Math 408 - Mathematical Statistics

Lecture 4. Continuous Random Variables and Transformations of Random Variables

January 25, 2013

Agenda

- Definition
- Important Examples
 - Uniform Distribution
 - Normal (Gaussian) Distribution
 - Exponential Distribution
 - Gamma Distribution
 - Beta Distribution
- Transformation of Random Variables
 - Discrete Case
 - Continuous Case
- Summary

Definition

Recall that a random variable is a (deterministic) map $X:\Omega\to\mathbb{R}$ that assigns a real number $X(\omega)$ to each (random) realization $\omega\in\Omega$.

Definition

A random variable is **continuous** if there exists a function f_X such that

- $f_X(x) \ge 0$ for all x
- $\int_{-\infty}^{+\infty} f_X(x) dx = 1$, and
- For every $a \le b$

$$P(a < X \le b) = \int_a^b f_X(x) dx$$

- The function $f_X(x)$ is called the probability density function (PDF)
- Relationship between the CDF $F_X(x)$ and PDF $f_X(x)$:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

$$f_X(x) = F_X'(x)$$

January 25, 2013

Important Remarks

- If X is continuous then $\mathbb{P}(X = x) = 0$ for every x.
- Don't think of $f_X(x)$ as $\mathbb{P}(X=x)$. This is only true for discrete random variables.
- For continuous random variables, we get probabilities by integrating.
- A PDF can be bigger than 1 (unlike PMF!). For example:

$$f_X(x) = \begin{cases} 10, & x \in [0, 0.1] \\ 0, & x \notin [0, 0.1] \end{cases}$$

• Can a PDF be unbounded? Yes, of course! For instance

$$f_X(x) = \begin{cases} \frac{2}{3}x^{-1/3}, & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

• The Uniform Distribution

X has a uniform distribution on [a, b], denoted $X \sim U[a, b]$, if

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & \text{otherwise} \end{cases}$$

• Normal (Gaussian) Distribution

X has a Normal (or Gaussian) distribution with parameters μ and σ , denoted by $X \sim \mathcal{N}(\mu, \sigma^2)$, if

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}$$

- ▶ Many phenomena in nature have approximately Normal distribution.
- ► Distribution of a sum of random variables can be approximated by a Normal distribution (central limit theorem)

Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013

Exponential Distribution

X has an Exponential distribution with parameter $\beta > 0$, $X \sim \text{Exp}(\beta)$, if

The exponential distribution is used to model the life times of electronic components and the waiting times between rare events. β is a survival parameter: the expected duration of survival of the system is β units of time.

Gamma Distribution

X has a Gamma distribution with parameters $\alpha>0$ and $\beta>0$, $X\sim \mathrm{Gamma}(\alpha,\beta)$, if

$$f(x) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}, \quad x > 0$$

 $ightharpoonup \Gamma(\alpha)$ is the Gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

- ▶ The Gamma distribution is frequently used to model waiting times.
- ► Exponential distribution is a special case of the Gamma distribution:

$$Gamma(1, \beta) = Exp(\beta)$$

Gamma Distribution

Beta Distribution

X has a Beta distribution with parameters $\alpha > 0$ and $\beta > 0$, $X \sim \text{Beta}(\alpha, \beta)$, if

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad 0 < x < 1$$

- ▶ The beta distribution is often used for modeling of proportions.
- ▶ The beta distribution has an important application in the theory of order statistics. A basic result is that the distribution of the k^{th} largest $X_{(k)}$ of a sample of size n from a uniform distribution $X_1, \ldots, X_n \sim U(0,1)$ has a beta distribution:

$$X_{(k)} \sim \mathrm{Beta}(k, n-k+1)$$

Beta Distribution

Transformation of Random Variables

Suppose that X is a random variable with PDF/PMF (continuous/discrete) f_X and CDF F_X . Let Y = r(X) be a function of X, for example, $Y = X^2$, $Y = e^X$.

Q: How to compute the PDF/PMF and CDF of Y?

In the discrete case, the answer is easy:

$$f_Y(y) = \mathbb{P}(Y = y) = \mathbb{P}(r(X) = y) = \mathbb{P}(\{x : r(x) = y\}) = \sum_{x_i : r(x_i) = y} f_X(x_i)$$

Example:

- $X \in \{-1, 0, 1\}$
- $\mathbb{P}(X = -1) = 1/4$, $\mathbb{P}(X = 0) = 1/2$, $\mathbb{P}(X = 1) = 1/4$
- $Y = X^2$
- Find PMF f_Y

Answer: $f_Y(0) = 1/2$ and $f_Y(1) = 1/2$.

Transformation of Random Variables: Continuous Case

The continuous case is harder.

These are the steps for finding the PDF f_Y :

- ② Find the CDF $F_Y(y)$

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(r(X) \le y) = \mathbb{P}(X \in A_y) = \int_{A_y} f_X(x) dx$$

• The PDF is then $f_Y(y) = F'_Y(y)$

Example: Let $X \sim \text{Exp}(1)$, and $Y = \ln X$. Find $f_Y(y)$.

Answer: $f_Y(y) = e^y e^{-e^y}$, $y \in \mathbb{R}$

Important Fact: When r is strictly monotonic, then r has an inverse $s=r^{-1}$ and

$$f_Y(y) = f_X(s(y)) \left| \frac{ds(y)}{dy} \right|$$

Summary

- A random variable is continuous if there exists a function f_X , called probability density function such that
 - $f_X(x) \ge 0$ for all x
 - $\int_{-\infty}^{+\infty} f_X(x) dx = 1$
 - ► For every *a* < *b*

$$P(a < X \le b) = \int_a^b f_X(x) dx$$

• Relationship between the CDF $F_X(x)$ and PDF $f_X(x)$:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt \qquad \boxed{f_X(x) = F_X'(x)}$$

$$f_X(x) = F_X'(x)$$

- Important Examples: Uniform Distribution, Normal Distribution, Exponential Distribution, Gamma Distribution, Beta Distribution
- If Y = r(X) and r is strictly monotonic, then

$$f_Y(y) = f_X(s(y)) \left| \frac{ds(y)}{dy} \right| \qquad s = r^{-1}$$