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The starting point in developing the probability theory is the notion of a
sample space = the set of possible outcomes.

Definition
The sample space Ω is the set of possible outcomes of an “experiment”

Points ω ∈ Ω are called realizations

Events are subsets of Ω

Next, to every event A ⊂ Ω, we assign a real number P(A), called the probability
of A. We call function P : {subsets of Ω} → R a probability distribution.

Function P is not arbitrary, it satisfies several natural properties
(called axioms of probability):

1 0 ≤ P(A) ≤ 1 (Events range from never happening to always happening)

2 P(Ω) = 1 (Something must happen)

3 P(∅) = 0 (Nothing never happens)

4 P(A) + P(Ā) = 1 (A must either happen or not-happen)

5 P(A + B) = P(A) + P(B)− P(AB)
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Statistical Independence

Definition
Two events A and B are independent if

P(AB) = P(A)P(B)

Independence can arise in two distinct ways:

1 We explicitly assume that two events are independent.

2 We derive independence of A and B by verifying that P(AB) = P(A)P(B).
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Conditional Probability

Definition

If P(A) > 0, then the conditional probability of B given A is

P(B|A) =
P(AB)

P(A)

Useful Interpretation:

Think of P(B|A) as the

fraction of times B occurs among those in which A occurs

Properties of Conditional Probabilities:
1 For any fixed A such that P(A) > 0, P(·|A) is a probability, i.e. it satisfies

the rules of probability.
2 In general P(B|A) 6= P(A|B)

3 If A and B are independent then P(B|A) = P(AB)
P(A) = P(A)P(B)

P(A) = P(B)

Thus, another interpretation of independence is that knowing A does not
change the probability of B.
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Law of Total Probability and Bayes’ Theorem

Law of Total Probability

Let A1, . . . ,An be a partition of Ω, i.e.⋃n
i=1 Ai = Ω (A1, . . . ,An are jointly exhaustive events)

Ai

⋂
Aj = ∅ for i 6= j (A1, . . . ,An are mutually exclusive events)

P(Ai ) > 0

Then for any event B

P(B) =
n∑

i=1

P(B|Ai )P(Ai )

Bayes’ Theorem

Conditional probabilities can be inverted. That is,

P(A|B) =
P(B|A)P(A)

P(B)
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Random Variables

We need the random variables to link sample spaces and events to data.

Definition

A random variable is a mapping X : Ω→ R that assigns a real number X (ω) to
each outcome ω ∈ Ω.

This mapping induces probability on R from Ω as follows:
Given a random variable X and a set A ⊂ R, define

X−1(A) = {ω ∈ Ω : X (ω) ∈ A}

and let
P(X ∈ A) = P(X−1(A)) = P({ω ∈ Ω : X (ω) ∈ A})

Definition

The cumulative distribution function (CDF) FX : R→ [0, 1] is defined by

FX (x) = P(X ≤ x)

CDF contains all the information about the random variable
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Properties of CDFs

Theorem

A function F : R→ [0, 1] is a CDF for some random variable if and only if it
satisfies the following three conditions:

1 F is non-decreasing:

x1 < x2 ⇒ F (x1) ≤ F (x2)

2 F is normalized:

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1

3 F is right-continuous:
lim

y→x+0
F (y) = F (x)
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Discrete Random Variables

Definition

X is discrete if it takes countable many values {x1, x2, . . .}.
We define the probability mass function (PMF) for X by

fX (x) = P(X = x)

Relationships between CDF and PMF:

The CDF of X is related to the PMF fX by

FX (x) = P(X ≤ x) =
∑
xi≤x

fX (xi )

The PMF fX is related to the CDF FX by

fX (x) = FX (x)− FX (x−) = FX (x)− lim
y→x−0

F (y)
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Continuous Random Variables

Definition
A random variable is continuous if there exists a function fX such that

fX (x) ≥ 0 for all x∫ +∞
−∞ fX (x)dx = 1, and

For every a ≤ b

P(a < X ≤ b) =

∫ b

a

fX (x)dx

The function fX (x) is called the probability density function (PDF)

Relationship between the CDF FX (x) and PDF fX (x):

FX (x) =

∫ x

−∞
fX (t)dt fX (x) = F ′X (x)
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Transformation of Random Variables

Suppose that X is a random variable with PDF fX and CDF FX .
Let Y = r(X ) be a function of X .

Q: How to compute the PDFand CDF of Y ?

1 For each y , find the set Ay = {x : r(x) ≤ y}
2 Find the CDF FY (y)

FY (y) = P(Y ≤ y) = P(r(X ) ≤ y) = P(X ∈ Ay ) =

∫
Ay

fX (x)dx

3 The PDF is then fY (y) = F ′Y (y)

Important Fact: When r is strictly monotonic, then r has an inverse s = r−1 and

fY (y) = fX (s(y))

∣∣∣∣ds(y)

dy

∣∣∣∣
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Joint Distributions

Discrete Case

Definition
Given a pair of discrete random variables X and Y , their joint PMF is defined by

fX ,Y (x , y) = P(X = x ,Y = y)

Continuous Case

Definition

A function fX ,Y (x , y) is called the joint PDF of continuous random variables X
and Y if

I fX ,Y (x , y) ≥ 0,
∫ +∞
−∞

∫ +∞
−∞ fX ,Y (x , y)dxdy = 1

I For any set A ⊂ R× R

P((X ,Y ) ∈ A) =

∫ ∫
A

fX ,Y (x , y)dxdy

The joint CDF of X and Y is defined as FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)
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Marginal Distributions

Discrete Case
If X and Y have joint PMF fX ,Y , then the marginal PMF of X is

fX (x) = P(X = x) =
∑
y

P(X = x ,Y = y) =
∑
y

fX ,Y (x , y)

Similarly, the marginal PMF of Y is

fY (y) = P(Y = y) =
∑
x

P(X = x ,Y = y) =
∑
x

fX ,Y (x , y)

Continuous Case
If X and Y have joint PDF fX ,Y , then the marginal PDFs of X and Y are

fX (x) =

∫
fX ,Y (x , y)dy and fY (y) =

∫
fX ,Y (x , y)dx
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Independent Random Variables

Definition
Two random variables X and Y are independent if, for every A and B

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

Criterion of independence:

Theorem

Let X and Y have joint PDF/PMF fX ,Y . Then X and Y are independent if and
only if

fX ,Y (x , y) = fX (x)fY (y)
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Conditional Distributions

Discrete Case
The conditional PMF:

fX |Y (x |y) = P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

fX ,Y (x , y)

fY (y)

Continuous Case
The conditional PDF is

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)

Then,

P(X ∈ A|Y = y) =

∫
A

fX |Y (x |y)dx
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Expectation and its Properties
The expectation (or mean) of a random variable X is the average value of X .

Definition
The expected value, or mean, or first moment of X is

µX ≡ E[X ] =

{ ∑
x xfX (x), if X is discrete∫
xfX (x)dx , if X is continuous

assuming that the sum (or integral) is well-defined.

Let Y = r(X ), then E[Y ] = E[r(X )] =
∫

r(x)fX (x)dx
If X1, . . . ,Xn are random variables and a1, . . . , an are constants, then

E

[
n∑

i=1

aiXi

]
=

n∑
i=1

aiE[Xi ]

Let X1, . . . ,Xn be independent random variables. Then,

E

[
n∏

i=1

Xi

]
=

n∏
i=1

E[Xi ]
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Variance and its Properties

The variance measures the “spread” of a distribution.

Definition
Let X be a random variance with mean µX .
The variance of X , denoted V[X ] or σ2

X , is defined by

σ2
X ≡ V[X ] = E[(X − µX )2] =

{ ∑
x(x − µX )2fX (x), if X is discrete∫

(x − µX )2fX (x)dx , if X is continuous

The standard deviation is σX =
√
V[X ]

Important Properties of V[X ]:

V[X ] = E[X 2]− µ2
X

If a and b are constants, then V[aX + b] = a2V[X ]
If X1, . . . ,Xn are independent and a1, . . . , an are constants, then

V

[
n∑

i=1

aiXi

]
=

n∑
i=1

a2i V[Xi ]
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Covariance and Correlation

If X and Y are random variables, then the covariance and correlation between X
and Y measure how strong the linear relationship is between X and Y .

Definition
Let X and Y be random variables with means µX and µY and standard deviations
σX and σY . Define the covariance between X and Y by

Cov(X ,Y ) = E[(X − µX )(Y − µY )]

and the correlation by

ρ(X ,Y ) =
Cov(X ,Y )

σXσY
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Properties of Covariance and Correlation

The covariance satisfies (useful in computations):

Cov(X ,Y ) = E[XY ]− E[X ]E[Y ]

The correlation satisfies:
−1 ≤ ρ(X ,Y ) ≤ 1

If Y = aX + b for some constants a and b, then

ρ(X ,Y ) =

{
1, if a > 0
−1, if a < 0

If X and Y are independent, then Cov(X ,Y ) = ρ(X ,Y ) = 0.
The converse is not true.

For random variables X1, . . . ,Xn

V

[
n∑

i=1

aiXi

]
=

n∑
i=1

a2i V[Xi ] + 2
∑
i<j

aiajCov(Xi ,Xj)
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Conditional Expectation and Conditional Variance

The conditional expectation of X given Y = y is

E[X |Y = y ] =

{ ∑
x xfX |Y (x |y), discrete case;∫
xfX |Y (x |y)dx , continuous case.

I E[X ] is a number
I E[X |Y = y ] is a function of y
I E[X |Y ] is the random variable whose value is E[X |Y = y ] when Y = y

The Rule of Iterated Expectations

EE[Y |X ] = E[Y ] and EE[X |Y ] = E[X ]

The conditional variance of X given Y = y is

V[X |Y = y ] = E[(X − E[X |Y = y ])2|Y = y ]

I V[X ] is a number
I V[X |Y = y ] is a function of y
I V[X |Y ] is the random variable whose value is V[X |Y = y ] when Y = y

For random variables X and Y

V[X ] = EV[X |Y ] + VE[X |Y ]
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Inequalities

Markov inequality: If X is a non-negative random variable, then for any a > 0

P(X ≥ a) ≤ E[X ]

a

Chebyshev inequality: If X is a random variable with mean µ and variance
σ2, then for any a > 0

P(|X − µ| ≥ a) ≤ σ2

a2

Hoeffding inequality: Let X1, . . . ,Xn ∼ Bernoulli(p), then for any ε > 0

P(|X n − p| ≥ a) ≤ 2e−2na
2

Cauchy-Schwarz inequality: If X and Y have finite variances, then

E[|XY |] ≤
√
E[X 2]E[Y 2]

Jensen Inequality:
I If g is convex, then E[g(X )] ≥ g(E[X ])
I If g is concave, then E[g(X )] ≤ g(E[X ])
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Convergence of Random Variables

There are two main types of convergence: convergence in probability and
convergence in distribution.

Definition
Let X1,X2, . . . be a sequence of random variables and let X be another random
variable. Let Fn denote the CDF of Xn and let F denote the CDF of X .

Xn converges to X in probability, written Xn
P−→ X ,

if for every ε > 0
lim

n→∞
P(|Xn − X | ≥ ε) = 0

Xn converges to X in distribution, written Xn
D−→ X ,

if
lim

n→∞
Fn(x) = F (x)

for all x for which F is continuous.

Xn
P−→ X implies that Xn

D−→ X
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Law of Large Numbers and Central Limit Theorem

The LLN says that the mean of a large sample is close to the mean of the
distribution.

The Law of Large Numbers

Let X1, . . . ,Xn be i.i.d. with mean µ and variance σ2. Let X n = 1
n

∑n
i=1 Xi . Then

X n =
1

n

n∑
i=1

Xi
P−→ µ as n→∞

The CLT says that X n has a distribution which is approximately Normal with
mean µ and variance σ2/n. This is remarkable since nothing is assumed about the
distribution of Xi , except the existence of the mean and variance.

The Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. with mean µ and variance σ2. Then

Zn ≡
X n − µ
σ/
√

n

D−→ Z ∼ N (0, 1) as n→∞
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The Central Limit Theorem

The central limit theorem tells us that

Zn =
X n − µ
σ/
√

n
∼̇ N (0, 1)

However, in applications, we rarely know σ. We can estimate σ2 from X1, . . . ,Xn

by sample variance

S2
n =

1

n − 1

n∑
i=1

(Xi − X n)2

Question: If we replace σ with Sn is the central limit theorem still true?

Answer: Yes!

Theorem
Assume the same conditions as in the CLT. Then,

X n − µ
Sn/
√

n

D−→ Z ∼ N (0, 1) as n→∞
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Multivariate Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. random vectors with mean µ and covariance matrix Σ:

Xi =


X1i

X2i

...
Xki

 µ =


µ1

µ2

...
µk

 =


E[X1i ]
E[X2i ]

...
E[Xki ]



Σ =


V[X1i ] Cov(X1i ,X2i ) . . . Cov(X1i ,Xki )

Cov(X2i ,X1i ) V[X2i ] . . . Cov(X2i ,Xki )
...

...
. . .

...
Cov(Xki ,X1i ) . . . Cov(Xki ,Xk−1i ) V[Xki ]


Let X n = (X 1n, . . . ,X kn)T . Then

√
n(X n − µ)

D−→ N (0,Σ) as n→∞
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