Math 408 - Mathematical Statistics

Lecture 7. Conditional Expectation and Conditional Variance

February 1, 2013

Definition

Suppose that X and Y are random variables.

Q: What is the mean of X among those times when Y = y?

<u>A:</u> It is the mean of X as before, but instead of $f_X(x)$ we use $f_{X|Y}(x|y)$.

Definition

The **conditional expectation** of X given Y = y is

$$\mathbb{E}[X|Y=y] = \left\{ \begin{array}{ll} \sum_{x} x f_{X|Y}(x|y), & \text{discrete case;} \\ \int x f_{X|Y}(x|y) dx, & \text{continuous case.} \end{array} \right.$$

If Z = r(X, Y) is a new random variable, then

$$\mathbb{E}[Z|Y=y] = \left\{ \begin{array}{l} \sum_{x} r(x,y) f_{X|Y}(x|y), & \text{discrete case;} \\ \int r(x,y) f_{X|Y}(x|y) dx, & \text{continuous case.} \end{array} \right.$$

Important Remark:

- $\mathbb{E}[X]$ is a number
- $\mathbb{E}[X|Y=y]$ is a function of y

Konstantin Zuey (USC) Math 408, Lecture 7 February 1, 2013

Conditional Expectation

Question: What is $\mathbb{E}[X|Y=y]$ before we observe the value y of Y?

Answer: Before we observe Y, we don't know the value of $\mathbb{E}[X|Y=y]$, it is uncertain, so it is a random variable which we denote $\mathbb{E}[X|Y]$.

 $\mathbb{E}[X|Y]$ is the random variable whose value is $\mathbb{E}[X|Y=y]$ when Y=y.

Example 1:

Suppose we draw

$$X \sim U(0,1)$$

After we observe X = x, we draw

$$Y|X = x \sim U(x,1)$$

Find $\mathbb{E}[Y|X=x]$.

Answer:

$$\mathbb{E}[Y|X=x]=\frac{x+1}{2}$$
, as intuitively expected

Note that $\mathbb{E}[Y|X] = \frac{X+1}{2}$ is a random variable whose value is the number $\mathbb{E}[Y|X=x] = \frac{x+1}{2}$ once X=x is observed.

The Rule of Iterated Expectations

Theorem

For random variables X and Y, assuming the expectations exist, we have

$$\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y]$$
 and $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$

More generally, for any function r(x, y) we have

$$\mathbb{E}[\mathbb{E}[r(X,Y)|X]] = \mathbb{E}[r(X,Y)] \quad \text{and} \quad \mathbb{E}[\mathbb{E}[r(X,Y)|Y]] = \mathbb{E}[r(X,Y)]$$

Example 2: Compute $\mathbb{E}[Y]$ in Example 1.

Answer:

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}\left[\frac{X+1}{2}\right] = \frac{1/2+1}{2} = \frac{3}{4}$$

Conditional Variance

Recall, that "unconditional" variance of random variable Y is

$$\mathbb{V}[Y] = \mathbb{E}[(Y - \mathbb{E}[Y])^2]$$

Therefore, it is natural to define **conditional variance** of Y given that X = x as follows (replace all expectations by conditional expectations):

$$\mathbb{V}[Y|X=x] = \mathbb{E}[(Y - \mathbb{E}[Y|X=x])^2|X=x]$$

Denote $\mathbb{E}[Y|X=x]$ by $\mu_Y(x)$. Then

$$\mathbb{V}[Y|X=x] = \int (y - \mu_Y(x))^2 f_{Y|X}(y|x) dy$$

• $\mathbb{V}[Y]$ is a number, $\mathbb{V}[Y|X=x]$ is a function of x

Theorem

For random variables X and Y

$$\mathbb{V}[Y] = \mathbb{E}[\mathbb{V}[Y|X]] + \mathbb{V}[\mathbb{E}[Y|X]]$$

Example: Statistical Analysis of a Disease

- Draw a state at random from the US.
- Let Q be the proportion of people in that state with a certain disease.
 Q is a random variable since it varies from state to state, and state is picked at random.
 - ▶ Suppose that Q has a uniform distribution on (0,1), $Q \sim U(0,1)$.
 - ▶ This assumption is natural if we don't have any information about the disease.
- Draw *n* people at random from the state, and let *X* be the number of those people who have the disease.
 - ▶ Given Q = q, it is natural to model X as a Binomial variable, $X|Q = q \sim \operatorname{Bin}(n, q)$.

Problem: Find $\mathbb{E}[X]$ and $\mathbb{V}[X]$

Answer:

$$\mathbb{E}[X] = \frac{n}{2}$$

$$\mathbb{V}[X] = \frac{n}{6} + \frac{n^2}{12}$$

Summary

• The conditional expectation of X given Y = y is

$$\mathbb{E}[X|Y=y] = \left\{ \begin{array}{ll} \sum_{x} x f_{X|Y}(x|y), & \text{discrete case;} \\ \int x f_{X|Y}(x|y) dx, & \text{continuous case.} \end{array} \right.$$

- $ightharpoonup \mathbb{E}[X]$ is a number
- ▶ $\mathbb{E}[X|Y=y]$ is a function of y
- ▶ $\mathbb{E}[X|Y]$ is the random variable whose value is $\mathbb{E}[X|Y=y]$ when Y=y
- The Rule of Iterated Expectations

$$\mathbb{EE}[Y|X] = \mathbb{E}[Y]$$
 and $\mathbb{EE}[X|Y] = \mathbb{E}[X]$

• The conditional variance of X given Y = y is

$$\mathbb{V}[X|Y=y] = \mathbb{E}[(X - \mathbb{E}[X|Y=y])^2|Y=y]$$

- $ightharpoonup \mathbb{V}[X]$ is a number
- ▶ V[X|Y = y] is a function of y
- ▶ $\mathbb{V}[X|Y]$ is the random variable whose value is $\mathbb{V}[X|Y=y]$ when Y=y
- For random variables X and Y

$$\mathbb{V}[X] = \mathbb{E}\mathbb{V}[X|Y] + \mathbb{V}\mathbb{E}[X|Y]$$