Math 408 - Mathematical Statistics

Lecture 6. Expectation, Variance, Covariance, and Correlation

January 30, 2013

Expectation of a Random Variable

The expectation (or mean) of a random variable X is the average value of X. The formal definition is as follows.

Definition

The **expected value**, or **mean**, or **first moment** of X is

$$\mu_X \equiv \mathbb{E}[X] = \left\{ \begin{array}{ll} \sum_x x f_X(x), & \text{if } X \text{ is discrete} \\ \int x f_X(x) dx, & \text{if } X \text{ is continuous} \end{array} \right.$$

assuming that the sum (or integral) is well-defined.

Remarks:

- The expectation is a one-number summary of the distribution.
- Think of $\mathbb{E}[X]$ as the average value you would obtain if you computed the numerical average $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ of a large number of i.i.d. draws X_{1},\ldots,X_{n} . The fact that

$$\mathbb{E}[X] \approx \frac{1}{n} \sum_{i=1}^{n} X_i$$

is a theorem called the law of large numbers.

Examples

• Let $X \sim \text{Bernoulli}(p)$. Find $\mathbb{E}[X]$.

Answer: $\mathbb{E}[X] = p$

• Let $X \sim U(-1,3)$. Find $\mathbb{E}[X]$. Answer: $\mathbb{E}[X] = 1$

Let Y = r(X). How do we compute $\mathbb{E}[Y]$? There are two ways:

- Find $f_Y(y)$ (Lecture 4) and then compute $\mathbb{E}[Y] = \int y f_Y(y) dy$.
- An easier way:

$$\boxed{\mathbb{E}[Y] = \mathbb{E}[r(X)] = \int r(x)f_X(x)dx}$$

Example: Take a stick of unit length and break it at random. Let Y be the length of the longer piece. What is the mean of Y?

Answer: $\mathbb{E}[Y] = \frac{3}{4}$

Functions of several variables are handled in a similar way: if Z = r(X, Y), then

$$\mathbb{E}[Z] = \mathbb{E}[r(X,Y)] = \int \int r(x,y) f_{X,Y}(x,y) dxdy$$

Properties of Expectations

• If X_1, \ldots, X_n are random variables and a_1, \ldots, a_n are constants, then

$$\mathbb{E}\left[\sum_{i=1}^n a_i X_i\right] = \sum_{i=1}^n a_i \mathbb{E}[X_i]$$

- ▶ Let $X \sim \text{Bin}(n, p)$. Find $\mathbb{E}[X]$.
- Answer: $\mathbb{E}[X] = np$
- Let X_1, \ldots, X_n be independent random variables. Then,

$$\boxed{\mathbb{E}\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n \mathbb{E}[X_i]}$$

<u>Remark:</u> Note the summation rule does not require independence but the multiplication rule does.

Variance and Its Properties

The variance measures the "spread" of a distribution.

Definition

Let X be a random variance with mean μ_X .

The **variance** of X, denoted $\mathbb{V}[X]$ or σ_X^2 , is defined by

$$\sigma_X^2 \equiv \mathbb{V}[X] = \mathbb{E}[(X - \mu_X)^2] = \begin{cases} \sum_x (x - \mu_X)^2 f_X(x), & \text{if } X \text{ is discrete} \\ \int (x - \mu_X)^2 f_X(x) dx, & \text{if } X \text{ is continuous} \end{cases}$$

The **standard deviation** is $\sigma_X = \sqrt{\mathbb{V}[X]}$

Important Properties of V[X]:

- $\bullet \ \mathbb{V}[X] = \mathbb{E}[X^2] \mu_X^2$
- If a and b are constants, then $\mathbb{V}[aX + b] = a^2 \mathbb{V}[X]$
- If X_1, \ldots, X_n are independent and a_1, \ldots, a_n are constants, then

$$\mathbb{V}\left[\sum_{i=1}^n a_i X_i\right] = \sum_{i=1}^n a_i^2 \mathbb{V}[X_i]$$

Covariance and Correlation

Example: Let $X \sim \text{Bin}(n, p)$. Find $\mathbb{V}[X]$.

 $\overline{\text{Answer: }} \mathbb{E}[X] = np(1-p)$

If X and Y are random variables, then the covariance and correlation between X and Y measure how strong the linear relationship is between X and Y.

Definition

Let X and Y be random variables with means μ_X and μ_Y and standard deviations σ_X and σ_Y . Define the **covariance** between X and Y by

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

and the correlation by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Properties of Covariance and Correlation

• The covariance satisfies (useful in computations):

$$\mathrm{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

• The correlation satisfies:

$$-1 \le \rho(X, Y) \le 1$$

• If Y = aX + b for some constants a and b, then

$$\rho(X,Y) = \begin{cases} 1, & \text{if } a > 0 \\ -1, & \text{if } a < 0 \end{cases}$$

- If X and Y are independent, then $Cov(X, Y) = \rho(X, Y) = 0$. The converse is not true.
- For random variables X_1, \ldots, X_n

$$\mathbb{V}\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} a_i^2 \mathbb{V}[X_i] + 2 \sum_{i < j} a_i a_j \operatorname{Cov}(X_i, X_j)$$

Expectation and Variance of Important Random Variables

Distribution	Mean	Variance
Point mass at a	а	0
Bernoulli(p)	p	$\rho(1-\rho)$
Bin(n, p)	p	np(1-p)
Geom(p)	1/p	$(1-p)/p^2$
$Poisson(\lambda)$	λ	λ
Uniform(a, b)	(a + b)/2	$(b-a)^2/12$
$\mathcal{N}(\mu, \sigma^2)$	μ	σ^2
$\operatorname{Exp}(\beta)$	β	β^2
$Gamma(\alpha, \beta)$	$\alpha\beta$	$\alpha \beta^2$
$Beta(\alpha, \beta)$	$\alpha/(\alpha+\beta)$	$\alpha\beta/((\alpha+\beta)^2(\alpha+\beta+1))$

Summary

• The expected value of X is

$$\mu_X \equiv \mathbb{E}[X] = \left\{ \begin{array}{ll} \sum_x x f_X(x), & \text{if } X \text{ is discrete} \\ \int x f_X(x) dx, & \text{if } X \text{ is continuous} \end{array} \right.$$

- ▶ If Y = r(X), then $\mathbb{E}[Y] = \mathbb{E}[r(X)] = \int r(x)f_X(x)dx$
- ▶ If $X_1, ..., X_n$ are random variables and $a_1, ..., a_n$ are constants, then $\mathbb{E}\left[\sum_{i=1}^n a_i X_i\right] = \sum_{i=1}^n a_i \mathbb{E}[X_i]$
- ▶ If $X_1, ..., X_n$ are independent random variables, then $\mathbb{E}\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n \mathbb{E}[X_i]$
- The variance of X is

$$\sigma_X^2 \equiv \mathbb{V}[X] = \mathbb{E}[(X - \mu_X)^2]$$

- $\mathbb{V}[X] = \mathbb{E}[X^2] \mu_X^2$
- ▶ If a and b are constants, then $\mathbb{V}[aX + b] = a^2 \mathbb{V}[X]$
- ▶ If $X_1, ..., X_n$ are independent and $a_1, ..., a_n$ are constants, then $\mathbb{V}\left[\sum_{i=1}^n a_i X_i\right] = \sum_{i=1}^n a_i^2 \mathbb{V}[X_i]$

Summary

• Covariance and correlation between X and Y are

$$\boxed{\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}$$

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

- $\quad \text{Cov}(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- ▶ $-1 \le \rho(X, Y) \le 1$
- ▶ If Y = aX + b then $\rho(X, Y) = \begin{cases} 1, & \text{if } a > 0 \\ -1, & \text{if } a < 0 \end{cases}$
- ▶ If X and Y are independent, then $Cov(X, Y) = \rho(X, Y) = 0$.
- $\mathbb{V}\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} a_i^2 \mathbb{V}[X_i] + 2 \sum_{i < j} a_i a_j \operatorname{Cov}(X_i, X_j)$