Math 408 - Mathematical Statistics # Lecture 16. Estimation of the Population Variance σ February 27, 2013 # Agenda - Why do we need to estimate σ ? - How can we estimate σ ? - Summary ### The Need of Estimation of σ We know that the sample mean \overline{X}_n is an unbiased estimate of the population mean μ : $$\mathbb{E}[\overline{X}_n] = \mu$$ Moreover, the accuracy of the approximation $\overline{X}_n \approx \mu$ can be measured by the standard deviation of \overline{X}_n (also called "standard error"): $$\sigma_{\overline{X}_n} = \sqrt{\frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right)}, \qquad \sigma_{\overline{X}_n} \approx \frac{\sigma}{\sqrt{n}}, \quad \text{if } n \ll N$$ (1) where σ is the population variance $$\sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$ Q: What is the main drawback of (1)? <u>A:</u> We can't use (1) since σ is unknown. To use (1), σ must be estimated from the sample X_1, \ldots, X_n . 3 / 7 ### Estimation of σ It seems natural to use the following estimate $$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$ However, this estimate is biased. #### **Theorem** The expected value of $\hat{\sigma}_n^2$ is given by $$\mathbb{E}[\hat{\sigma}_n^2] = \sigma^2 \frac{Nn - N}{Nn - n}$$ #### Important Remark: • Since $\frac{Nn-N}{Nn-n} < 1$, we have $\mathbb{E}[\hat{\sigma}_n^2] < \sigma^2$ Therefore, $\hat{\sigma}_n^2$ tends to underestimate σ^2 February 27, 2013 ### Corollaries ### Corollary Since $$\mathbb{E}[\hat{\sigma}_n^2] = \sigma^2 \frac{Nn-N}{Nn-n}$$, $$\hat{\sigma}_{n,\text{unbiased}}^2 = \frac{Nn-n}{Nn-N}\hat{\sigma}_n^2$$ is an unbiased estimate of σ^2 Recall that $$\mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right)$$ In practice, σ is unknown, so we need to estimate it. ### Corollary An unbiased estimate of $\mathbb{V}[\overline{X}_n]$ is $$s_{X_n}^2 = \frac{\hat{\sigma}_n^2}{n} \frac{Nn - n}{Nn - N} \left(1 - \frac{n - 1}{N - 1} \right)$$ ## Summary Let us summarize what we have learned about estimation of population parameters: - Population mean μ - Unbiased estimate: $$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$ Variance of estimate $$\mathbb{V}[\overline{X}_n] \equiv \sigma_{\overline{X}_n}^2 = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right)$$ ► Estimated variance $$\sigma_{\overline{X}_n}^2 pprox \mathsf{s}_{\overline{X}_n}^2 = \frac{\hat{\sigma}_n^2}{n} \frac{\mathsf{N} \mathsf{n} - \mathsf{n}}{\mathsf{N} \mathsf{n} - \mathsf{N}} \left(1 - \frac{\mathsf{n} - 1}{\mathsf{N} - 1} \right)$$ - Population variance σ - ▶ Unbiased estimate: $$\hat{\sigma}_{n,\mathrm{unbiased}}^2 = \frac{Nn-n}{Nn-N}\hat{\sigma}_n^2, \quad \hat{\sigma}_n^2 = \frac{1}{n}\sum_{i=1}^n(X_i-\overline{X}_n)^2$$ #### Conclusion In simple random sampling, we can not only form estimate of unknown population parameter (e.g. μ), but also obtain the likely size of errors of these estimates. In other words, we can obtain the estimate of a parameter as well as the estimate of the error of that estimate