Math 408 - Mathematical Statistics

Lecture 32-33. Pearson's χ^2 Test For Multinomial Data

April 19-22, 2013

Agenda

- Multinomial Distribution and its Properties
- Construction the GLRT for Multinomial Data
- The MLE for Parameters of the Multinomial Distribution
- ullet The GLRT with Significance Level lpha
- Pearson's χ^2 Test
- Asymptotic Equivalence of the GLRT and the Pearson's Test
- Example: Mendel's Peas
- Summary

Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution.

Consider drawing a ball from a box which has balls with k different colors labeled color 1, color 2,..., color k. Let $p = (p_1, \ldots, p_k)$, where p_i is the probability of drawing a ball of color i,

$$p_i \ge 0$$
 and $\sum_{i=1}^k p_i = 1$

Draw *n* times (independent draws with replacement) and let $X = (X_1, \dots, X_k)$, where X_i is the number of times that color *i* appeared.

$$\sum_{i=1}^k X_i = n$$

We say that X has a Multinomial(n, p) distribution.

Application: Multinomial distributions are useful when a "success-failure" description is insufficient to understand a system. Multinomial distributions are relevant to situations where there are more than two possible outcomes. For example, temperature = high, med, low.

Properties of the Multinomial Distribution

$$X \sim \text{Multinomial}(n, p)$$

- n is the number of trials
- k is the number of possible outcomes
- $p = (p_1, \dots, p_k)$, where p_i is the probability of observing outcome i
- $X = (X_1, \dots, X_k)$, where X_i is the number of occurrences of outcome i

Theorem

• The probability mass function of X is

$$\pi_X(x|n,p) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

- The marginal distribution of X_i is Binomial (n, p_i)
- The mean and covariance matrix of X are

$$\mathbb{E}[X] = \begin{pmatrix} np_1 \\ \vdots \\ np_k \end{pmatrix} \qquad \mathbb{V}[X] = \begin{pmatrix} np_1(1-p_1) & -np_1p_2 & \dots & -np_1p_k \\ -np_1p_2 & np_2(1-p_2) & \dots & -np_2p_k \\ \vdots & \vdots & \ddots & \vdots \\ -np_1p_2 & -np_2p_k & \dots & np_k(1-p_k) \end{pmatrix}$$

April 19-22, 2013

Constructing the GLRT

Suppose that $X \sim \text{Multinomial}(n, p)$, where p is unknown, and we want to test

$$H_0:(p_1,\ldots,p_k)=(\tilde{p}_1,\ldots,\tilde{p}_k)\equiv \tilde{p} \qquad \text{v.s.} \qquad H_1:(p_1,\ldots,p_k)\neq (\tilde{p}_1,\ldots,\tilde{p}_k)$$

To construct the generalized likelihood ratio test, first, we need to determine the likelihood function $\mathcal{L}(p)$. In this case:

$$\mathcal{L}(p_1,\ldots,p_k)=\pi_X(X|n,p)=\frac{n!}{X_1!\ldots X_k!}p_1^{X_1}\ldots p_k^{X_k}$$

The likelihood ratio statistic is

$$\Lambda = \frac{\max_{p \in \Theta_0} \mathcal{L}(p)}{\max_{p \in \Theta} \mathcal{L}(p)} = \frac{\mathcal{L}(\tilde{p})}{\mathcal{L}(\hat{p}_{MLE})}$$

- $\Theta_0 = \{p : p = \tilde{p}\}, \dim \Theta_0 = 0$
- $\Theta = \{p : \sum_{i=1}^{k} p_i = 1\}, \dim \Theta = k-1\}$

Thus, to proceed, we need to find the MLE of p.

The MLE of p and the GLRT with level α

Theorem

Let $X \sim \text{Multinomial}(n, p)$. The maximum likelihood estimator of p is

$$\hat{p}_{MLE} = \begin{pmatrix} \frac{X_1}{n} \\ \vdots \\ \frac{X_k}{n} \end{pmatrix} = \frac{X}{n}$$

Therefore, the likelihood ratio statistic is

$$\Lambda = \prod_{i=1}^k \left(\frac{n\tilde{p}_i}{X_i}\right)^{X_i}$$

and

$$-2\log\Lambda = 2\sum_{i=1}^{\kappa} X_i \log\left(\frac{X_i}{n\tilde{p}_i}\right) \sim \chi_{k-1}^2, \quad \text{when } n \to \infty$$

The GLRT with significance level α rejects H_0 if and only if

$$2\sum_{i=1}^{k} X_{i} \log \left(\frac{X_{i}}{n\tilde{p}_{i}}\right) > \chi_{k-1}^{2}(\alpha)$$

Pearson's χ^2 Test

In practice, the Pearson's χ^2 test is often used. The test is based on the following statistic:

$$T = \sum_{i=1}^{k} \frac{(X_i - n\tilde{p}_i)^2}{n\tilde{p}_i} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

- $O_i = X_i$ is the observed data
- $E_i = \mathbb{E}[X_i] = n\tilde{p}_i$ is the expected value of X_i under H_0
- T is called the **Pearson's** χ^2 **statistic**

The Pearson's χ^2 statistic and $-2 \log \Lambda$ are asymptotically equivalent under H_0

Theorem

- Under H_0 , $T \xrightarrow{\mathcal{D}} \chi^2_{k-1}$.
- Pearson's test: reject H_0 if $T > \chi^2_{k-1}(\alpha)$ has asymptotic significance level α .
- The p-value is $\mathbb{P}(\xi > t)$, where $\xi \sim \chi^2_{k-1}$ and t is the observed value of T.

<u>Remark:</u> Pearson's test has been more commonly used than the GLRT, because it is <u>easier to calculate</u> (especially without a computer!)

Mendel's Peas

Example

Mendel bred peas with round yellow seeds and wrinkled green seeds.

There are four types of progeny:

• round yellow, wrinkled yellow, round green, wrinkled green.

The number of each type is multinomial with probability (p_1, p_2, p_3, p_4) . According to Mendel's theory:

$$H_0: (p_1, p_2, p_3, p_4) = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right) \equiv \tilde{p}$$

In n = 556 trials he observed X = (315, 101, 108, 32).

<u>Question:</u> Based on these data, should we accept or reject the Mendel's theory? <u>Solution:</u>

- The observed value of Pearson's χ^2 statistic is $t = \sum_{i=1}^4 \frac{(X_i n\tilde{p}_i)^2}{n\tilde{p}_i} = 0.47$
- Let $\alpha = 0.05$. Then $\chi_3^2(\alpha) = F_{\chi_3^2}^{-1}(1 \alpha) \approx 7.8$.
- Since $T < \chi_3^2(\alpha)$, we accept H_0 .
- The *p*-value is *p*-value = $\mathbb{P}(\xi > 0.47) = 1 F_{\chi_3^2}(0.47) \approx 0.92$.
- No evidence against Mendel's theory.

Summary

- Multinomial distribution: $X \sim \text{Multinomial}(n, p)$
 - ► The probability mass function of *X* is

$$\pi_X(x|n,p) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

- ▶ The marginal distribution of X_i is Binomial (n, p_i)
- ▶ The maximum likelihood estimator of p is $\hat{p}_{MLE} = X/n$
- Suppose that $X \sim \text{Multinomial}(n, p)$, p is unknown, and we want to test

$$H_0:(p_1,\ldots,p_k)=(\tilde{p}_1,\ldots,\tilde{p}_k)\equiv \tilde{p}$$
 v.s. $H_1:(p_1,\ldots,p_k)\neq (\tilde{p}_1,\ldots,\tilde{p}_k)$

- ▶ GLRT with significance level α rejects H_0 if $2\sum_{i=1}^k X_i \log\left(\frac{X_i}{n\tilde{p}_i}\right) > \chi^2_{k-1}(\alpha)$
- Pearson's test: reject H_0 if $T = \sum_{i=1}^k \frac{(X_i n\tilde{p}_i)^2}{n\tilde{p}_i} > \chi^2_{k-1}(\alpha)$
 - ***** Under H_0 , the Pearson's χ^2 statistic $T \xrightarrow{\mathcal{D}} \chi^2_{k-1}$.
 - * Pearson's test has asymptotic significance level α .
 - ***** The *p*-value is $\mathbb{P}(\xi > t)$, where $\xi \sim \chi^2_{k-1}$ and *t* is the observed value of *T*.