Math 408 - Mathematical Statistics

Lecture 3. Discrete Random Variables

January 23, 2013

Agenda

- Random Variable: Motivation and Definition
- Cumulative Distribution Functions
- Properties of CDFs
- Discrete Random Variables
- Important Examples
 - ► The Point Mass Distribution
 - ► The Discrete Uniform Distribution
 - ► The Bernoulli Distribution
 - The Binomial Distribution
 - The Geometric Distribution
 - The Poisson Distribution
- Summary

Motivation and Definition

Statistics is concerned with data.

Question: How do we link sample spaces and events to data?

<u>Answer:</u> The link is provided by the concept of a **random variable**.

Definition

A random variable is a mapping $X : \Omega \to \mathbb{R}$ that assigns a real number $x = X(\omega)$ to each realization $\omega \in \Omega$.

Remark: Technically, a random variable must be a measurable function.

Example: Flip a coin 10 times. Let $X(\omega)$ be the number of heads in the sequence. For example, if $\omega = HHTHTTTHTH$, then $X(\omega) = 5$.

Given a random variable X and a set $A \subset \mathbb{R}$, define

$$X^{-1}(A) = \{ \omega \in \Omega : X(\omega) \in A \}$$

and let

$$\mathbb{P}(X \in A) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in A\})$$
$$\mathbb{P}(X = x) = \mathbb{P}(X^{-1}(x)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})$$

January 23, 2013

The Cumulative Distribution Function

Definition

The cumulative distribution function (CDF) $F_X: \mathbb{R} \to [0,1]$ is defined by

$$F_X(x) = \mathbb{P}(X \le x)$$

Example: Flip a fair coin twice and let X be the number of heads.

 $\overline{\mathsf{Find}}$ the CDF of X

Question: Why do we bother to define CDF?

Answer: CDF effectively contains all the information about the random variable

Theorem

Let X have CDF F and Y have CDF G. If F(x) = G(x) for all x, then $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$. In words, the CDF completely determines the distribution of a random variable.

Properties of CDFs

Question: Given a function F(x), can we find a random variable X such that F(x) is the CDF of X, $F_X(x) = F(x)$?

Theorem

A function $F : \mathbb{R} \to [0,1]$ is a CDF for some random variable if and only if it satisfies the following three conditions:

• F is non-decreasing:

$$x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$$

P is normalized:

$$\lim_{x \to -\infty} F(x) = 0 \quad and \quad \lim_{x \to +\infty} F(x) = 1$$

F is right-continuous:

$$\lim_{y \to x+0} F(y) = F(x)$$

Discrete Random Variables

Definition

X is **discrete** if it takes countable many values $\{x_1, x_2, \ldots\}$. We define the **probability mass function** (PMF) for X by

$$f_X(x) = \mathbb{P}(X = x)$$

Example: Flip a fair coin twice and let X be the number of heads. Find the probability mass function of X.

The CDF of X is related to the PMF f_X by

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{x_i \le x} f_X(x_i)$$

The PMF f_X is related to the CDF F_X by

$$f_X(x) = F_X(x) - F_X(x^-) = F_X(x) - \lim_{y \to x - 0} F(y)$$

The Point Mass Distribution

X has a point mass distribution at a, denoted $X \sim \delta_a$, if $\mathbb{P}(X = a) = 1$. In this case

$$F(x) = \begin{cases} 0, & x < a; \\ 1, & x \ge a. \end{cases}$$

and

$$f(x) = \begin{cases} 1, & x = a; \\ 0, & x \neq a. \end{cases}$$

The Discrete Uniform Distribution

Let n > 1 be a given integer. Suppose that X has probability mass function given by

$$f(x) = \begin{cases} 1/n, & \text{for } x = 1, \dots, n; \\ 0, & \text{otherwise.} \end{cases}$$

We say that X has a uniform distribution on $1, \ldots, n$.

• The Bernoulli Distribution

Let X represents a coin flip. Then $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p$ for some $p\in[0,1]$. We say that X has a Bernoulli distribution, denoted $X\sim \mathrm{Bernoulli}(p)$. The probability mass function is

$$f(x|p) = p^{x}(1-p)^{1-x}, x \in \{0,1\}$$

The Binomial Distribution

Suppose we have a coin which falls heads with probability p for some $p \in [0,1]$. Flip the coin n times and let X be the number of heads. Assume that the tosses are independent. The probability mass function of X is then

$$f(x|n,p) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & \text{if } x = 0, 1, \dots, n; \\ 0, & \text{otherwise.} \end{cases}$$

A random variable with this mass function is called a Binomial random variable and we write $X \sim \text{Bin}(n, p)$.

Remark: X is a random variable, x denotes a particular value of the random variable, n and p are parameters, that is, fixed real numbers. The parameter p is usually unknown and must be estimated from data.

Binomial Distribution Bin(n, p)

The Geometric Distribution

X has a geometric distribution with parameter $p \in (0,1)$, denoted $X \sim \text{Geom}(p)$, if

$$f(x|p) = p(1-p)^{x-1}, \quad x = 1, 2, 3...$$

Think of X as the number of flips needed until the first heads when flipping a coin. Geometric distribution is used for modeling the number of trials until the first success.

Geometric Distribution Geom(p)

The Poisson Distribution

X has a Poisson distribution with parameter λ , denoted $X \sim \operatorname{Poisson}(\lambda)$ if

$$f(x|\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

The Poisson distribution is often used as a model for counts of rare events like traffic accidents. $f(x|\lambda)$ expresses the probability of a given number of events x occurring in a fixed interval of time if these events occur with a known average rate λ and independently of the time since the last event.

Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 12 / 14

Poisson Distribution Poisson(λ)

Summary

- A random variable is a mapping $X : \Omega \to \mathbb{R}$ that assigns a real number $x = X(\omega)$ to each realization $\omega \in \Omega$.
- The cumulative distribution function (CDF) is defined by

$$F_X(x) = \mathbb{P}(X \leq x)$$

- ► CDF completely determines the distribution of a random variable
- ► CDF is non-decreasing, normalized, and right-continuous
- Random variable X is discrete if it takes countable many values $\{x_1, x_2, \ldots\}$.
- The probability mass function (PMF) of X is

$$f_X(x) = \mathbb{P}(X = x)$$

Relationships between CDF and PMF:

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{x_i \le x} f_X(x_i)$$

$$f_X(x) = F_X(x) - F_X(x^-)$$