#### Math 408 - Mathematical Statistics

## Lecture 31. Generalized Likelihood Ratio Tests

April 17, 2013

### Generalization of the Likelihood Ratio Test

The Neyman-Pearson Lemma says that the likelihood ratio test is optimal for simple hypotheses.

Goal: to develop a generalization of this test for use in situations in which the hypotheses are not simple

- Generalized likelihood ratio tests are not generally optimal, but they perform reasonably well.
  - Often there are no optimal tests at all.
- Generalized likelihood ratio tests have wide utility.
  - ▶ They play the same role in testing as MLEs do in estimation

#### Generalized Likelihood Ratio Test

Let  $X = (X_1, ..., X_n)$  be data and let  $\pi(x|\theta)$  be the joint density of the data. The likelihood function is then

$$\mathcal{L}(\theta) = \pi(X|\theta)$$

Suppose we wish to test

$$H_0: \theta \in \Theta_0$$
 versus  $H_1: \theta \in \Theta_1$ 

where  $\Theta_0$  and  $\Theta_1$  are two disjoint sets of the parameter space  $\Theta$ ,  $\Theta = \Theta_0 \sqcup \Theta_1$ .

- Based on the data, a measure of relative plausibility of the hypotheses is the ratio of their likelihoods.
- If the hypotheses are composite, each likelihood is evaluated at that value of  $\theta$  that maximizes it.

This yields the generalized likelihood ratio:

$$\Lambda^* = \frac{\max_{\theta \in \Theta_0} \mathcal{L}(\theta)}{\max_{\theta \in \Theta_1} \mathcal{L}(\theta)}$$

Small values of  $\Lambda^*$  tend to discredit  $H_0$ .

3 / 7

#### Generalized Likelihood Ratio Test

For technical reasons, it is preferable to use the following statistic instead of  $\Lambda^*$ :

$$\Lambda = rac{\mathsf{max}_{ heta \in \Theta_0} \, \mathcal{L}( heta)}{\mathsf{max}_{ heta \in \Theta} \, \mathcal{L}( heta)}$$

- Λ is called the likelihood ratio statistic.
- Note that

$$\Lambda = \min\{\Lambda^*, 1\}$$

Thus, small values of  $\Lambda^*$  correspond to small values of  $\Lambda$ .

The rejection region  ${\cal R}$  for a generalized likelihood test has the following form:

reject 
$$H_0 \Leftrightarrow X \in \mathcal{R} = \{X : \Lambda(X) < \lambda\}$$

The threshold  $\lambda$  is chosen so that

$$\mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha,$$

where  $\alpha$  is the desired significance level of the test.

#### Example

Let  $X_1, \ldots, X_n$  be i.i.d. from  $\mathcal{N}(\mu, \sigma^2)$ , where variance  $\sigma^2$  is known. Consider testing the following hypothesis:

$$H_0: \mu = \mu_0$$
 and  $H_1: \mu \neq \mu_0$ 

Construct the generalized likelihood test with significance level  $\alpha$ .

#### Answer:

Reject 
$$H_0 \Leftrightarrow \frac{\sqrt{n}|\overline{X}_n - \mu_0|}{\sigma} > z_{\frac{\alpha}{2}}$$

5 / 7

# Distribution of $\Lambda(X)$

In order for the generalized likelihood ratio test to have the significance level  $\alpha$ , the threshold  $\lambda$  must be chosen so that

$$\mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha$$

If the distribution of  $\Lambda(X)$  under  $H_0$  is known, then we can determine  $\lambda$ .

• In the Example,  $-2\log\Lambda(X)\sim\chi_1^2$ .

Generally, the distribution of  $\Lambda$  is not of a simple form, but in many situations the following theorem provides the basis for an approximation of the distribution.

#### **Theorem**

Under smoothness conditions on  $\pi(x|\theta)$ , the null distribution of  $-2\log\Lambda(X)$  (i.e. distribution under  $H_0$ ) tends to a  $\chi^2_d$  as the sample size  $n\to\infty$ , where

$$d = \dim \Theta - \dim \Theta_0$$
,

where  $\dim \Theta$  and  $\dim \Theta_0$  are the numbers of free parameters in  $\Theta$  and  $\Theta_0$ .

• In the Example,  $\dim \Theta = 1$  and  $\dim \Theta_0 = 0$ .

Konstantin Zuev (USC) Math 408, Lecture 31 April 17, 2013

## Summary

- Generalized likelihood ratio tests are used when the hypothesis are composite
  - They are not generally optimal, but perform reasonably well.
  - ▶ They play the same role in testing as MLEs do in estimation.
- ullet The rejection region  ${\cal R}$  for a generalized likelihood test has the following form:

reject 
$$H_0 \Leftrightarrow X \in \mathcal{R} = \{X : \Lambda(X) < \lambda\}$$

Λ is the likelihood ratio statistic,

$$\Lambda = \frac{\mathsf{max}_{\theta \in \Theta_0} \, \mathcal{L}(\theta)}{\mathsf{max}_{\theta \in \Theta} \, \mathcal{L}(\theta)}$$

▶ The threshold  $\lambda$  is chosen so that

$$\mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha,$$

where  $\alpha$  is the desired significance level of the test.

• As sample size  $n \to \infty$ , the null distribution of  $-2 \log \Lambda(X)$  tends to a  $\chi^2_d$ , where

$$d = \dim \Theta - \dim \Theta_0$$

Konstantin Zuev (USC) Math 408, Lecture 31 April 17, 2013