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Lecture 28. Efficiency and the Cramer-Rao Lower Bound
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Measure of Efficiency: Mean Squared Error

In most estimation problems, there are many possible estimates θ̂ of θ.
For example, the MoM estimate θ̂MoM or the MLE estimate θ̂MLE.

Question: How would we choose which estimate to use?

Qualitatively, it is reasonable to choose that estimate whose distribution is most
highly concentrated about the true parameter value θ0. To make this idea work,
we need to define a quantitative measure of such concentration.

Definition

The mean squared error of θ̂ as an estimate of θ0 is

MSE(θ̂) = E[(θ̂ − θ0)2]

The mean squared error can be also written as follows:

MSE(θ̂) = V[θ̂] + (E(θ̂)− θ0)2︸ ︷︷ ︸
squared bias

If θ̂ is unbiased, then MSE(θ̂) = V[θ̂].
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Cramer-Rao Inequality

Given two unbiased estimates, θ̂ and θ̃, the efficiency of θ̂ relative to θ̃ is
defined to be

eff(θ̂, θ̃) =
V[θ̃]

V[θ̂]

θ̂ is more efficient than θ̃ ⇔ eff(θ̂, θ̃) > 1

In general, the mean squared error is a measure of efficiency of an estimate:

the smaller MSE(θ̂), the better the estimate θ̂

Cramer-Rao Inequality

Let X1, . . . ,Xn be i.i.d. from π(x |θ). Let θ̂ = θ̂(X1, . . . ,Xn) be any unbiased
estimate of a parameter θ whose true values is θ0. Then, under smoothness
assumptions on π(x |θ),

MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)
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Cramer-Rao Inequality

Cramer-Rao: MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)

Important Remarks:

θ̂ can’t have arbitrary small MSE

The Cramer-Rao inequality gives a lower bound on the variance of any
unbiased estimate.

Definition
An unbiased estimate whose variance achieves this lower bound is said to be
efficient.

Recall that MLE is asymptotically Normal: θ̂MLE → N
(
θ0,

1
nI (θ0)

)
Therefore, MLE is asymptotically efficient

However, for a finite sample size n, MLE may not be efficient

MLEs are not the only asymptotically efficient estimates.
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Example: Poisson Distribution

Recall that the Poisson distribution is a discrete probability distribution that
expresses the probability of a given number of events k occurring in a fixed
interval of time if these events occur with a known average rate λ and
independently of the time since the last event.

P(X = k|λ) =
λk

k!
e−λ E[X ] = λ V[X ] = λ

Example

Let X1, . . . ,Xn ∼ Pois(λ).

Find the MLE of λ

Show that λ̂MLE is efficient.

The theorem does not exclude the possibility that there is a biased estimator
of λ that has a smaller MSE than λ̂MLE
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Summary

Mean squared error is a measure of efficiency of an estimate

MSE(θ̂) = E[(θ̂ − θ0)2]

If θ̂ is unbiased, then
MSE(θ̂) = V[θ̂]

Cramer-Rao Inequality:

MSE(θ̂) = V[θ̂] ≥ 1

nI (θ0)

An unbiased estimate whose variance achieves this lower bound is said to be
efficient

Any MLE is asymptotically efficient (as n→∞)

Example: if X1, . . . ,Xn ∼ Poisson(λ), then λ̂MLE is efficient
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