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Survey Sampling: What and Why

In surveys sampling we try to obtain information about a large population based
on a relatively small sample of that population.

The main goal of survey sampling is to reduce the cost and the amount of work
that it would take to explore the entire population.

First examples: Graunt (1662) and Laplace (1812) used survey sampling to
estimate the population of London and France, respectively.

Mathematical Framework

Suppose that the target population is of size N (N is large) and a numerical value
of interest xi (age, weight, income, etc) is associated with i th member of the
population, i = 1, . . . ,N. Population parameters (quantities we are interested in):

Population mean

µ =
1

N

N∑
i=1

xi

Population variance

σ2 =
1

N

N∑
i=1

(xi − µ)2
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There are several ways to sample from a population. We discussed two:
1 Simple Random Sampling

Definition
In Simple Random Sampling, each member is chosen entirely by chance and,
therefore, each member has an equal chance of being included in the sample; each
particular sample of size n has the same probability of occurrence.

If X1, . . . ,Xn is the sample drawn from the population, then the sample mean
is a natural estimate of the population mean µ:

X n =
1

n

n∑
i=1

Xi ≈ µ
2 Stratified Random Sampling

Definition
In Stratified Random Sampling, the population is partitioned into subpopulations,
or strata, which are then independently sampled using simple random sampling.

If X
(k)
1 , . . . ,X

(k)
nk is the sample drawn from the kth stratum, then the natural

estimate of µ is

X
∗
n =

L∑
k=1

ωkX
(k)

nk ≈ µ
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Statistical Properties of X n

Since X n = 1
n

∑n
i=1 Xi , statistical properties of X n are completely determined by

statistical properties of Xi .

Lemma
Denote the distinct values assumed by the population members by ξ1, . . . , ξm,
m ≤ N, and denote the number of population members that have the value ξi by
ni . Then Xi is a discrete random variable with probability mass function

P(Xi = ξj) =
nj

N

Also
E[Xi ] = µ V[Xi ] = σ2

From this lemma, it follows immediately that X n is an unbiased estimate of µ:

E[X n] = µ

Thus, on average X n = µ.
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Statistical Properties of X n

The next important question is how variable X n is.

As a measure of the dispersion of X n about µ, we use the standard deviation of

X n, denoted as σX n
=
√

V[X n].

Theorem

The variance of X n is given by

V[X n] =
σ2

n

(
1− n − 1

N − 1

)

Important observations:

If n << N, then

V[X n] ≈ σ2

n
σX n
≈ σ√

n(
1− n−1

N−1

)
is called finite population correction. This factor arises because of

dependence among Xi .
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Statistical Properties of X n

σX n
≈ σ√

n
(1)

To double the accuracy, the sample size must be quadrupled.

If σ is small (the population values are not very dispersed), then a small
sample will be fairly accurate. But if σ is large, then a larger sample will be
required to obtain the same accuracy.

We can’t use (1) in practice, since σ is unknown. To use (1), σ must be
estimated from sample X1, . . . ,Xn.

At first glance, it seems natural to use the following estimate

σ̂2
n =

1

n

n∑
i=1

(Xi − X n)2 ≈ σ2 =
1

N

N∑
i=1

(xi − µ)2

However, this estimate is biased.
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Statistical Properties of X n

Theorem

The expected value of σ̂2
n is given by

E[σ̂2
n] = σ2 Nn − N

Nn − n

In particular, σ̂2
n tends to underestimate σ2.

Corollary

An unbiased estimate of σ2 is

σ̂2
n,unbiased =

Nn − n

Nn − N
σ̂2
n

An unbiased estimate of V[X n] is

s2
X n

=
σ̂2
n

n

Nn − n

Nn − N

(
1− n − 1

N − 1

)
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Normal Approximation to the Distribution of X n

So, we know that the sample mean X n is an unbiased estimate of µ, and we know
how to approximately find its standard deviation σX n

≈ sX n
.

Ideally, we would like to know the entire distribution of X n (sampling
distribution) since it would tell us everything about the accuracy of the estimation
X n ≈ µ

It can be shown that if n is large, but still small relative to N, then X n is
approximately normally distributed

X n∼̇N (µ, σ2
X n

) σX n
=

σ√
n

√
1− n − 1

N − 1

From this result, it is easy to find the probability that the error made in estimating
µ by X n is less than ε > 0:

P(|X n − µ| ≤ ε) ≈ 2Φ

(
ε

σX n

)
− 1
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Confidence Intervals

Let α ∈ [0, 1]

Definition

A 100(1− α)% confidence interval for a population parameter θ is a random
interval calculated from the sample, which contains θ with probability 1− α.

Interpretation:

If we were to take many random samples and construct a confidence interval from
each sample, then about 100(1− α)% of these intervals would contain θ.

Theorem

An (approximate) 100(1− α)% confidence interval for µ is

(X n − zα
2
σX n

,X n + zα
2
σX n

)

That is the probability that µ lies in that interval is approximately 1− α

P(X n − zα
2
σX n
≤ µ ≤ X n + zα

2
σX n

) ≈ 1− α
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Estimation of a Ratio

Suppose that for each member of a population, two values are measured:

i th member (xi , yi )

We are interested in the following ratio:

r =

∑N
i=1 yi∑N
i=1 xi

=
µy

µx

Let

(
X1 . . . Xn

Y1 . . . Yn

)
be a simple random sample from a population.

Then the natural estimate of r is

Rn =
Y n

X n

To obtain expressions for E[Rn] and V[Rn] we use the δ-method.
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The δ-method

The δ-method is developed to address the following problem

Problem

Suppose that X and Y are random variables, and that µX , µY , σ
2
X , σ

2
Y , and

σXY = Cov(X ,Y ) are known. The problem is to find µZ and σ2
Z , where

Z = f (X ,Y ).

Using the Taylor series expansion to the first order:

Z = f (X ,Y ) ≈ f (µ) + (X − µX )
∂f

∂x
(µ) + (Y − µY )

∂f

∂y
(µ), µ = (µX , µY )

Therefore,

µZ ≈ f (µ) σ2
Z ≈ σ2

X

(
∂f

∂x
(µ)

)2

+ σ2
Y

(
∂f

∂y
(µ)

)2

+ 2σXY
∂f

∂x
(µ)

∂f

∂y
(µ)

To obtain a better approximation for µZ , we can use the Taylor series expansion
to the second order.
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Approximations of E[Rn] and V[Rn]

Using the δ-method, we obtain

Theorem
The expectation and variance of Rn are given by

E[Rn] ≈ r +
1

n

(
1− n − 1

N − 1

)
1

µ2
x

(rσ2
x − σxy ) (2)

V[Rn] ≈ 1

n

(
1− n − 1

N − 1

)
1

µ2
x

(r2σ2
x + σ2

y − 2rσxy ) (3)

In applications, population parameters µx , σx , σy , σxy are unknown. To compute
the estimated values of E[Rn] and V[Rn], we use (2) and (3) together with

r ≈ Rn µx ≈ X n

σ2
x ≈ σ̂2

x,unbiased = N−1
Nn−N

∑n
i=1(Xi − X n)2

σ2
y ≈ σ̂2

y ,unbiased = N−1
Nn−N

∑n
i=1(Yi − Y n)2

σxy ≈ N−1
Nn−N

∑n
i=1(Xi − X n)(Yi − Y n)
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Stratified Random Sampling

In Stratified Random Sampling, a population is partitioned into strata, which are
then independently sampled using simple random sampling.

If X
(k)
1 , . . . ,X

(k)
nk is the sample drawn from the kth stratum, then the estimate of

µ is

X
∗
n =

L∑
k=1

ωkX
(k)

nk ≈ µ,

where ωk = Nk/N is the fraction of the population in the kth stratum.

X
∗
n is an unbiased estimate of µ

E[X
∗
n] = µ

The variance of X
∗
n is

V[X
∗
n] =

L∑
k=1

ω2
k

σ2
k

nk

(
1− nk − 1

Nk − 1

)
≈

L∑
k=1

ω2
k

σ2
k

nk
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Neyman (=Optimal) Allocation Scheme

Question:

Suppose that the resources of a survey allow only a total of n units to be sampled.
How to choose n1, . . . , nL to minimize V[X

∗
n] subject to constraint

∑
nk = n?

Optimization problem:

V[X
∗
n]→ min s.t.

L∑
k=1

nk = n (4)

Theorem

The sample sizes n1, . . . , nL that solve the optimization problem (4) are given
by

n̂k = n
ωkσk∑L
j=1 ωjσj

k = 1, . . . , L

The variance of the optimal stratified estimate is

V[X
∗
n,opt ] =

1

n

(
L∑

k=1

ωkσk

)2
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Proportional Allocation

There are two main disadvantages of Neyman allocation:
1 Optimal allocations n̂k depends on σk which generally will not be known
2 If a survey measures several values for each population member, then it is

usually impossible to find an allocation that is simultaneously optimal for all
values

A simple and popular alternative method of allocation is proportional allocation:
to choose n1, . . . , nL such that

n1

N1
=

n2

N2
= . . . =

nL

NL

This holds if

ñk = n
Nk

N
= nωk k = 1, . . . , L (5)

Theorem

The variance of X
∗
n,p is given by

V[X
∗
n,p] =

1

n

L∑
k=1

ωkσ
2
k
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Neyman vs Proportional and Simple vs Stratified

By definition, Neyman allocation is always better than proportional allocation.

Question: When is it substantially better?

V[X
∗
n,p]− V[X

∗
n,opt ] =

1

n

L∑
k=1

ωk(σk − σ̄)2, σ̄ =
L∑

k=1

ωkσk

if the variances σk of the strata are all the same, then proportional allocation
is as efficient as Neyman allocation, V[X

∗
n,p] = V[X

∗
n,opt ]

the more variable σk , the more efficient the Neyman allocation scheme

Question: What is more efficient: simple random sampling or stratified random
sampling with proportional allocation?

V[X n]− V[X
∗
n,p] =

1

n

L∑
k=1

ωk(µk − µ)2

Thus, stratified random sampling with proportional allocation always gives a
smaller variance than simple random sampling does (providing that the finite
population correction is ignored, (n − 1)/(N − 1) ≈ 0).
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