Math 408 - Mathematical Statistics

Lecture 18. Estimation of a Ratio and the δ -method

March 4, 2013

Ratio and its Estimate

Suppose that for each member of a population, two values are measured:

$$i^{\mathrm{th}}$$
 member \rightsquigarrow (x_i, y_i)

We are interested in the following ratio:

$$r = \frac{\sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} x_i}$$

Ratios arise frequently in sample surveys.

Example:

Households are sampled. If y_i is the number of unemployed males in the $i^{\rm th}$ household, and x_i is the total number of males in the $i^{\rm th}$ household, then r is the proportion of unemployed males.

Estimate of a Ratio

Let $\begin{pmatrix} X_1 & \dots & X_n \\ Y_1 & \dots & Y_n \end{pmatrix}$ be a sample from a population.

Then the natural estimate of

$$r = \frac{\sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} x_i} = \frac{\frac{1}{N} \sum_{i=1}^{N} y_i}{\frac{1}{N} \sum_{i=1}^{N} x_i} = \frac{\mu_y}{\mu_x}$$

is

$$R_n = \frac{\overline{Y}_n}{\overline{X}_n}$$

Our goal: to derive expressions for $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$

Technical problem: since R_n a nonlinear function of \overline{X}_n and \overline{Y}_n , we can't find $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$ in closed form.

<u>Idea:</u> To approximate $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$ using the δ -method.

The δ -method

In many applications, the following scenario is typical:

Problem

X is a random variable, μ_X and σ_X^2 are known. The problem is to find the mean and variance of Y = f(X), where f is some (typically nonlinear) function.

The δ -method utilizes a strategy that is often used in applied mathematics: when confronted with a nonlinear problem that we can't solve, we linearize.

In the δ -method, the linearization is carried out through a Taylor series expansion of f about μ_X :

$$Y = f(X) \approx f(\mu_X) + (X - \mu_X)f'(\mu_X)$$

We thus obtain the first order approximations:

$$\mu_Y \approx f(\mu_X)$$
 $\sigma_Y^2 \approx (f'(\mu_X))^2 \sigma_X^2$

The δ -method

To obtain a better approximation for μ_Y , we can use the Taylor series expansion to the $2^{\rm nd}$ order:

$$Y = f(X) \approx f(\mu_X) + (X - \mu_X)f'(\mu_X) + \frac{1}{2}(X - \mu_X)^2 f''(\mu_X)$$

Then the second order approximations for μ_Y is

$$\mu_Y pprox f(\mu_X) + rac{1}{2}\sigma_X^2 f''(\mu_X)$$

We can similarly proceed in the case of two random variables X and Y:

Problem

Suppose that $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \sigma_{XY} = Cov(X, Y)$ are known. The problem is to find μ_Z and σ_Z^2 , where Z = f(X, Y).

The δ -method

Using the Taylor series expansion to the first order:

$$Z = f(X, Y) \approx f(\mu) + (X - \mu_X) \frac{\partial f}{\partial x}(\mu) + (Y - \mu_Y) \frac{\partial f}{\partial y}(\mu), \quad \mu = (\mu_X, \mu_Y)$$

Therefore,

$$\boxed{\rho_Z^2 \approx \sigma_X^2 \left(\frac{\partial f}{\partial x}(\mu)\right)^2 + \sigma_Y^2 \left(\frac{\partial f}{\partial y}(\mu)\right)^2 + 2\sigma_{XY}\frac{\partial f}{\partial x}(\mu)\frac{\partial f}{\partial y}(\mu)}$$

To obtain a better approximation for μ_Z , we can use the Taylor series expansion to the second order.

$$\mu_{Z} \approx f(\mu) + \frac{1}{2}\sigma_{X}^{2}\frac{\partial^{2}f}{\partial x^{2}}(\mu) + \frac{1}{2}\sigma_{Y}^{2}\frac{\partial^{2}f}{\partial y^{2}}(\mu) + \sigma_{XY}\frac{\partial^{2}f}{\partial x \partial y}(\mu)$$

The δ -method: special case Z = Y/X

Example

If Z = Y/X, then

$$\mu_{Z} \approx \frac{\mu_{Y}}{\mu_{X}} + \frac{1}{\mu_{X}^{2}} \left(\sigma_{X}^{2} \frac{\mu_{Y}}{\mu_{X}} - \sigma_{XY} \right)$$
(1)

$$\sigma_Z^2 \approx \frac{1}{\mu_X^2} \left(\sigma_X^2 \frac{\mu_Y^2}{\mu_X^2} + \sigma_Y^2 - 2\sigma_{XY} \frac{\mu_Y}{\mu_X} \right)$$
 (2)

Approximations of $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$

The estimate of $r = \frac{\mu_y}{\mu_x}$ is

$$R_n = \frac{\overline{Y}_n}{\overline{X}_n}$$

To use the δ -method to approximate $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$, we need to know $\mu_{\overline{X}_n}, \mu_{\overline{Y}_n}, \sigma^2_{\overline{X}_n}, \sigma^2_{\overline{Y}_n}$, and $Cov(\overline{X}_n, \overline{Y}_n)$. In previous Lectures, we found that

- $\bullet \ \mu_{\overline{X}_n} = \mu_{\mathsf{x}}$
- $\bullet \ \mu_{\overline{Y}_n} = \mu_y$
- $\bullet \ \sigma_{\overline{X}_n}^2 = \frac{\sigma_x^2}{n} \left(1 \frac{n-1}{N-1} \right)$
- $\bullet \ \sigma_{\overline{Y}_n}^2 = \frac{\sigma_y^2}{n} \left(1 \frac{n-1}{N-1} \right)$

It can be shown that

• $Cov(\overline{X}_n, \overline{Y}_n) = \frac{\sigma_{xy}}{n} \left(1 - \frac{n-1}{N-1}\right)$, where σ_{xy} is the population covariance of x and y, $\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)$.

Approximations of $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$

Using approximations (1) and (2) from the δ -method, we obtain

Theorem

The expectation and variance of R_n are given by

$$\mathbb{E}[R_n] \approx r + \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_x^2} (r\sigma_x^2 - \sigma_{xy})$$
 (3)

$$\mathbb{V}[R_n] \approx \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_x^2} (r^2 \sigma_x^2 + \sigma_y^2 - 2r \sigma_{xy})$$
 (4)

In applications, population parameters $\mu_x, \sigma_x, \sigma_y, \sigma_{xy}$ are unknown. To compute the **estimated** values of $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$, we use (3) and (4) together with

- $r \approx R_n$ $\mu_x \approx \overline{X}_n$
- $\sigma_x^2 \approx \hat{\sigma}_{x,\text{unbiased}}^2 = \frac{N-1}{Nn-N} \sum_{i=1}^n (X_i \overline{X}_n)^2$
- $\sigma_y^2 \approx \hat{\sigma}_{y, \text{unbiased}}^2 = \frac{N-1}{Nn-N} \sum_{i=1}^n (Y_i \overline{Y}_n)^2$
- $\sigma_{xy} \approx \frac{N-1}{Nn-N} \sum_{i=1}^{n} (X_i \overline{X}_n) (Y_i \overline{Y}_n)$

Summary

- Ratios $r = \mu_y/\mu_x$ arise frequently in sample surveys
- The natural estimate of r is $R_n = \overline{Y}_n / \overline{X}_n$
- We can find expressions for $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$ using the δ -method:

$$\boxed{\mathbb{E}[R_n] \approx r + \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_x^2} (r \sigma_x^2 - \sigma_{xy})}$$

$$\mathbb{V}[R_n] \approx \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_x^2} (r^2 \sigma_x^2 + \sigma_y^2 - 2r \sigma_{xy})$$

- To compute the estimated values of $\mathbb{E}[R_n]$ and $\mathbb{V}[R_n]$, we use:
 - ho $r \approx R_n$ $\mu_x \approx \overline{X}_n$
 - $\sigma_x^2 \approx \hat{\sigma}_{x,\text{unbiased}}^2 = \frac{N-1}{Nn-N} \sum_{i=1}^n (X_i \overline{X}_n)^2$
 - $\sigma_y^2 \approx \hat{\sigma}_{y,\mathrm{unbiased}}^2 = \frac{N-1}{Nn-N} \sum_{i=1}^n (Y_i \overline{Y}_n)^2$