#### Math 408 - Mathematical Statistics

# Lecture 38. Fundamental Concepts of Statistical Inference: an Overview

May 3, 2013

## Agenda

- Probability Theory
- Survey Sampling
- Fundamental Concepts of Statistical Inference

## Statistical Inference

Statistical inference is the process of using data to infer the distribution that generates the data. The basic statistical inference problem is the following:

### Basic Problem

We observe  $X_1,\ldots,X_n\sim\pi.$  We want to estimate  $\pi$  or some features of  $\pi$  such as its mean.

### **Definition**

A **statistical model** is a set of distributions or a set of densities  $\mathcal{F}$ .

- A parametric model is a set  ${\mathcal F}$  that can be parameterized by a finite number of parameters.
- $\bullet$  A **nonparametric model** is a set  ${\cal F}$  that cannot be parameterized by a finite set of parameters.

## Point Estimation, Confidence Intervals, Hypothesis Testing

Given a parametric model,  $\mathcal{F} = \{\pi(x|\theta), \ \theta \in \Theta\}$ , the problem of inference is then to estimate the parameter  $\theta$  from the data.

Almost all problems in statistical inference can be identified as being one of three types: **point estimates**, **confidence intervals**, and **hypothesis testing**.

• Point Estimation refers to providing a single "best guess." Suppose  $X_1, \ldots, X_n \sim \pi(x|\theta)$ , where  $\pi(x|\theta) \in \mathcal{F}$ . A point estimator  $\hat{\theta}_n$  of a parameter  $\theta$  is some function of  $X_1, \ldots, X_n$ :

$$\hat{\theta}_n = f(X_1, \dots, X_n)$$

• A  $100(1-\alpha)\%$  Confidence Interval for a parameter  $\theta$  is a random interval  $I_n=(a,b)$  where  $a=a(X_1,\ldots,X_n)$  and  $b=b(X_1,\ldots,X_n)$  such that

$$\mathbb{P}(\theta \in I_n) = 1 - \alpha$$

4 / 25

• In Hypothesis Testing, we start with some default theory, called a null hypothesis, and we ask if the data provide sufficient evidence to reject the theory. If not, we accept the null hypothesis.

## Method of Moments

Suppose that  $X_1, \ldots, X_n \sim \pi(x|\theta)$  where  $\theta \in \Theta$ , and we want to estimate  $\theta$  based on the data  $X_1, \ldots, X_n$ .

#### Method of Moments

- Let  $\mu_j(\theta) = \mathbb{E}_{\theta}[X^j]$  be the  $j^{\mathrm{th}}$  moment of a probability distribution  $\pi(x|\theta)$
- Let  $\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$  be the  $j^{\text{th}}$  sample moment (LLN:  $\hat{\mu}_j \stackrel{\mathbb{P}}{\longrightarrow} \mu_j(\theta)$ , when  $n \to \infty$ )
- Suppose that the parameter  $\theta$  has k components,  $\theta = (\theta_1, \dots, \theta_k)$

The **method of moments estimator**  $\hat{\theta}$  *is defined to be the value of*  $\theta$  *such that* 

$$\begin{cases}
\mu_1(\theta) = \hat{\mu}_1 \\
\mu_2(\theta) = \hat{\mu}_2 \\
\dots \\
\mu_k(\theta) = \hat{\mu}_k
\end{cases}$$
(1)

- System (1) is a system of k equations with k unknowns:  $\theta_1, \ldots, \theta_k$
- The solution of this system  $\hat{\theta}$  is the MoM estimate of the parameter  $\theta$ .

## Consistency of the MoM estimator

### **Definition**

Let  $\hat{\theta}_n$  be an estimate of a parameter  $\theta$  based on a sample of size n. Then  $\hat{\theta}_n$  is **consistent** if

$$\hat{\theta}_n \stackrel{\mathbb{P}}{\longrightarrow} \theta$$

### **Theorem**

The method of moments estimate is consistent.

May 3, 2013

## The Likelihood Function

The most common method for estimating parameters in a parametric model is the method of maximum likelihood.

Suppose  $X_1, \ldots, X_n$  are i.i.d. from  $\pi(x|\theta)$ .

### **Definition**

The likelihood function is defined by

$$\mathcal{L}(\theta) = \prod_{i=1}^n \pi(X_i|\theta)$$

### Important Remark:

• The likelihood function is just the joint density of the data, except that we treat it as a function of the parameter  $\theta$ .

## Maximum Likelihood Estimate

### **Definition**

The maximum likelihood estimate (MLE) of  $\theta$ , denoted  $\hat{\theta}_{\mathrm{MLE}}$ , is the value of  $\theta$  that maximizes the likelihood  $\mathcal{L}(\theta)$ 

$$\hat{\theta}_{\mathrm{MLE}} = \arg\max_{\theta \in \Theta} \mathcal{L}(\theta)$$

 $\hat{ heta}_{\mathrm{MLE}}$  makes the observed data  $X_1, \dots, X_n$  "most probable" or "most likely"

### Important Remark:

Rather than maximizing the likelihood itself, it is often easier to maximize its natural logarithm (which is equivalent since the log is a monotonic function). The log-likelihood is

$$I(\theta) = \log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log \pi(X_i | \theta)$$

## Properties of MLE

• MLE is consistent:

$$\hat{\theta}_{\mathrm{MLE}} \stackrel{\mathbb{P}}{\longrightarrow} \theta_0$$

where  $\theta_0$  denotes the true value of  $\theta$ .

- MLE is equivariant: if  $\hat{\theta}_{\text{MLE}}$  is the MLE of  $\theta \Rightarrow f(\hat{\theta}_{\text{MLE}})$  is the MLE of  $f(\theta)$ .
- MLE is asymptotically optimal: among all well behaved estimators, the MLE has the smallest variance, at least for large sample sizes *n*.
- MLE is asymptotically Normal:

$$\hat{ heta}_{ ext{MLE}} 
ightarrow \mathcal{N}\left( heta_0, rac{1}{ extit{nI}( heta_0)}
ight)$$

where

$$I(\theta) \stackrel{\text{def}}{=} \mathbb{E}_{\theta} \left[ \left( \frac{\partial}{\partial \theta} \log \pi(X|\theta) \right)^2 \right] = \int \left( \frac{\partial}{\partial \theta} \log \pi(X|\theta) \right)^2 \pi(X|\theta) dX$$

- $ightharpoonup I(\theta)$  is called Fisher Information.
- MLE is asymptotically unbiased:

$$\lim_{n\to\infty} \mathbb{E}[\hat{\theta}_{\mathrm{MLE}}] = \theta_0$$

## Confidence Intervals from MLEs

Recall that

### **Definition**

A  $100(1-\alpha)\%$  confidence interval for a parameter  $\theta$  is a <u>random</u> interval calculated from the sample,

$$X_1,\ldots,X_n\sim\pi(x|\theta)$$

which contains  $\theta$  with probability  $1 - \alpha$ .

There are three methods for constructing confidence intervals using MLEs  $\hat{ heta}_{
m MLE}$ :

- Exact Method
- Approximate Method
- Bootstrap Method

### **Exact Method**

Exact Method provides exact confidence intervals.

• Example:  $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ 

$$\mu: \quad \hat{\mu}_{\mathrm{MLE}} \pm \frac{1}{\sqrt{n-1}} \hat{\sigma}_{\mathrm{MLE}}^2 t_{n-1} (\alpha/2)$$

$$\sigma^2: \quad \left(\frac{n\hat{\sigma}_{\mathrm{MLE}}^2}{\chi_{n-1}^2(\frac{\alpha}{2})}, \frac{n\hat{\sigma}_{\mathrm{MLE}}^2}{\chi_{n-1}^2(1-\frac{\alpha}{2})}\right)$$

These result is based of the following facts:

$$\frac{\sqrt{n}(\overline{X}_n-\mu)}{S_n}\sim t_{n-1}$$

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$$

#### Remark:

The main drawback of the exact method is that in practice the sampling distributions — like  $t_{n-1}$  and  $\chi^2_{n-1}$  in our example — are not known.

## Approximate Method

One of the most important properties of MLE is that it is asymptotically normal:

$$\hat{ heta}_{\mathrm{MLE}} o \mathcal{N}\left( heta_0, rac{1}{\mathit{nI}( heta_0)}
ight), \quad ext{ as } n o \infty$$

where  $I(\theta_0)$  is Fisher information

$$I( heta) = \mathbb{E}_{ heta} \left[ \left( rac{\partial}{\partial heta} \log \pi(X| heta) 
ight)^2 
ight]$$

Since the true value  $\theta_0$  is unknown, we will use  $I(\hat{\theta}_{\mathrm{MLE}})$  instead of  $I(\theta_0)$ :

### Result

An approximate  $100(1-\alpha)\%$  confidence interval for  $\theta_0$  is

$$\hat{ heta}_{
m MLE}\pmrac{z_{lpha/2}}{\sqrt{ extit{nI}(\hat{ heta}_{
m MLE})}}$$

where  $z_{\alpha}$  is the point beyond which the standard normal distribution has probability  $\alpha$ .

## Measure of Efficiency: Mean Squared Error

In most estimation problems, there are many possible estimates  $\hat{\theta}$  of  $\theta$ . For example, the MoM estimate  $\hat{\theta}_{\text{MoM}}$  or the MLE estimate  $\hat{\theta}_{\text{MLE}}$ .

Question: How would we choose which estimate to use?

Qualitatively, it is reasonable to choose that estimate whose distribution is most highly concentrated about the true parameter value  $\theta_0$ . To make this idea work, we need to define a quantitative measure of such concentration.

### **Definition**

The **mean squared error** of  $\hat{\theta}$  as an estimate of  $\theta_0$  is

$$MSE(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta_0)^2]$$

• The mean squared error can be also written as follows:

$$MSE(\hat{\theta}) = \mathbb{V}[\hat{\theta}] + \underbrace{(\mathbb{E}(\hat{\theta}) - \theta_0)^2}_{\text{squared bias}}$$

• If  $\hat{\theta}$  is unbiased, then  $MSE(\hat{\theta}) = V[\hat{\theta}]$ .

## Cramer-Rao Inequality

Let  $X_1, \ldots, X_n$  be i.i.d. from  $\pi(x|\theta)$ . Let  $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$  be any unbiased estimate of a parameter  $\theta$  whose true values is  $\theta_0$ . Then, under smoothness assumptions on  $\pi(x|\theta)$ ,

$$\mathrm{MSE}(\hat{ heta}) = \mathbb{V}[\hat{ heta}] \geq rac{1}{nI( heta_0)}$$

### Important Remarks:

- $oldsymbol{\hat{ heta}}$  can't have arbitrary small MSE
- The Cramer-Rao inequality gives a lower bound on the variance of any unbiased estimate.

### Definition

An unbiased estimate whose variance achieves this lower bound is said to be **efficient**.

Recall that MLE is asymptotically Normal:  $\hat{\theta}_{\mathrm{MLE}} o \mathcal{N}\left(\theta_{0}, \frac{1}{nI(\theta_{0})}\right)$ 

- Therefore, MLE is asymptotically efficient
- However, for a finite sample size n, MLE may not be efficient

Konstantin Zuev (USC) Math 408, Lecture 38 May 3, 2013

## Hypothesis Testing: General Framework

Suppose that we partition the parameter space  $\Theta$  into two disjoint sets  $\Theta_0$  and  $\Theta_1$  and that we wish to test

$$H_0: \theta \in \Theta_0$$
 versus  $H_1: \theta \in \Theta_1$ 

We call  $H_0$  the **null hypothesis** and  $H_1$  the **alternative hypothesis**.

Let X be data and let  $\mathcal{X}$  be the range of X. We test a hypothesis by finding an appropriate subset of outcomes  $\mathcal{R} \subset \mathcal{X}$  called the **rejection region**. If  $X \in \mathcal{R}$  we reject the null hypothesis, otherwise, we do not reject the null hypothesis:

$$X \in \mathcal{R} \Rightarrow \text{ reject } H_0$$
  
 $X \notin \mathcal{R} \Rightarrow \text{ accept } H_0$ 

Usually the rejection region  ${\cal R}$  is of the form

$$\mathcal{R} = \{ x \in \mathcal{X} : T(x) < c \}$$

May 3, 2013

15 / 25

where T is a **test statistic** and c is a **critical value**.

The main problem in hypothesis testing is

to find an appropriate test statistic  $\mathcal{T}$  and an appropriate cutoff value c

Konstantin Zuev (USC) Math 408, Lecture 38

## Main Definitions

In hypothesis testing, there are two types of errors we can make:

- Rejecting  $H_0$  when  $H_0$  is true is called a **type I error**
- Accepting  $H_0$  when  $H_1$  is true is called a **type II error**

### **Definition**

 $\bullet$  The probability of a type I error is called the  ${\bf significance}$  level of the test and is denoted by  $\alpha$ 

$$\alpha = \mathbb{P}(\mathsf{type}\;\mathsf{I}\;\mathsf{error}) = \mathbb{P}(\mathsf{Reject}\;H_0|H_0)$$

 $\bullet$  The probability of a type II error is is denoted by  $\beta$ 

$$\beta = \mathbb{P}(\mathsf{type}\;\mathsf{II}\;\mathsf{error}) = \mathbb{P}(\mathsf{Accept}\;H_0|H_1)$$

•  $(1 - \beta)$  is called the **power** of the test

$$power = 1 - \beta = 1 - \mathbb{P}(Accept | H_0|H_1) = \mathbb{P}(Reject | H_0|H_1)$$

Thus, the **power** of the test is the probability of rejecting  $H_0$  when it is false.

## Neyman-Pearson Lemma

### Definition

- A hypothesis of the form  $\theta = \theta_0$  is called a **simple hypothesis**.
- A hypothesis of the form  $\theta > \theta_0$  or  $\theta < \theta_0$  is called a **composite hypothesis**.

The Neyman-Pearson Lemma shows that the test that is based on the likelihood ratio is optimal for simple hypotheses:

## Neyman-Pearson Lemma

Suppose that  $H_0$  and  $H_1$  are simple hypotheses,  $H_0: \theta = \theta_0$  and  $H_1: \theta = \theta_1$ . Suppose that the **likelihood ratio test** that rejects  $H_0$  whenever the likelihood ratio is less than c,

Reject 
$$H_0 \Leftrightarrow \frac{\mathcal{L}(Data|\theta_0)}{\mathcal{L}(Data|\theta_1)} < c$$

has significance level  $\alpha_{LR}$ . Then any other test for which the significance level  $\alpha \leq \alpha_{LR}$  has power less than or equal to that of the likelihood ratio test

$$1 - \beta \le 1 - \beta_{LR}$$

## Generalized Likelihood Ratio Test

Let  $X = (X_1, ..., X_n)$  be data and let  $\pi(x|\theta)$  be the joint density of the data. The likelihood function is then

$$\mathcal{L}(\theta) = \pi(X|\theta)$$

Suppose we we wish to test

$$H_0: \theta \in \Theta_0$$
 versus  $H_1: \theta \in \Theta_1$ 

where  $\Theta_0$  and  $\Theta_1$  are two disjoint sets of the parameter space  $\Theta$ ,  $\Theta = \Theta_0 \sqcup \Theta_1$ .

- Based on the data, a measure of relative plausibility of the hypotheses is the ratio of their likelihoods.
- If the hypotheses are composite, each likelihood is evaluated at that value of  $\theta$  that maximizes it.

This yields the generalized likelihood ratio:

$$\boxed{ \Lambda^* = \frac{\mathsf{max}_{\theta \in \Theta_0} \, \mathcal{L}(\theta)}{\mathsf{max}_{\theta \in \Theta_1} \, \mathcal{L}(\theta)} }$$

Small values of  $\Lambda^*$  tend to discredit  $H_0$ .

## Generalized Likelihood Ratio Test

For technical reasons, it is preferable to use the following statistic instead of  $\Lambda^*$ :

$$\Lambda = rac{\mathsf{max}_{ heta \in \Theta_0} \, \mathcal{L}( heta)}{\mathsf{max}_{ heta \in \Theta} \, \mathcal{L}( heta)}$$

- Λ is called the likelihood ratio statistic.
- Note that

$$\Lambda = \min\{\Lambda^*, 1\}$$

Thus, small values of  $\Lambda^*$  correspond to small values of  $\Lambda$ .

The rejection region  $\mathcal{R}$  for a generalized likelihood test has the following form:

reject 
$$H_0 \Leftrightarrow X \in \mathcal{R} = \{X : \Lambda(X) < \lambda\}$$

The threshold  $\lambda$  is chosen so that

$$\mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha,$$

where  $\alpha$  is the desired significance level of the test.

## Distribution of $\Lambda(X)$

In order for the generalized likelihood ratio test to have the significance level  $\alpha$ , the threshold  $\lambda$  must be chosen so that

$$\mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha$$

If the distribution of  $\Lambda(X)$  under  $H_0$  is known, then we can determine  $\lambda$ . Generally, the distribution of  $\Lambda$  is not of a simple form, but in many situations the following theorem provides the basis for an approximation of the distribution.

### **Theorem**

Under smoothness conditions on  $\pi(x|\theta)$ , the null distribution of  $-2\log\Lambda(X)$  (i.e. distribution under  $H_0$ ) tends to a  $\chi^2_d$  as the sample size  $n\to\infty$ , where

$$d = \dim \Theta - \dim \Theta_0$$

where  $\dim \Theta$  and  $\dim \Theta_0$  are the numbers of free parameters in  $\Theta$  and  $\Theta_0$ .

## Summarizing Data: Empirical CDF

Suppose that  $x_1, \ldots, x_n$  is a batch of numbers.

Remark: We use the word

- "sample" when  $X_1, \ldots, X_n$  is a collection of random variables.
- "batch" when  $x_1, \ldots, x_n$  are fixed numbers (data, realization of sample).

### **Definition**

The **empirical cumulative distribution function** (eCDF) is defined as

$$F_n(x) = \frac{1}{n}(\#x_i \le x)$$

Denote the ordered batch of numbers by  $x_{(1)}, \ldots, x_{(n)}$ .

- If  $x < x_{(1)}$ , then  $F_n(x) = 0$
- If  $x_{(1)} \le x < x_{(2)}$ , then  $F_n(x) = 1/n$
- If  $x_{(k)} \le x < x_{(k+1)}$ , then  $F_n(x) = k/n$

The eCDF is the "data analogue" of the CDF of a random variable

## Summarizing Data: Quantile-Quantile Plots

**Quantile-Quantile (Q-Q) plots** are used for comparing two probability distributions.

Suppose that X is a continuous random variable with a strictly increasing CDF F.

### **Definition**

The  $p^{\text{th}}$  quantile of F is that value  $x_p$  such that

$$F(x_p) = p$$
 or  $x_p = F^{-1}(p)$ 

Suppose we want to compare two CDF: F and G.

### Definition

The **theoretical Q-Q plot** is the graph of the quantiles of a the CDF F,  $x_p = F^{-1}(p)$ , versus the corresponding quantiles of the CDF G,  $y_p = G^{-1}(p)$ , that is the graph  $[F^{-1}(p), G^{-1}(p)]$  for  $p \in (0,1)$ .

• If the two CDFs are identical, the theoretical Q-Q plot will be the line y=x.

## Summarizing Data: Empirical Q-Q plots

In practice, a typical scenario is the following:

- $F(x) = F_0(x)$  is a specified CDF (e.g. normal) which is a theoretical model for data  $X_1, \ldots, X_n$ .
- G(x) is the empirical CDF for  $x_1, \ldots, x_n$ , a realization of  $X_1, \ldots, X_n$  (actually observed data).
- We want to compare the model F(x) with the observation G(x).

Let  $x_{(1)}, \ldots, x_{(n)}$  be the ordered batch. Then

### **Definition**

The **empirical Q-Q plot** is the plot of  $F_0^{-1}(i/n)$  on the horizonal axis versus  $G^{-1}(i/n) = x_{(i)}$  on the vertical axis, for i = 1, ..., n.

#### Remarks:

• The quantities  $p_i = i/n$  are called plotting positions

## Summarizing Data: Measures of Location and Dispersion

- Measures of Location
  - ► Arithmetic Mean:  $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$  (sensitive to outliers)
  - Median: the middle value of the ordered batch values  $\tilde{x} = Q_2$
  - ► Trimmed Mean:

$$\overline{x}_{\alpha} = \frac{x_{([n\alpha]+1)} + \ldots + x_{(n-[n\alpha])}}{n-2[n\alpha]}$$

- M estimate:  $y^* = \arg\min_{y \in \mathbb{R}} \sum_{i=1}^n \Psi(x_i, y)$ 
  - \* if  $\Psi(x_i, v) = (x_i v)^2$ , then  $v^* = \overline{x}$
  - \* it  $\Psi(x_i, y) = |x_i y|$ , then  $y^* = \tilde{x}$
- Measures of Dispersion
  - ► Sample Standard Deviation (sensitive to outliers):

$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i - \overline{x})^2}$$

- ▶ Interquartile Range:  $IQR = Q_3 Q_1$
- ▶ Median Absolute Deviation: MAD = median of the numbers  $|x_i \tilde{x}|$

## Thank you for attention and good luck on the final!

