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Statistical Inference

Statistical inference is the process of using data to infer the distribution that
generates the data. The basic statistical inference problem is the following:

Basic Problem
We observe X1, . . . ,Xn ∼ π. We want to estimate π or some features of π such as
its mean.

Definition
A statistical model is a set of distributions or a set of densities F .

A parametric model is a set F that can be parameterized by a finite
number of parameters.

A nonparametric model is a set F that cannot be parameterized by a finite
set of parameters.
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Point Estimation, Confidence Intervals, Hypothesis Testing

Given a parametric model, F = {π(x |θ), θ ∈ Θ}, the problem of inference is
then to estimate the parameter θ from the data.

Almost all problems in statistical inference can be identified as being one of three
types: point estimates, confidence intervals, and hypothesis testing.

Point Estimation refers to providing a single “best guess.”
Suppose X1, . . . ,Xn ∼ π(x |θ), where π(x |θ) ∈ F .
A point estimator θ̂n of a parameter θ is some function of X1, . . . ,Xn:

θ̂n = f (X1, . . . ,Xn)

A 100(1− α)% Confidence Interval for a parameter θ is a random interval
In = (a, b) where a = a(X1, . . . ,Xn) and b = b(X1, . . . ,Xn) such that

P(θ ∈ In) = 1− α

In Hypothesis Testing, we start with some default theory, called a null
hypothesis, and we ask if the data provide sufficient evidence to reject the
theory. If not, we accept the null hypothesis.
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Method of Moments

Suppose that X1, . . . ,Xn ∼ π(x |θ) where θ ∈ Θ, and we want to estimate θ based
on the data X1, . . . ,Xn.

Method of Moments

Let µj(θ) = Eθ[X j ] be the jth moment of a probability distribution π(x |θ)

Let µ̂j = 1
n

∑n
i=1 X j

i be the jth sample moment

(LLN: µ̂j
P−→ µj(θ), when n→∞)

Suppose that the parameter θ has k components, θ = (θ1, . . . , θk)

The method of moments estimator θ̂ is defined to be the value of θ such that
µ1(θ) = µ̂1

µ2(θ) = µ̂2

. . . . . .

µk(θ) = µ̂k

(1)

System (1) is a system of k equations with k unknowns: θ1, . . . , θk
The solution of this system θ̂ is the MoM estimate of the parameter θ.
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Consistency of the MoM estimator

Definition

Let θ̂n be an estimate of a parameter θ based on a sample of size n. Then θ̂n is
consistent if

θ̂n
P−→ θ

Theorem
The method of moments estimate is consistent.
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The Likelihood Function

The most common method for estimating parameters in a parametric model is the
method of maximum likelihood.

Suppose X1, . . . ,Xn are i.i.d. from π(x |θ).

Definition
The likelihood function is defined by

L(θ) =
n∏

i=1

π(Xi |θ)

Important Remark:

The likelihood function is just the joint density of the data, except that we
treat it as a function of the parameter θ.
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Maximum Likelihood Estimate

Definition

The maximum likelihood estimate (MLE) of θ, denoted θ̂MLE, is the value of θ
that maximizes the likelihood L(θ)

θ̂MLE = arg max
θ∈Θ
L(θ)

θ̂MLE makes the observed data X1, . . . ,Xn “most probable” or “most likely”

Important Remark:

Rather than maximizing the likelihood itself, it is often easier to maximize its
natural logarithm (which is equivalent since the log is a monotonic function).
The log-likelihood is

l(θ) = logL(θ) =
n∑

i=1

log π(Xi |θ)
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Properties of MLE
MLE is consistent:

θ̂MLE
P−→ θ0

where θ0 denotes the true value of θ.
MLE is equivariant:
if θ̂MLE is the MLE of θ ⇒ f (θ̂MLE) is the MLE of f (θ).

MLE is asymptotically optimal: among all well behaved estimators, the MLE
has the smallest variance, at least for large sample sizes n.
MLE is asymptotically Normal:

θ̂MLE → N
(
θ0,

1

nI (θ0)

)
where

I (θ)
def
= Eθ

[(
∂

∂θ
log π(X |θ)

)2
]

=

∫ (
∂

∂θ
log π(x |θ)

)2

π(x |θ)dx

I I (θ) is called Fisher Information.

MLE is asymptotically unbiased:

lim
n→∞

E[θ̂MLE] = θ0
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Confidence Intervals from MLEs

Recall that

Definition

A 100(1− α)% confidence interval for a parameter θ is a random interval
calculated from the sample,

X1, . . . ,Xn ∼ π(x |θ)

which contains θ with probability 1− α.

There are three methods for constructing confidence intervals using MLEs θ̂MLE:

Exact Method

Approximate Method

Bootstrap Method
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Exact Method

Exact Method provides exact confidence intervals.

Example: X1, . . . ,Xn ∼ N (µ, σ2)

µ : µ̂MLE ±
1√

n − 1
σ̂2
MLEtn−1(α/2)

σ2 :

(
nσ̂2

MLE

χ2
n−1(α2 )

,
nσ̂2

MLE

χ2
n−1(1− α

2 )

)
These result is based of the following facts:

√
n(X n − µ)

Sn
∼ tn−1

(n − 1)S2
n

σ2
∼ χ2

n−1

Remark:

The main drawback of the exact method is that in practice the sampling
distributions — like tn−1 and χ2

n−1 in our example — are not known.
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Approximate Method

One of the most important properties of MLE is that it is asymptotically normal:

θ̂MLE → N
(
θ0,

1

nI (θ0)

)
, as n→∞

where I (θ0) is Fisher information

I (θ) = Eθ

[(
∂

∂θ
log π(X |θ)

)2
]

Since the true value θ0 is unknown, we will use I (θ̂MLE) instead of I (θ0):

Result

An approximate 100(1− α)% confidence interval for θ0 is

θ̂MLE ±
zα/2√

nI (θ̂MLE)

where zα is the point beyond which the standard normal distribution has
probability α.
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Measure of Efficiency: Mean Squared Error

In most estimation problems, there are many possible estimates θ̂ of θ.
For example, the MoM estimate θ̂MoM or the MLE estimate θ̂MLE.

Question: How would we choose which estimate to use?

Qualitatively, it is reasonable to choose that estimate whose distribution is most
highly concentrated about the true parameter value θ0. To make this idea work,
we need to define a quantitative measure of such concentration.

Definition

The mean squared error of θ̂ as an estimate of θ0 is

MSE(θ̂) = E[(θ̂ − θ0)2]

The mean squared error can be also written as follows:

MSE(θ̂) = V[θ̂] + (E(θ̂)− θ0)2︸ ︷︷ ︸
squared bias

If θ̂ is unbiased, then MSE(θ̂) = V[θ̂].
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Cramer-Rao Inequality

Let X1, . . . ,Xn be i.i.d. from π(x |θ). Let θ̂ = θ̂(X1, . . . ,Xn) be any unbiased
estimate of a parameter θ whose true values is θ0. Then, under smoothness
assumptions on π(x |θ),

MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)

Important Remarks:

θ̂ can’t have arbitrary small MSE

The Cramer-Rao inequality gives a lower bound on the variance of any
unbiased estimate.

Definition
An unbiased estimate whose variance achieves this lower bound is said to be
efficient.

Recall that MLE is asymptotically Normal: θ̂MLE → N
(
θ0,

1
nI (θ0)

)
Therefore, MLE is asymptotically efficient

However, for a finite sample size n, MLE may not be efficient
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Hypothesis Testing: General Framework

Suppose that we partition the parameter space Θ into two disjoint sets Θ0 and Θ1

and that we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

We call H0 the null hypothesis and H1 the alternative hypothesis.

Let X be data and let X be the range of X . We test a hypothesis by finding an
appropriate subset of outcomes R ⊂ X called the rejection region. If X ∈ R we
reject the null hypothesis, otherwise, we do not reject the null hypothesis:

X ∈ R ⇒ reject H0

X /∈ R ⇒ accept H0

Usually the rejection region R is of the form

R = {x ∈ X : T (x) < c}

where T is a test statistic and c is a critical value.
The main problem in hypothesis testing is

to find an appropriate test statistic T and an appropriate cutoff value c
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Main Definitions

In hypothesis testing, there are two types of errors we can make:

Rejecting H0 when H0 is true is called a type I error
Accepting H0 when H1 is true is called a type II error

Definition
The probability of a type I error is called the significance level of the test
and is denoted by α

α = P(type I error) = P(Reject H0|H0)

The probability of a type II error is is denoted by β

β = P(type II error) = P(Accept H0|H1)

(1− β) is called the power of the test

power = 1− β = 1− P(Accept H0|H1) = P(Reject H0|H1)

Thus, the power of the test is the probability of rejecting H0 when it is false.
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Neyman-Pearson Lemma

Definition
A hypothesis of the form θ = θ0 is called a simple hypothesis.

A hypothesis of the form θ > θ0 or θ < θ0 is called a composite hypothesis.

The Neyman-Pearson Lemma shows that the test that is based on the likelihood
ratio is optimal for simple hypotheses:

Neyman-Pearson Lemma

Suppose that H0 and H1 are simple hypotheses, H0 : θ = θ0 and H1 : θ = θ1.
Suppose that the likelihood ratio test that rejects H0 whenever the likelihood
ratio is less than c,

Reject H0 ⇔ L(Data|θ0)

L(Data|θ1)
< c

has significance level αLR. Then any other test for which the significance level
α ≤ αLR has power less than or equal to that of the likelihood ratio test

1− β ≤ 1− βLR
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Generalized Likelihood Ratio Test

Let X = (X1, . . . ,Xn) be data and let π(x |θ) be the joint density of the data. The
likelihood function is then

L(θ) = π(X |θ)

Suppose we we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

where Θ0 and Θ1 are two disjoint sets of the parameter space Θ, Θ = Θ0 tΘ1.

Based on the data, a measure of relative plausibility of the hypotheses is the
ratio of their likelihoods.

If the hypotheses are composite, each likelihood is evaluated at that value of
θ that maximizes it.

This yields the generalized likelihood ratio:

Λ∗ =
maxθ∈Θ0 L(θ)

maxθ∈Θ1 L(θ)

Small values of Λ∗ tend to discredit H0.
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Generalized Likelihood Ratio Test

For technical reasons, it is preferable to use the following statistic instead of Λ∗:

Λ =
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

Λ is called the likelihood ratio statistic.

Note that
Λ = min{Λ∗, 1}

Thus, small values of Λ∗ correspond to small values of Λ.

The rejection region R for a generalized likelihood test has the following form:

reject H0 ⇔ X ∈ R = {X : Λ(X ) < λ}

The threshold λ is chosen so that

P(Λ(X ) < λ|H0) = α,

where α is the desired significance level of the test.
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Distribution of Λ(X )

In order for the generalized likelihood ratio test to have the significance level α,
the threshold λ must be chosen so that

P(Λ(X ) < λ|H0) = α

If the distribution of Λ(X ) under H0 is known, then we can determine λ.
Generally, the distribution of Λ is not of a simple form, but in many situations the
following theorem provides the basis for an approximation of the distribution.

Theorem

Under smoothness conditions on π(x |θ), the null distribution of −2 log Λ(X ) (i.e.
distribution under H0) tends to a χ2

d as the sample size n→∞, where

d = dim Θ− dim Θ0,

where dim Θ and dim Θ0 are the numbers of free parameters in Θ and Θ0.
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Summarizing Data: Empirical CDF

Suppose that x1, . . . , xn is a batch of numbers.

Remark: We use the word

“sample” when X1, . . . ,Xn is a collection of random variables.

“batch” when x1, . . . , xn are fixed numbers (data, realization of sample).

Definition

The empirical cumulative distribution function (eCDF) is defined as

Fn(x) =
1

n
(#xi ≤ x)

Denote the ordered batch of numbers by x(1), . . . , x(n).

If x < x(1), then Fn(x) = 0

If x(1) ≤ x < x(2), then Fn(x) = 1/n

If x(k) ≤ x < x(k+1), then Fn(x) = k/n

The eCDF is the “data analogue” of the CDF of a random variable
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Summarizing Data: Quantile-Quantile Plots

Quantile-Quantile (Q-Q) plots are used for comparing two probability
distributions.

Suppose that X is a continuous random variable with a strictly increasing CDF F .

Definition

The pth quantile of F is that value xp such that

F (xp) = p or xp = F−1(p)

Suppose we want to compare two CDF: F and G .

Definition
The theoretical Q-Q plot is the graph of the quantiles of a the CDF F ,
xp = F−1(p), versus the corresponding quantiles of the CDF G , yp = G−1(p),
that is the graph [F−1(p),G−1(p)] for p ∈ (0, 1).

If the two CDFs are identical, the theoretical Q-Q plot will be the line y = x .
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Summarizing Data: Empirical Q-Q plots

In practice, a typical scenario is the following:

F (x) = F0(x) is a specified CDF (e.g. normal) which is a theoretical model
for data X1, . . . ,Xn.

G (x) is the empirical CDF for x1, . . . , xn, a realization of X1, . . . ,Xn (actually
observed data).

We want to compare the model F (x) with the observation G (x).

Let x(1), . . . , x(n) be the ordered batch. Then

Definition

The empirical Q-Q plot is the plot of F−1
0 (i/n) on the horizonal axis versus

G−1(i/n) = x(i) on the vertical axis, for i = 1, . . . , n.

Remarks:

The quantities pi = i/n are called plotting positions
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Summarizing Data: Measures of Location and Dispersion

Measures of Location
I Arithmetic Mean: x = 1

n

∑n
i=1 xi (sensitive to outliers)

I Median: the middle value of the ordered batch values x̃ = Q2

I Trimmed Mean:

xα =
x([nα]+1) + . . .+ x(n−[nα])

n − 2[nα]

I M estimate: y∗ = arg miny∈R
∑n

i=1 Ψ(xi , y)
F if Ψ(xi , y) = (xi − y)2, then y∗ = x
F it Ψ(xi , y) = |xi − y |, then y∗ = x̃

Measures of Dispersion
I Sample Standard Deviation (sensitive to outliers):

s =

√√√√ 1

n − 1

n∑
i=1

(xi − x)2

I Interquartile Range: IQR = Q3 − Q1

I Median Absolute Deviation: MAD = median of the numbers |xi − x̃ |
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Thank you for attention and good luck on the final!
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