Math 408 - Mathematical Statistics

Lecture 17. The Normal Approximation to the Distribution of \overline{X}_n

March 1, 2013

Agenda

- Normal Approximation (theoretical result)
- Approximation of the Error Probabilities (application 1)
- Confidence Intervals (application 2)
- Example: Hospitals
- Summary

We previous Lectures, we found the mean and the variance of the sample mean:

$$\mathbb{E}[\overline{X}_n] = \mu$$
 $\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1}\right)$

Ideally, we would like to know the **entire distribution** of \overline{X}_n (sampling distribution) since it would tell us everything about the random variable \overline{X}_n

Reminder:

If X_1, \ldots, X_n are i.i.d. with the common mean μ and variance σ^2 , then the sample mean \overline{X}_n has the following properties:

② CLT:

$$\mathbb{P}\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le z\right) \to \Phi(z), \quad \text{as } n \to \infty$$

where $\Phi(z)$ is the CDF of $\mathcal{N}(0,1)$

 $\underline{\mathbf{Q}}$: Can we use these results to obtain the distribution of \overline{X}_n ?

<u>A:</u> No. In simple random sampling, X_i are not independent.

Moreover, it makes no sense to have n tend to infinity while N is fixed.

Nevertheless, it can be shown that if n is large, but still small relative to N, then \overline{X}_n is approximately normally distributed

$$\overline{X}_{n} \dot{\sim} \mathcal{N}(\mu, \sigma_{\overline{X}_{n}}^{2})$$
 $\sigma_{\overline{X}_{n}} = \frac{\sigma}{\sqrt{n}} \sqrt{1 - \frac{n-1}{N-1}}$

How can we use this results?

Suppose we want to find the probability that the error made in estimating μ by \overline{X}_n is less than $\varepsilon>0$. In symbols, we want to find

$$\mathbb{P}(|\overline{X}_n - \mu| \le \varepsilon) = ?$$

Theorem

From $\overline{X}_n \dot{\sim} \mathcal{N}(\mu, \sigma^2_{\overline{X}_n})$ it follows that

$$\boxed{\mathbb{P}(|\overline{X}_n - \mu| \leq \varepsilon) \approx 2\Phi\left(\frac{\varepsilon}{\sigma_{\overline{X}_n}}\right) - 1}$$

Confidence Intervals

Let $\alpha \in [0,1]$

Definition

A $100(1-\alpha)\%$ confidence interval for a population parameter θ is a <u>random</u> interval calculated from the sample, which contains θ with probability $1-\alpha$.

Interpretation:

If we were to take many random samples and construct a confidence interval from each sample, then about $100(1-\alpha)\%$ of these intervals would contain θ .

Our goal: to construct a confidence interval for μ

Let z_{α} be that number such that the area under the standard normal density function to the right of z_{α} is α . In symbols, z_{α} is such that

$$\Phi(z_\alpha)=1-\alpha$$

Useful property:

$$z_{1-\alpha} = -z_{\alpha}$$

Confidence interval for μ

Theorem

An (approximate) 100(1-lpha)% confidence interval for μ is

$$(\overline{X}_n-z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n},\overline{X}_n+z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n})$$

That is the probability that μ lies in that interval is approximately $1-\alpha$

$$\boxed{\mathbb{P}(\overline{X}_n - z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n} \leq \mu \leq \overline{X}_n + z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n}) \approx 1 - \alpha}$$

Remarks:

- ullet This confidence interval is random. The probability that it covers μ is (1-lpha)
- In practice, $\alpha = 0.1, 0.05, 0.01$ (depends on a particular application)
- Since $\sigma_{\overline{X}_n}$ is not known (it depends on σ), $s_{\overline{X}_n}$ is used instead of $\sigma_{\overline{X}_n}$

Konstantin Zuev (USC) Math 408 Lecture 17 March 1, 2013

Data: Herkson (1976):

- The population consists of N = 393 short-stay hospitals
- Let x_i be the number of patients discharged from the i^{th} hospital during January 1968.

- Population mean $\mu = 814.6$, and population variance $\sigma^2 = (589.7)^2$
- Let us consider two case $n_1 = 32$ and $n_2 = 64$.

• True std of
$$\overline{X}_n$$
: $\sigma_{\overline{X}_n} = \sqrt{\frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1}\right)}$, $\sigma_{\overline{X}_{32}} = 100$, $\sigma_{\overline{X}_{64}} = 67.5$

Konstantin Zuev (USC) Math 408, Lecture 17 March 1, 2013

$$\mathbb{P}(|\overline{X}_n - \mu| \leq \varepsilon) pprox 2\Phi\left(rac{arepsilon}{\sigma_{\overline{X}_n}}
ight) - 1$$

Konstantin Zuev (USC)

 $100(1-\alpha)\%$ confidence interval for μ is

$$\big(\overline{X}_n-z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n},\overline{X}_n+z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n}\big)$$

 $\alpha = 0.1$:

Interval width: 329.1 for n = 32 and 222.2 for n = 64

Summary

• The sample mean is approximately normal

$$\boxed{\overline{X}_n \dot{\sim} \mathcal{N}(\mu, \sigma_{\overline{X}_n}^2)} \qquad \sigma_{\overline{X}_n} = \frac{\sigma}{\sqrt{n}} \sqrt{1 - \frac{n-1}{N-1}}$$

Probability of error

$$\mathbb{P}(|\overline{X}_n - \mu| \le \varepsilon) \approx 2\Phi\left(\frac{\varepsilon}{\sigma_{\overline{X}_n}}\right) - 1$$

• $100(1-\alpha)\%$ confidence interval for μ is

$$(\overline{X}_n-z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n},\overline{X}_n+z_{\frac{\alpha}{2}}\sigma_{\overline{X}_n})$$