the observed data

Ei = E[Xi ] = np̃i is the expected value of Xi under H0

T is called the Pearson’s χ2 statistic

The Pearson’s χ2 statistic and −2 log Λ are asymptotically equivalent under H0

Theorem

Under H0, T
D−→ χ2

k−1.

Pearson’s test: reject H0 if T > χ2
k−1(α) has asymptotic significance level α.

The p-value is P(ξ > t), where ξ ∼ χ2
k−1 and t is the observed value of T .

Remark: Pearson’s test has been more commonly used than the GLRT, because it
is easier to calculate (especially without a computer!)
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Mendel’s Peas
Example

Mendel bred peas with round yellow seeds and wrinkled green seeds.
There are four types of progeny:

round yellow, wrinkled yellow, round green, wrinkled green.

The number of each type is multinomial with probability (p1, p2, p3, p4).
According to Mendel’s theory:

H0 : (p1, p2, p3, p4) =

(
9

16
,

3

16
,

3

16
,

1

16

)
≡ p̃

In n = 556 trials he observed X = (315, 101, 108, 32).
Question: Based on these data, should we accept or reject the Mendel’s theory?
Solution:

The observed value of Pearson’s χ2 statistic is t =
∑4

i=1
(Xi−np̃i )2

np̃i
= 0.47

Let α = 0.05. Then χ2
3(α) = F−1

χ2
3

(1− α) ≈ 7.8.

Since T < χ2
3(α), we accept H0.

The p-value is p-value = P(ξ > 0.47) = 1− Fχ2
3
(0.47) ≈ 0.92.

No evidence against Mendel’s theory.
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Summary
Multinomial distribution: X ∼ Multinomial(n, p)

I The probability mass function of X is

πX (x |n, p) =
n!

x1! . . . xk !
px1

1 . . . pxk
k

I The marginal distribution of Xi is Binomial(n, pi )
I The maximum likelihood estimator of p is p̂MLE = X/n

Suppose that X ∼ Multinomial(n, p), p is unknown, and we want to test

H0 : (p1, . . . , pk) = (p̃1, . . . , p̃k) ≡ p̃ v.s. H1 : (p1, . . . , pk) 6= (p̃1, . . . , p̃k)

I GLRT with significance level α rejects H0 if 2
k∑

i=1

Xi log

(
Xi

np̃i

)
> χ2

k−1(α)

I Pearson’s test: reject H0 if T =
k∑

i=1

(Xi − np̃i )
2

np̃i
> χ2

k−1(α)

F Under H0, the Pearson’s χ2 statistic T
D−→ χ2

k−1.
F Pearson’s test has asymptotic significance level α.
F The p-value is P(ξ > t), where ξ ∼ χ2

k−1 and t is the observed value of T .
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Methods Based on the CDF
I The Empirical CDF

F Example: Data from Uniform Distribution
F Example: Data from Normal Distribution

I Statistical Properties of the eCDF
I The Survival Function

F Example: Data from Exponential Distribution
I The Hazard Function

F Example: The Hazard Function for the Exponential Distribution

Summary
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Describing Data

In the next few Lectures we will discuss methods for describing and summarizing
data that are in the form of one or more samples. These methods are useful for
revealing the structure of data that are initially in the form of numbers.

Example: the arithmetic mean x = (x1 + . . .+ xn)/n is often used as a summary
of a collection of numbers x1, . . . , xn: it indicates a “typical value”.

Example:
x = (1.5147, 1.7223, 1.063, 1.4916, . . .)
y = (0.7353, 0.0781, 0.276, 1.5666, . . .)
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Empirical CDF

Suppose that x1, . . . , xn is a batch of numbers.

Remark: We use the word

“sample” when X1, . . . ,Xn is a collection of random variables.

“batch” when x1, . . . , xn are fixed numbers (realization of sample).

Definition

The empirical cumulative distribution function (eCDF) is defined as

Fn(x) =
1

n
(#xi ≤ x)

Denote the ordered batch of numbers by x(1), . . . , x(n).

If x < x(1), then Fn(x) = 0

If x(1) ≤ x < x(2), then Fn(x) = 1/n

If x(k) ≤ x < x(k+1), then Fn(x) = k/n

The eCDF is the “data analogue” of the CDF of a random variable
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Example: Data from Uniform Distribution

Let (X1, . . . ,Xn) ∼ U[0, 1]
Let (x1, . . . , xn) is a particular realization of (X1, . . . ,Xn), n = 50

I (x1, . . . , xn) = (0.24733, 0.3527, 0.18786, 0.49064, . . .)
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Example: Data from Normal Distribution

Let (X1, . . . ,Xn) ∼ N (0, 1)
Let (x1, . . . , xn) is a particular realization of (X1, . . . ,Xn), n = 50

I (x1, . . . , xn) = (−0.23573, 0.45952,−0.93808,−0.62162, . . .)
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Statistical Properties of the eCDF

Let X1, . . . ,Xn be a random sample from a continuous distribution F .
Then the eCDF can be written as follows:

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi ),

where

I(−∞,x](Xi ) =

{
1, if Xi ≤ x
0, if Xi > x

The random variables I(−∞,x)(X1), . . . , I(−∞,x)(Xn) are independent Bernoulli
random variables:

I(−∞,x)(Xi ) =

{
1, with probability F (x)
0, with probability 1− F (x)

Thus, nFn(x) is a binomial random variable: nFn(x) ∼ Bin(n,F (x))

E[Fn(x)] = F (x)

V[Fn(x)] = 1
nF (x)(1− F (x))

V[Fn(x)]→ 0, as n→∞
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Example: Convergence of the eCDF to the CDF

Let (X1, . . . ,Xn) ∼ N (0, 1)
Let (x1, . . . , xn) is a particular realization of (X1, . . . ,Xn), n = 20

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N(0,1)

Empirical CDF
Normal CDF

Konstantin Zuev (USC) Math 408, Lecture 34 April 24, 2013 8 / 15



Example: Convergence of the eCDF to the CDF

Let (X1, . . . ,Xn) ∼ N (0, 1)
Let (x1, . . . , xn) is a particular realization of (X1, . . . ,Xn), n = 100
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Example: Convergence of the eCDF to the CDF

Let (X1, . . . ,Xn) ∼ N (0, 1)
Let (x1, . . . , xn) is a particular realization of (X1, . . . ,Xn), n = 1000

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N(0,1)

Empirical CDF
Normal CDF

Konstantin Zuev (USC) Math 408, Lecture 34 April 24, 2013 10 / 15



The Survival Function

The survival function is equivalent to the CDF and is defined as

S(t) = P(T > t) = 1− F (t)

In applications where the data consists of times until failure or death (and are
thus nonnegative), it is often customary to work with the survival function rather
than the CDF, although the two give equivalent information.
Data of this type occur in

medical studies

reliability studies

S(t) = Probability that the lifetime will be longer than t

The data analogue of S(t) is the empirical survival function:

Sn(t) = 1− Fn(t)
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Example: Data from Exponential Distribution

Let (X1, . . . ,Xn) ∼ Exp(β), β = 5
Let (x1, . . . , xn) is a particular realization of (X1, . . . ,Xn), n = 50

I (x1, . . . , xn) = (4.4356, 1.684, 11.376, 4.8357, . . .)
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The Hazard Function

Let T is a random variable (time) with the CDF F and PDF f .

Definition
The hazard function is defined as

h(t) =
f (t)

1− F (t)
=

f (t)

S(t)

The hazard function may be interpreted as the instantaneous death rate for
individuals who have survived up to a given time: if an individual is alive at
time t, the probability that individual will die in the time interval (t, t + ε) is

P(t ≤ T ≤ t + ε|T ≥ t) ≈ εf (t)

1− F (t)

If T is the lifetime of a manufactured component, it maybe natural to think
of h(t) as the age-specific failure rate. It may also be expressed as

h(t) = − d

dt
log S(t)
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Example: Hazard Function for the Exponential Distribution

Let T ∼ Exp(β), then

f (t) = 1
β e
−t/β

F (t) = 1− e−t/β

S(t) = e−t/β

h(t) = 1
β

The instantaneous death rate is constant.

If the exponential distribution were used as a model for the lifetime of a
component, it would imply that the probability of the component failing did not
depend on its age.

Typically, a hazard function is U-shaped:

the rate of failure is high for very new components because of flaws in the
manufacturing process that show up very quickly,

the rate of failure is relatively low for components of intermediate age,

the rate of failure increases for older components as they wear out.
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Summary

The empirical cumulative distribution function (eCDF) is

Fn(x) =
1

n
(#xi ≤ x)

The survival function is equivalent to the CDF and is defined as

S(t) = P(T > t) = 1− F (t)

The data analogue of S(t) is the empirical survival function:

Sn(t) = 1− Fn(t)

The hazard function is

h(t) =
f (t)

1− F (t)
=

f (t)

S(t)

I may be interpreted as the instantaneous death rate for individuals who have
survived up to a given time
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Quantile-Quantile Plots

Quantile-Quantile (Q-Q) plots are used for comparing two probability
distributions.

Suppose that X is a continuous random variable with a strictly increasing CDF F .

Definition

The pth quantile of F is that value xp such that

F (xp) = p or xp = F−1(p)

Suppose we want to compare two CDF: F and G .

Definition
The theoretical Q-Q plot is the graph of the quantiles of a the CDF F ,
xp = F−1(p), versus the corresponding quantiles of the CDF G , yp = G−1(p),
that is the graph [F−1(p),G−1(p)] for p ∈ (0, 1).

If the two CDFs are identical, the theoretical Q-Q plot will be the line y = x .
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Example of a Theoretical Q-Q plot

F = N (0, 1)

G = Tn = N (0,1)√
χ2
n/n

, t-distribution with n degrees of freedom.

We know that Tn → N (0, 1) as n→∞.
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Properties Q-Q plots

Theorem

If G (x) = F ( x−µ
σ ) for some constants µ and σ 6= 0, then

yp = µ+ σxp

Thus, if two distributions differ only in location and/or scale, the theoretical
Q-Q plot will be a straight line with slope σ and intercept µ.

Example: Let F = N (0, 1) and G = N (1, 2), then G (x) = F ( x−1√
2

).
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Empirical Q-Q plots

In practice, a typical scenario is the following:

F (x) = F0(x) is a specified CDF (e.g. normal) which is a theoretical model
for data X1, . . . ,Xn.
G (x) is the empirical CDF for x1, . . . , xn, a realization of X1, . . . ,Xn (actually
observed data).
We want to compare the model F (x) with the observation G (x).

Let x(1), . . . , x(n) be the ordered batch. Then

Definition

The empirical Q-Q plot is the plot of F−10 (i/n) on the horizonal axis versus
G−1(i/n) = x(i) on the vertical axis, for i = 1, . . . , n.

Remarks:

The quantities pi = i/n are called plotting positions
At i = n, there is a technical problem since F−10 (1) =∞.
Many software packages graph the following as the empirical Q-Q plot:{(

F−10

(
i − 0.375

n + 0.25

)
, x(i)

)}
, i = 1, . . . , n
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Example of an Empirical Q-Q plot

F0 = N (0, 1), a model.
X1, . . . ,X20 ∼ N (0, 1).
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Example of an Empirical Q-Q plot

F0 = N (0, 1), a model.
X1, . . . ,X20 ∼ U[0, 1].
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Histograms

Histogram displays the shape of the distribution of data values.

Histograms are constructed in the following way:

1 The range of data x1, . . . , xn is divided into several intervals, called bins

2 The number of the observations falling in each bin is then plotted.

Remarks:

The total area of the histogram is equal to the sample size n.

A histogram may also be normalized displaying the proportion of observations
falling in each bin. In this case, the area under the histogram is 1.

Applications:

Histograms are frequently used to display data for which there is no
assumption of any probability model. For example, populations of US cities.

If the data are modeled as a random samples from some continuous
distribution, then the normalized histogram may be also viewed as an
estimate of the PDF.
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Example: Populations of US Cities

Data x1, . . . , x275 are populations of the top 275 largest US cities.
Data source: wikipedia.org

Number of bins: 50
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Example: Histogram Approximates PDF

X1, . . . ,Xn ∼ N (0, 1), n = 103

Number of bins: 100
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Example: Histogram Approximates PDF

X1, . . . ,Xn ∼ N (0, 1), n = 104

Number of bins: 100
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Example: Histogram Approximates PDF

X1, . . . ,Xn ∼ N (0, 1), n = 105

Number of bins: 100
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Example: Histogram Approximates PDF

X1, . . . ,Xn ∼ N (0, 1), n = 106

Number of bins: 100
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Kernel Probability Density Estimate
The main drawback of estimating PDFs by histograms is that these estimates are
not smooth. A smooth probability density estimate can be constructed in the
following way. Let w(x) be a nonnegative, symmetric weight function, centered at
zero and integrating to 1. For example, w(x) = N (x |0, 1). The function

wh(x) =
1

h
w
(x
h

)
is a re-scaled version of w(x).

As h→ 0, wh(x) becomes more concentrated and peaked about zero.
As h→∞, wh(x) becomes more spread out and flatter.
If w(x) = N (x |0, 1), then wh(x) = N (x |0, h2)

Definition
If X1, . . . ,Xn ∼ π, then an estimate of π is

πh(x) =
1

n

n∑
i=1

wh(x − Xi )

This estimate is called a kernel probability density estimate.
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Kernel Probability Density Estimate

πh(x) =
1

n

n∑
i=1

wh(x − Xi )

Remarks:

πh(x) consists of the superposition of “hills” centered on the observations.

If w(x) = N (x |0, 1), then wh(x − Xi ) = N (x |Xi , h
2).

The parameter h is called the bandwidth. It controls the smoothness of πh(x)
and corresponds to the bin width of the histogram:

I if h is too small, then πh(x) is too rough,
I if h is too large, then the shape of πh(x) is smeared out too much.
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Example

X1, . . . ,Xn ∼ N (0, 1), n = 100
w(x) = N (x |0, 1) ⇒ wh(x − Xi ) = N (x |Xi , h

2).
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Summary

Quantile-Quantile (Q-Q) plots are used for comparing two distributions
I The pth quantile xp of the CDF F is xp = F−1(p)
I The theoretical Q-Q plot is the graph of the quantiles of a the CDF F ,

xp = F−1(p), versus the corresponding quantiles of the CDF G , yp = G−1(p).
I If F = G , then the theoretical Q-Q plot will be the line y = x .
I If G(x) = F ( x−µ

σ
) for some constants µ and σ 6= 0, then yp = µ+ σxp.

I The empirical Q-Q plot is the plot of F−1
0 (i/n) on the horizonal axis versus

x(i) on the vertical axis.

Histogram displays the shape of the distribution of data values.
I Histograms are frequently used to display data for which there is no

assumption of any probability model.
I Normalized histogram may be also viewed as a non-smooth estimate of PDF.

Kernel Probability Density Estimate: If X1, . . . ,Xn ∼ π, then an estimate of
π is

πh(x) =
1

n

n∑
i=1

wh(x − Xi )

I If w(x) = N (x |0, 1), then wh(x − Xi ) = N (x |Xi , h
2)

I h is the bandwidth.
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Agenda

Measures of Location
I Arithmetic Mean
I Median
I Trimmed Mean
I M Estimates

Measures of Dispersion
I Sample Standard Deviation
I Interquartile Range (IQR)
I Median Absolute Deviation (MAD)

Boxplots

Summary
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Measures of Location

In Lectures 34 and 35, we discussed data analogues of the CDFs and PDFs, which
convey visual information about the shape of the distribution of the data.

Next Goal: to discuss simple numerical summaries of data that are useful when
there is not enough data for construction of an eCDF, or when a more concise
summary is needed.

A measure of location is a measure of the center of a batch of numbers.
I Arithmetic Mean
I Median
I Trimmed Mean
I M Estimates

Example: If the numbers result from different measurement of the same quantity,
a measure of location is often used in the hope that it is more accurate than any
single measurement.
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The Arithmetic Mean

The most commonly used measure of location is the arithmetic mean,

x =
1

n

n∑
i=1

xi

A common statistical model for the variability of a measurement process is the
following:

xi = µ+ εi

xi is the value of the i th measurement

µ is the true value of the quantity

εi is the random error, εi ∼ N (0, σ2)

The arithmetic mean is then:

x = µ+
1

n

n∑
i=1

εi ,
1

n

n∑
i=1

εi ∼ N (0,
σ2

n
)
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The Median

The main drawback of the arithmetic mean is it is sensitive to outliers. If fact, by
changing a single number, the arithmetic mean of a batch of numbers can be
made arbitrary large or small. For this reason, measures of location that are
robust, or insensitive to outliers, are important.

Definition
If the batch size is an odd number, x1, . . . , x2n−1, then the median x̃ is defined to
be the middle value of the ordered batch values:

x1, . . . , x2n−1  x(1) < . . . < x(2n−1), x̃ = x(n)

Important Remark:
Moving the extreme observations does not affect the sample median at all, so the
median is quite robust.
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The Trimmed Mean

Another simple and robust measure of location is the trimmed mean or
truncated mean.

Definition

The 100α% trimmed mean is defined as follows:

1 Order the data: x1, . . . , xn  x(1) < . . . < x(n)

2 Discard the lowest 100α% and the highest 100α%

3 Take the arithmetic mean of the remaining data:

xα =
x([nα]+1) + . . .+ x(n−[nα])

n − 2[nα]

where [s] denotes the greatest integer less than or equal to s.

Remarks:

It is generally recommended to use α ∈ [0.1, 0.2].

Median can be considered as a 50% trimmed mean.
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M Estimates
Let x1, . . . , xn be a batch of numbers. It is easy to show that

The mean

x = arg min
y∈R

n∑
i=1

(xi − y)2

Outliers have a great effect on mean, since the deviation of y from xi is
measured by the square of their difference.
The median

x̃ = arg min
y∈R

n∑
i=1

|xi − y |

Here, large deviations are not weighted as heavily, that is exactly why the
median is robust.

In general, consider the following function:

f (y) =
n∑

i=1

Ψ(xi , y),

where Ψ is called the weight function. M estimate is the minimizer of f :

y∗ = arg min
y∈R

n∑
i=1

Ψ(xi , y)
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Measures of Dispersion

A measure of dispersion, or scale, gives a numerical characteristic of the
“scatteredness” of a batch of numbers. The most commonly used measure is the
sample standard deviation s, which is the square root of the sample variance,

s =

√√√√ 1

n − 1

n∑
i=1

(xi − x)2

Q: Why 1
n−1 instead of 1

n?

A: s2 is an unbiased estimate of the population variance σ2. If n is large, then it
makes little difference whether 1

n−1 or 1
n is used.

Like the mean, the standard deviation s is sensitive to outliers.
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Measures of Dispersion

Two simple robust measures of dispersion are the interquartile range (IQR) and
the median absolute deviation (MAD).

IQR is the difference between the two sample quartiles:

IQR = Q3 − Q1

I Q1 is the first (lower) quartile, splits lowest 25% of batch
I Q2 = x̃ , cuts batch in half
I Q3 is the third (upper) quartile, splits highest 75% of batch

How to compute the quartile values (one possible method):
1 Find the median. It divides the ordered batch into two halves. Do not include

the median into the halves.
2 Q1 is the median of the lower half of the data. Q3 is the median of the upper

half of the data.

MAD is the median of the numbers |xi − x̃ |.
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Example

Let the ordered batch be {xi} = {1, 2, 5, 6, 9, 11, 19}
Q2 = x̃ = 6

Q1 = 2

Q3 = 11
IQR = 9

{|xi − x̃ |} = {5, 4, 1, 0, 3, 5, 13}

MAD = 4
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Boxplots

A boxplot is a graphical display of numerical data that is based on five-number
summaries: the smallest observation, lower quartile (Q1), median (Q2), upper
quartile (Q3), and largest observation.

Example: x1, . . . , xn ∼ U[0, 1], n = 100
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Summary

Measures of Location
I Arithmetic Mean: x = 1

n

∑n
i=1 xi (sensitive to outliers)

I Median: the middle value of the ordered batch values x̃ = Q2

I Trimmed Mean:

xα =
x([nα]+1) + . . .+ x(n−[nα])

n − 2[nα]

I M estimate: y∗ = arg miny∈R
∑n

i=1 Ψ(xi , y)
F if Ψ(xi , y) = (xi − y)2, then y∗ = x
F it Ψ(xi , y) = |xi − y |, then y∗ = x̃

Measures of Dispersion
I Sample Standard Deviation (sensitive to outliers):

s =

√√√√ 1

n − 1

n∑
i=1

(xi − x)2

I Interquartile Range: IQR = Q3 − Q1

I Median Absolute Deviation: MAD = median of the numbers |xi − x̃ |
Boxplots are useful graphical displays.
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Statistical Inference

Statistical inference is the process of using data to infer the distribution that
generates the data. The basic statistical inference problem is the following:

Basic Problem
We observe X1, . . . ,Xn ∼ π. We want to estimate π or some features of π such as
its mean.

Definition
A statistical model is a set of distributions or a set of densities F .

A parametric model is a set F that can be parameterized by a finite
number of parameters.

A nonparametric model is a set F that cannot be parameterized by a finite
set of parameters.
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Point Estimation, Confidence Intervals, Hypothesis Testing

Given a parametric model, F = {π(x |θ), θ ∈ Θ}, the problem of inference is
then to estimate the parameter θ from the data.

Almost all problems in statistical inference can be identified as being one of three
types: point estimates, confidence intervals, and hypothesis testing.

Point Estimation refers to providing a single “best guess.”
Suppose X1, . . . ,Xn ∼ π(x |θ), where π(x |θ) ∈ F .
A point estimator θ̂n of a parameter θ is some function of X1, . . . ,Xn:

θ̂n = f (X1, . . . ,Xn)

A 100(1− α)% Confidence Interval for a parameter θ is a random interval
In = (a, b) where a = a(X1, . . . ,Xn) and b = b(X1, . . . ,Xn) such that

P(θ ∈ In) = 1− α

In Hypothesis Testing, we start with some default theory, called a null
hypothesis, and we ask if the data provide sufficient evidence to reject the
theory. If not, we accept the null hypothesis.
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Method of Moments

Suppose that X1, . . . ,Xn ∼ π(x |θ) where θ ∈ Θ, and we want to estimate θ based
on the data X1, . . . ,Xn.

Method of Moments

Let µj(θ) = Eθ[X j ] be the jth moment of a probability distribution π(x |θ)

Let µ̂j = 1
n

∑n
i=1 X j

i be the jth sample moment

(LLN: µ̂j
P−→ µj(θ), when n→∞)

Suppose that the parameter θ has k components, θ = (θ1, . . . , θk)

The method of moments estimator θ̂ is defined to be the value of θ such that
µ1(θ) = µ̂1

µ2(θ) = µ̂2

. . . . . .

µk(θ) = µ̂k

(1)

System (1) is a system of k equations with k unknowns: θ1, . . . , θk
The solution of this system θ̂ is the MoM estimate of the parameter θ.
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Consistency of the MoM estimator

Definition

Let θ̂n be an estimate of a parameter θ based on a sample of size n. Then θ̂n is
consistent if

θ̂n
P−→ θ

Theorem
The method of moments estimate is consistent.
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The Likelihood Function

The most common method for estimating parameters in a parametric model is the
method of maximum likelihood.

Suppose X1, . . . ,Xn are i.i.d. from π(x |θ).

Definition
The likelihood function is defined by

L(θ) =
n∏

i=1

π(Xi |θ)

Important Remark:

The likelihood function is just the joint density of the data, except that we
treat it as a function of the parameter θ.
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Maximum Likelihood Estimate

Definition

The maximum likelihood estimate (MLE) of θ, denoted θ̂MLE, is the value of θ
that maximizes the likelihood L(θ)

θ̂MLE = arg max
θ∈Θ
L(θ)

θ̂MLE makes the observed data X1, . . . ,Xn “most probable” or “most likely”

Important Remark:

Rather than maximizing the likelihood itself, it is often easier to maximize its
natural logarithm (which is equivalent since the log is a monotonic function).
The log-likelihood is

l(θ) = logL(θ) =
n∑

i=1

log π(Xi |θ)
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Properties of MLE
MLE is consistent:

θ̂MLE
P−→ θ0

where θ0 denotes the true value of θ.
MLE is equivariant:
if θ̂MLE is the MLE of θ ⇒ f (θ̂MLE) is the MLE of f (θ).

MLE is asymptotically optimal: among all well behaved estimators, the MLE
has the smallest variance, at least for large sample sizes n.
MLE is asymptotically Normal:

θ̂MLE → N
(
θ0,

1

nI (θ0)

)
where

I (θ)
def
= Eθ

[(
∂

∂θ
log π(X |θ)

)2
]

=

∫ (
∂

∂θ
log π(x |θ)

)2

π(x |θ)dx

I I (θ) is called Fisher Information.

MLE is asymptotically unbiased:

lim
n→∞

E[θ̂MLE] = θ0
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Confidence Intervals from MLEs

Recall that

Definition

A 100(1− α)% confidence interval for a parameter θ is a random interval
calculated from the sample,

X1, . . . ,Xn ∼ π(x |θ)

which contains θ with probability 1− α.

There are three methods for constructing confidence intervals using MLEs θ̂MLE:

Exact Method

Approximate Method

Bootstrap Method
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Exact Method

Exact Method provides exact confidence intervals.

Example: X1, . . . ,Xn ∼ N (µ, σ2)

µ : µ̂MLE ±
1√

n − 1
σ̂2
MLEtn−1(α/2)

σ2 :

(
nσ̂2

MLE

χ2
n−1(α2 )

,
nσ̂2

MLE

χ2
n−1(1− α

2 )

)
These result is based of the following facts:

√
n(X n − µ)

Sn
∼ tn−1

(n − 1)S2
n

σ2
∼ χ2

n−1

Remark:

The main drawback of the exact method is that in practice the sampling
distributions — like tn−1 and χ2

n−1 in our example — are not known.
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Approximate Method

One of the most important properties of MLE is that it is asymptotically normal:

θ̂MLE → N
(
θ0,

1

nI (θ0)

)
, as n→∞

where I (θ0) is Fisher information

I (θ) = Eθ

[(
∂

∂θ
log π(X |θ)

)2
]

Since the true value θ0 is unknown, we will use I (θ̂MLE) instead of I (θ0):

Result

An approximate 100(1− α)% confidence interval for θ0 is

θ̂MLE ±
zα/2√

nI (θ̂MLE)

where zα is the point beyond which the standard normal distribution has
probability α.
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Measure of Efficiency: Mean Squared Error

In most estimation problems, there are many possible estimates θ̂ of θ.
For example, the MoM estimate θ̂MoM or the MLE estimate θ̂MLE.

Question: How would we choose which estimate to use?

Qualitatively, it is reasonable to choose that estimate whose distribution is most
highly concentrated about the true parameter value θ0. To make this idea work,
we need to define a quantitative measure of such concentration.

Definition

The mean squared error of θ̂ as an estimate of θ0 is

MSE(θ̂) = E[(θ̂ − θ0)2]

The mean squared error can be also written as follows:

MSE(θ̂) = V[θ̂] + (E(θ̂)− θ0)2︸ ︷︷ ︸
squared bias

If θ̂ is unbiased, then MSE(θ̂) = V[θ̂].
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Cramer-Rao Inequality

Let X1, . . . ,Xn be i.i.d. from π(x |θ). Let θ̂ = θ̂(X1, . . . ,Xn) be any unbiased
estimate of a parameter θ whose true values is θ0. Then, under smoothness
assumptions on π(x |θ),

MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)

Important Remarks:

θ̂ can’t have arbitrary small MSE

The Cramer-Rao inequality gives a lower bound on the variance of any
unbiased estimate.

Definition
An unbiased estimate whose variance achieves this lower bound is said to be
efficient.

Recall that MLE is asymptotically Normal: θ̂MLE → N
(
θ0,

1
nI (θ0)

)
Therefore, MLE is asymptotically efficient

However, for a finite sample size n, MLE may not be efficient

Konstantin Zuev (USC) Math 408, Lecture 38 May 3, 2013 14 / 25



Hypothesis Testing: General Framework

Suppose that we partition the parameter space Θ into two disjoint sets Θ0 and Θ1

and that we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

We call H0 the null hypothesis and H1 the alternative hypothesis.

Let X be data and let X be the range of X . We test a hypothesis by finding an
appropriate subset of outcomes R ⊂ X called the rejection region. If X ∈ R we
reject the null hypothesis, otherwise, we do not reject the null hypothesis:

X ∈ R ⇒ reject H0

X /∈ R ⇒ accept H0

Usually the rejection region R is of the form

R = {x ∈ X : T (x) < c}

where T is a test statistic and c is a critical value.
The main problem in hypothesis testing is

to find an appropriate test statistic T and an appropriate cutoff value c

Konstantin Zuev (USC) Math 408, Lecture 38 May 3, 2013 15 / 25



Main Definitions

In hypothesis testing, there are two types of errors we can make:

Rejecting H0 when H0 is true is called a type I error
Accepting H0 when H1 is true is called a type II error

Definition
The probability of a type I error is called the significance level of the test
and is denoted by α

α = P(type I error) = P(Reject H0|H0)

The probability of a type II error is is denoted by β

β = P(type II error) = P(Accept H0|H1)

(1− β) is called the power of the test

power = 1− β = 1− P(Accept H0|H1) = P(Reject H0|H1)

Thus, the power of the test is the probability of rejecting H0 when it is false.
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Neyman-Pearson Lemma

Definition
A hypothesis of the form θ = θ0 is called a simple hypothesis.

A hypothesis of the form θ > θ0 or θ < θ0 is called a composite hypothesis.

The Neyman-Pearson Lemma shows that the test that is based on the likelihood
ratio is optimal for simple hypotheses:

Neyman-Pearson Lemma

Suppose that H0 and H1 are simple hypotheses, H0 : θ = θ0 and H1 : θ = θ1.
Suppose that the likelihood ratio test that rejects H0 whenever the likelihood
ratio is less than c,

Reject H0 ⇔ L(Data|θ0)

L(Data|θ1)
< c

has significance level αLR. Then any other test for which the significance level
α ≤ αLR has power less than or equal to that of the likelihood ratio test

1− β ≤ 1− βLR
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Generalized Likelihood Ratio Test

Let X = (X1, . . . ,Xn) be data and let π(x |θ) be the joint density of the data. The
likelihood function is then

L(θ) = π(X |θ)

Suppose we we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

where Θ0 and Θ1 are two disjoint sets of the parameter space Θ, Θ = Θ0 tΘ1.

Based on the data, a measure of relative plausibility of the hypotheses is the
ratio of their likelihoods.

If the hypotheses are composite, each likelihood is evaluated at that value of
θ that maximizes it.

This yields the generalized likelihood ratio:

Λ∗ =
maxθ∈Θ0 L(θ)

maxθ∈Θ1 L(θ)

Small values of Λ∗ tend to discredit H0.
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Generalized Likelihood Ratio Test

For technical reasons, it is preferable to use the following statistic instead of Λ∗:

Λ =
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

Λ is called the likelihood ratio statistic.

Note that
Λ = min{Λ∗, 1}

Thus, small values of Λ∗ correspond to small values of Λ.

The rejection region R for a generalized likelihood test has the following form:

reject H0 ⇔ X ∈ R = {X : Λ(X ) < λ}

The threshold λ is chosen so that

P(Λ(X ) < λ|H0) = α,

where α is the desired significance level of the test.
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Distribution of Λ(X )

In order for the generalized likelihood ratio test to have the significance level α,
the threshold λ must be chosen so that

P(Λ(X ) < λ|H0) = α

If the distribution of Λ(X ) under H0 is known, then we can determine λ.
Generally, the distribution of Λ is not of a simple form, but in many situations the
following theorem provides the basis for an approximation of the distribution.

Theorem

Under smoothness conditions on π(x |θ), the null distribution of −2 log Λ(X ) (i.e.
distribution under H0) tends to a χ2

d as the sample size n→∞, where

d = dim Θ− dim Θ0,

where dim Θ and dim Θ0 are the numbers of free parameters in Θ and Θ0.
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Summarizing Data: Empirical CDF

Suppose that x1, . . . , xn is a batch of numbers.

Remark: We use the word

“sample” when X1, . . . ,Xn is a collection of random variables.

“batch” when x1, . . . , xn are fixed numbers (data, realization of sample).

Definition

The empirical cumulative distribution function (eCDF) is defined as

Fn(x) =
1

n
(#xi ≤ x)

Denote the ordered batch of numbers by x(1), . . . , x(n).

If x < x(1), then Fn(x) = 0

If x(1) ≤ x < x(2), then Fn(x) = 1/n

If x(k) ≤ x < x(k+1), then Fn(x) = k/n

The eCDF is the “data analogue” of the CDF of a random variable

Konstantin Zuev (USC) Math 408, Lecture 38 May 3, 2013 21 / 25



Summarizing Data: Quantile-Quantile Plots

Quantile-Quantile (Q-Q) plots are used for comparing two probability
distributions.

Suppose that X is a continuous random variable with a strictly increasing CDF F .

Definition

The pth quantile of F is that value xp such that

F (xp) = p or xp = F−1(p)

Suppose we want to compare two CDF: F and G .

Definition
The theoretical Q-Q plot is the graph of the quantiles of a the CDF F ,
xp = F−1(p), versus the corresponding quantiles of the CDF G , yp = G−1(p),
that is the graph [F−1(p),G−1(p)] for p ∈ (0, 1).

If the two CDFs are identical, the theoretical Q-Q plot will be the line y = x .
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Summarizing Data: Empirical Q-Q plots

In practice, a typical scenario is the following:

F (x) = F0(x) is a specified CDF (e.g. normal) which is a theoretical model
for data X1, . . . ,Xn.

G (x) is the empirical CDF for x1, . . . , xn, a realization of X1, . . . ,Xn (actually
observed data).

We want to compare the model F (x) with the observation G (x).

Let x(1), . . . , x(n) be the ordered batch. Then

Definition

The empirical Q-Q plot is the plot of F−1
0 (i/n) on the horizonal axis versus

G−1(i/n) = x(i) on the vertical axis, for i = 1, . . . , n.

Remarks:

The quantities pi = i/n are called plotting positions
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Summarizing Data: Measures of Location and Dispersion

Measures of Location
I Arithmetic Mean: x = 1

n

∑n
i=1 xi (sensitive to outliers)

I Median: the middle value of the ordered batch values x̃ = Q2

I Trimmed Mean:

xα =
x([nα]+1) + . . .+ x(n−[nα])

n − 2[nα]

I M estimate: y∗ = arg miny∈R
∑n

i=1 Ψ(xi , y)
F if Ψ(xi , y) = (xi − y)2, then y∗ = x
F it Ψ(xi , y) = |xi − y |, then y∗ = x̃

Measures of Dispersion
I Sample Standard Deviation (sensitive to outliers):

s =

√√√√ 1

n − 1

n∑
i=1

(xi − x)2

I Interquartile Range: IQR = Q3 − Q1

I Median Absolute Deviation: MAD = median of the numbers |xi − x̃ |
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Thank you for attention and good luck on the final!
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