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Large Sample Theory

The most important aspect of probability theory concerns the behavior of
sequences of random variables. This part of probability is called large sample
theory or limit theory or asymptotic theory. This theory is extremely important for
statistical inference.

The basic question is this:
What can we say about the limiting behavior of a sequence of random variables?

X1,X2,X3 . . .

In the statistical context: What happens as we gather more and more data?

In Calculus, we say that a sequence of real numbers x1, x2, . . . converges to a limit
x if, for every ε > 0, we can find N such that |xn − x | < ε for all n > N.

In Probability, convergence is more subtle.
Going back to calculus, suppose that xn = 1/n. Then trivially, limn→∞ xn = 0.
Consider a probabilistic version of this example: suppose that X1,X2, . . . are
independent and Xn ∼ N (0, 1/n). Intuitively, Xn is very concentrated around 0 for
large n, and we are tempted to say that Xn “converges” to zero. However,
P(Xn = 0) = 0 for all n!
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Types of Convergence

There are two main types of convergence:
convergence in probability and convergence in distribution

Definition
Let X1,X2, . . . be a sequence of random variables and let X be another random
variable. Let Fn denote the CDF of Xn and let F denote the CDF of X .

Xn converges to X in probability, written Xn
P−→ X ,

if for every ε > 0
lim

n→∞
P(|Xn − X | ≥ ε) = 0

Xn converges to X in distribution, written Xn
D−→ X ,

if
lim

n→∞
Fn(x) = F (x)

for all x for which F is continuous.
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Relationships Between the Types of Convergence

Example: Let Xn ∼ N (0, 1/n). Then

Xn
P−→ 0

Xn
D−→ 0

Question: Is there any relationship between
P−→ and

D−→ ?

Answer: Yes:

Xn
P−→ X implies that Xn

D−→ X

Important Remark: The reverse implication does not hold:
convergence in distribution does not imply convergence in probability.

Example: Let X ∼ N (0, 1) and let Xn = −X for all n. Then

Xn
D−→ X

Xn
P9 X
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The Law of Large Numbers

The law of large numbers is one of the main achievements in probability. This
theorem says that the mean of a large sample is close to the mean of the
distribution.

The Law of Large Numbers

Let X1,X2, . . . be an i.i.d. sample and let µ = E[X1] and σ2 = V[X1] <∞. Then

X n =
1

n

n∑
i=1

Xi
P−→ µ

Useful Interpretation:

The distribution of X n becomes more concentrated around µ as n gets larger.

Example: Let Xi ∼ Bernoulli(p). The fraction of heads after n tosses is X n.

According to the LLN, X n
P−→ E[Xi ] = p. It means that, when n is large, the

distribution of X n is tightly concentrated around p.
Q: How large should n be so that P(|X n − p| < ε) ≥ 1− α?

Answer: n ≥ p(1−p)
αε2
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The Monte Carlo Method

Suppose we want to calculate

I (f ) =

∫ 1

0

f (x)dx

where the integration cannot be done by elementary means.
The Monte Carlo method works as follows:

1 Generate independent uniform random variables on [0,1], X1, . . . ,Xn ∼ U[0, 1]

2 Compute Y1 = f (X1), . . . ,Yn = f (Xn). Then Y1, . . . ,Yn are i.i.d.

3 By the law of large numbers Y n should be close to E[Y1]. Therefore:

1

n

n∑
i=1

f (Xi ) = Y n ≈ E[Y1] = E[f (X1)] =

∫ 1

0

f (x)dx
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Monte Carlo method: Example

Suppose we want to compute the following integral:

I =

∫ 1

0

x2dx

From calculus: I = 1/3
Using Monte Carlo method: I (n) = 1

n

∑n
i=1 X

2
i , where Xi ∼ U[0, 1]
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Accuracy of the Monte Carlo method

1

n

n∑
i=1

f (Xi ) ≈
∫ 1

0

f (x)dx , X1, . . . ,Xn ∼ U[0, 1]

Question: How large should n be to achieve a desired accuracy?

Answer: Let f : [0, 1]→ [0, 1]. To get 1
n

∑n
i=1 f (Xi ) within ε of the true value I (f )

with probability at least p, we should choose n so that

n ≥ 1

ε2(1− p)

Thus, the Monte Carlo method tells us how large to take n to get a desired
accuracy.
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The Central Limit Theorem

Suppose that X1, . . . ,Xn are i.i.d. with mean µ and variance σ2. The central
limit theorem (CLT) says that X n has a distribution which is approximately
Normal. This is remarkable since nothing is assumed about the distribution of Xi ,
except the existence of the mean and variance.

The Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. with mean µ and variance σ2. Let X n = 1
n

∑n
i=1 Xi . Then

Zn ≡
X n − µ
σ/
√
n

D−→ Z ∼ N (0, 1)

Useful Interpretation:

Probability statements about X n can be approximated using a Normal
distribution.
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The Central Limit Theorem

Zn ≡
X n − µ
σ/
√
n

D−→ Z ∼ N (0, 1)

There are several forms of notation to denote the fact that the distribution of Zn

is converging to a Normal. They all mean the same thing:

Zn ∼̇ N (0, 1)

X n ∼̇ N
(
µ,
σ2

n

)

X n − µ ∼̇ N
(

0,
σ2

n

)
√
n(X n − µ) ∼̇ N (0, σ2)

X n − µ
σ/
√
n
∼̇ N (0, 1)
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The Central Limit Theorem: Remarks

The CLT asserts that the CDF of X n, suitably normalized to have mean 0
and variance 1, converges to the CDF of N (0, 1).

Q: Is the corresponding result valid at the level of PDFs and PMFs?

Broadly speaking the answer is yes, but some condition of smoothness is
necessary (generally, Fn(x)→ F (x) does not imply F ′n(x)→ F ′(x)).

The CLT does not say anything about the rate of convergence.

The CLT tells us that in the long run we know what the distribution must be.
I Even better: it is always the same distribution.

F Still better: it is one which is remarkably easy to deal with, and for which we
have a huge amount of theory.

Historic Remark:

For the special case of Bernoulli variables with p = 1/2, CLT was proved by
de Moivre around 1733.

General values of p were treated later by Laplace.

The first rigorous proof of CLT was discovered by Lyapunov around 1901.
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The Central Limit Theorem: Example

Suppose that the number of errors per computer program has a Poisson

distribution with mean λ = 5. f (k |λ) = e−λ λk

k!

We get n = 125 programs; n is sample size

Let X1, . . . ,Xn be the number of errors in the programs, Xi ∼ Poisson(λ).

Estimate probability P(X n ≤ λ+ ε), where ε = 0.5.

Answer:

P(X n ≤ λ+ ε) ≈ Φ

(
ε

√
n

λ

)
= Φ(2.5) ≈ 0.994
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The Central Limit Theorem: Example

A tourist in Las Vegas was attracted by a certain gambling game in which
I the customer stakes 1 dollar on each play
I a win then pays the customer 2 dollars plus the return of her stake
I a loss costs her only her stake

The probability of winning at this game is p = 1/4.

The tourist played this game n = 240 times.

Assuming that no near miracles happened,

about how much poorer was the tourist upon leaving the casino?
Answer:

E[payoff] = −$60

what is the probability that she lost no money?
Answer:

P[payoff ≥ 0] ≈ 0
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The Central Limit Theorem

The central limit theorem tells us that

Zn =
X n − µ
σ/
√
n
∼̇ N (0, 1)

However, in applications, we rarely know σ. We can estimate σ2 from X1, . . . ,Xn

by sample variance

S2
n =

1

n − 1

n∑
i=1

(Xi − X n)2

Question: If we replace σ with Sn is the central limit theorem still true?

Answer: Yes!

Theorem
Assume the same conditions as the CLT. Then,

X n − µ
Sn/
√
n

D−→ Z ∼ N (0, 1)
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Multivariate Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. random vectors with mean µ and covariance matrix Σ:

Xi =


X1i

X2i

...
Xki

 µ =


µ1

µ2

...
µk

 =


E[X1i ]
E[X2i ]

...
E[Xki ]



Σ =


V[X1i ] Cov(X1i ,X2i ) . . . Cov(X1i ,Xki )

Cov(X2i ,X1i ) V[X2i ] . . . Cov(X2i ,Xki )
...

...
. . .

...
Cov(Xki ,X1i ) . . . Cov(Xki ,Xk−1i ) V[Xki ]


Let X n = (X 1n, . . . ,X kn)T . Then

√
n(X n − µ)

D−→ N (0,Σ)
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Summary

Xn
P−→ X : Xn converges to X in probability, if for every ε > 0

lim
n→∞

P(|Xn − X | ≥ ε) = 0

Xn
D−→ X : Xn converges to X in distribution, if for all x for which F is

continuous
lim

n→∞
Fn(x) = F (x)

Xn
P−→ X implies that Xn

D−→ X
The Law of Large Numbers: Let X1,X2, . . . be an i.i.d. sample and let
µ = E[X1]. Then

X n =
1

n

n∑
i=1

Xi
P−→ µ

The Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. with mean µ and
variance σ2. Then

Zn ≡
X n − µ
σ/
√
n

D−→ Z ∼ N (0, 1)
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