Math 408 - Mathematical Statistics

Lecture 23a. Fundamental Concepts of Modern Statistical Inference

March 29, 2013

Agenda

- Statistical Models
- Point Estimates
- Confidence Intervals
- Hypothesis Testing
- Summary

Statistical Inference

Statistical inference, or "learning", is the process of using data to infer the distribution that generated the data. The basic statistical inference problem is the following:

Basic Problem

We observe $X_1, \ldots, X_n \sim \pi$. We want to infer (or estimate, or learn) π or some features of π such as its mean.

Definition

A **statistical model** is a set of distributions or a set of densities \mathcal{F} .

- \bullet A parametric model is a set ${\cal F}$ that can be parameterized by a finite number of parameters.
- \bullet A **nonparametric model** is a set ${\cal F}$ that cannot be parameterized by a finite set of parameters.

Examples of Statistical Models

Examples:

• If we assume that the data come from a normal distribution, then the model is

$$\mathcal{F} = \left\{ \pi(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad \mu, \sigma^2 \in \mathbb{R} \right\}$$

This is a two-parameter model. In $\pi(x|\mu, \sigma^2)$, x is a value of the random variable, whereas μ and σ^2 are parameters.

• A nonparametric model:

$$\mathcal{F}_{\mathrm{all}} = \{\text{all PDFs}\}$$

We will focus on parametric models.

In general, a parametric model takes the form

$$\mathcal{F} = \{\pi(\mathbf{x}|\theta), \ \theta \in \Theta\}$$

where θ is an unknown parameter and Θ is the parameter space.

Remark: θ can be a vector, for instance, $\theta = (\mu, \sigma^2)$

Point Estimation

Given a parametric model, $\mathcal{F} = \{\pi(x|\theta), \ \theta \in \Theta\}$, the problem of inference is then to estimate (to learn) the parameter θ from the data.

Almost all problems in statistical inference can be identified as being one of three types: **point estimates**, **confidence intervals**, and **hypothesis testing**.

• Point Estimation refers to providing a single "best guess." Suppose $X_1, \ldots, X_n \sim \pi(x|\theta)$, where $\pi(x|\theta) \in \mathcal{F}$. A point estimator $\hat{\theta}_n$ of a parameter θ is some function of X_1, \ldots, X_n :

$$\hat{\theta}_n = f(X_1, \dots, X_n)$$

Remember: θ is fixed but unknown, $\hat{\theta}_n$ is random since depends on X_1, \ldots, X_n . We say that $\hat{\theta}_n$ is unbiased if

$$\mathbb{E}[\hat{\theta}_n] = \theta$$

Confidence Intervals and Hypothesis Testing

• A $100(1-\alpha)\%$ Confidence Interval for a parameter θ is a random interval $I_n=(a,b)$ where $a=a(X_1,\ldots,X_n)$ and $b=b(X_1,\ldots,X_n)$ such that

$$\mathbb{P}(\theta \in I_n) = 1 - \alpha$$

In words: (a, b) traps θ with probability $1 - \alpha$. $(1 - \alpha)$ is called coverage of the confidence interval. In practice, $\alpha = 0.05$ is often used.

 In Hypothesis Testing, we start with some default theory, called a null hypothesis, and we ask if the data provide sufficient evidence to reject the theory. If not, we accept the null hypothesis.
Example:

 $X_1,\ldots,X_n\sim \mathrm{Bernoulli}(p)$: n independent coin flips. We want to test if the coin is fair \Rightarrow the null hypothesis $H_0:p=1/2$ The alternative hypothesis is then: $H_1:p\neq 1/2$ It seems reasonable to reject H_0 if

$$\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{2} \right|$$
 is large

Summary

- ullet A parametric model is a set $\mathcal F$ that can be parameterized by a finite number of parameters.
 - ► General parametric model:

$$\mathcal{F} = \{\pi(x|\theta), \ \theta \in \Theta\}$$

- A nonparametric model is a set \mathcal{F} that cannot be parameterized by a finite set of parameters.
- Almost all problems in statistical inference can be identified as being one of three types:
 - Point Estimates
 - Confidence Intervals
 - Hypothesis Testing