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The starting point in developing the probability theory is the notion of a
sample space = the set of possible outcomes.

Definition
@ The sample space Q2 is the set of possible outcomes of an “experiment”

@ Points w € Q are called realizations
o Events are subsets of

Next, to every event A C Q, we assign a real number P(A), called the probability
of A. We call function P : {subsets of Q} — R a probability distribution.

Function P is not arbitrary, it satisfies several natural properties
(called axioms of probability):

@ 0 <P(A) <1 (Events range from never happening to always happening)
@ P(Q) =1 (Something must happen)
= 0 (Nothing never happens)
+ IP’( ) = 1 (A must either happen or not-happen)
B) =P(A)+P(B) —P(AB)
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Statistical Independence

Definition

Two events A and B are independent if

P(AB) = P(A)P(B)

Independence can arise in two distinct ways:
@ We explicitly assume that two events are independent.

@ We derive independence of A and B by verifying that P(AB) = P(A)P(B).
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Conditional Probability

Definition
If P(A) > 0, then the conditional probability of B given A is

P(B|A) = %

Useful Interpretation:
Think of P(BJ|A) as the

fraction of times B occurs among those in which A occurs
Properties of Conditional Probabilities:

@ For any fixed A such that P(A) > 0, P(-|A) is a probability, i.e. it satisfies
the rules of probability.

@ In general P(B|A) # P(A|B)

@ If A and B are independent then P(B|A) = PHS)?AB)’) = P(gg%s) =P(B)
Thus, another interpretation of independence is that knowing A does not
change the probability of B.
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Law of Total Probability and Bayes' Theorem

Law of Total Probability

Let Ay, ..., A, be a partition of €, i.e.
o U, Ai=Q (Ai,..., A, are jointly exhaustive events)
e AiNA; =0 fori#j (Ar,..., A, are mutually exclusive events)
e P(A) >0

Then for any event B

Bayes' Theorem

Conditional probabilities can be inverted. That is,

P(BIA)P(A)

P(AIB) = =5
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Random Variables
We need the random variables to link sample spaces and events to data.
Definition

A random variable is a mapping X : Q — R that assigns a real number X(w) to
each outcome w € Q.

This mapping induces probability on R from Q as follows:
Given a random variable X and a set A C R, define

XHA) ={weQ: X(w) €A}

and let P(X € A) = P(X"}(A)) = P({w € Q : X(w) €A})‘

Definition
The cumulative distribution function (CDF) Fx : R — [0,1] is defined by

| Fx(x) = P(X < x)|

CDF contains all the information about the random variable

Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 6 /24



Properties of CDFs

Theorem

A function F : R — [0, 1] is a CDF for some random variable if and only if it
satistfies the following three conditions:

@ F is non-decreasing:

X1 < Xo = F(Xl) < F(Xg)

@ F is normalized:

X—llrl]oo F(x)=0 and (x)=1

lim F
X—r—+00

© F is right-continuous:

Jim F() = F(x)
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Discrete Random Variables

Definition
X is discrete if it takes countable many values {x, x2, ...}
We define the probability mass function (PMF) for X by

| f(x) = B(X = x)|

Relationships between CDF and PMF:

@ The CDF of X is related to the PMF fx by

Fx(x) =P(X < x) Z x(x;)

xi <x

@ The PMF fx is related to the CDF Fx by

fx(x) = Fx(x) — Fx(x™) = Fx(x) _y—liT—O Fv)
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Continuous Random Variables

Definition

A random variable is continuous if there exists a function fx such that
o fx(x) >0 for all x
o 72 fx(x)dx =1, and
@ Foreverya<b

Pl(a< X <b)= /b fx(x)dx

@ The function fx(x) is called the probability density function (PDF)
@ Relationship between the CDF Fx(x) and PDF fx(x):

Fx(x) = /_X fx(t)dt fx(x) = Fx(x)
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Transformation of Random Variables

Suppose that X is a random variable with PDF fx and CDF Fx.
Let Y = r(X) be a function of X.

Q: How to compute the PDFand CDF of Y?

@ For each y, find the set A, = {x: r(x) <y}
@ Find the CDF Fy(y)

Fy(y) = B(Y < y) = P(r(X) < y) = P(X € A,) = / f (x)dx

Y

@ The PDF is then fy(y) = Fi(y)

Important Fact: When r is strictly monotonic, then r has an inverse s = r~1

and

ds(y)

dy

fr(y) = fx(s(y))
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Joint Distributions

@ Discrete Case
Definition
Given a pair of discrete random variables X and Y/, their joint PMF is defined by

fX,Y(X,y) :]P)(X:Xa Y:y)

@ Continuous Case
Definition

A function fx,y(x, y) is called the joint PDF of continuous random variables X
and Y if

v (x,y) >0, [12 [T fey(x, y)dxdy =1
For any set ACR xR

P((X, Y) € A) = / /A bl

The joint CDF of X and Y is defined as Fx v(x,y) =P(X <x,Y <y)
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Marginal Distributions

@ Discrete Case
If X and Y have joint PMF fx vy, then the marginal PMF of X is

AR)=PX=x)=> P(X=x,Y=y)=> fy(xy)
y y
Similarly, the marginal PMF of Y is

() =P(Y=y)=) PX=xY=y)=) fy(xy)

@ Continuous Case
If X and Y have joint PDF fx y, then the marginal PDFs of X and Y are

fx(x):/fx)y(x,y)dy and  fy(y) :/fx)y(x,y)dx
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Independent Random Variables

Definition

Two random variables X and Y are independent if, for every A and B

P(X e A Y e B)=P(X € AP(Y € B)

Criterion of independence:

Theorem

Let X and Y have joint PDF/PMF fx y. Then X and Y are independent if and
only if
fx,v(x,y) = x(x)fy(y)
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Conditional Distributions

@ Discrete Case
The conditional PMF:

PX=x,Y=y fx,y(x,y
fxiv(xly) =P(X = x]Y = y) = ( P(Y = y) - fv(()’) |
@ Continuous Case
The conditional PDF is
fxy(x,y
fxy (xly) = #

Then,
PX < AY =) = [ fav(y)ax
A
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Expectation and its Properties

The expectation (or mean) of a random variable X is the average value of X.
Definition

The expected value, or mean, or first moment of X is

— > xfx(x), if X is discrete
Hx =EX] = { foX )dx, if X is continuous

assuming that the sum (or integral) is well-defined.

o Let Y = r(X), then E[Y] = E[r(X)] = [ r(x ) % (x)dx

e If Xy,..., X, are random variables and ay, ..., a, are constants, then
n b n
E Z a,-X,- = Z B;E[X,']
i=1 i i=1
o Let Xi,..., X, be independent random variables. Then,

E f[x,- :f[]E[X,-]
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Variance and its Properties

The variance measures the “spread” of a distribution.
Definition

Let X be a random variance with mean px.
The variance of X, denoted V[X] or 0%, is defined by

ok = VIX] = E[(X - px)?] = { j%ﬁi ;5))51)‘)2:?;())((1’17, :ii :2 f:lci)srftriitjous

The standard deviation is ox = 1/V[X]

Important Properties of V[X]:
o V[X] =E[X?] — 13
e If a and b are constants, then V[aX + b] = a®V[X]
o If Xi,..., X, are independent and ay, ..., a, are constants, then

\% zn: a,-X,- = Zn: a?V[X,-]
i=1 i=1
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Covariance and Correlation

If X and Y are random variables, then the covariance and correlation between X
and Y measure how strong the linear relationship is between X and Y.

Definition

Let X and Y be random variables with means px and @y and standard deviations
ox and oy. Define the covariance between X and Y by

[Cov(X,¥) =EI(X — jux)(Y — uv)]|

and the correlation by

Cov(X,Y)
OxX0y

p(X,Y) =
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Properties of Covariance and Correlation
@ The covariance satisfies (useful in computations):

Cov(X,Y) = E[XY] — E[X]E[Y]

@ The correlation satisfies:

o If Y = aX + b for some constants a and b, then

1, ifa>0
p(X’Y)_{ -1, fa<0

e If X and Y are independent, then Cov(X, Y) = p(X,Y)=0.
The converse is not true.

@ For random variables Xi,..., X,
n

E a;X;
i=1
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Conditional Expectation and Conditional Variance

@ The conditional expectation of X given Y =y is
o Do xfxv(x|y), discrete case;
EXY =y]= { J xfx)v(x|y)dx, continuous case.

» E[X] is a number

» E[X]Y = y] is a function of y

» E[X]Y] is the random variable whose value is E[X|Y = y] when Y =y
@ The Rule of Iterated Expectations

EE[Y|X] =E[Y] and EE[X]|Y]=E[X]
@ The conditional variance of X given Y =y is

VXY = y] = E[(X - E[X|Y = y]*|Y = y]

» V[X] is a number

» V[X|Y = y] is a function of y

» V[X]|Y] is the random variable whose value is V[X|Y = y] when Y =y
@ For random variables X and Y

V[X] = EV[X| Y] + VE[X|Y]
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Inequalities

@ Markov inequality: If X is a non-negative random variable, then for any a > 0
_ EIX]

P(X > a) p

@ Chebyshev inequality: If X is a random variable with mean p and variance
o2, then for any a > 0
2
B(X —pl > a) < %

Hoeffding inequality: Let Xi, ..., X, ~ Bernoulli(p), then for any ¢ > 0
P(|X, — p| > a) < 22"

Cauchy-Schwarz inequality: If X and Y have finite variances, then

E[[XY]] < VE[X?]E[Y?]

Jensen Inequality:
» If g is convex, then E[g(X)] > g(E[X])
» If g is concave, then E[g(X)] < g(E[X])
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Convergence of Random Variables

There are two main types of convergence: convergence in probability and
convergence in distribution.
Definition
Let Xi, Xo, ... be a sequence of random variables and let X be another random
variable. Let F,, denote the CDF of X,, and let F denote the CDF of X.
@ X, converges to X in probability, written X, BN X,
if for every € > 0
lim P(|X, — X|>¢€)=0
n—oo

@ X, converges to X in distribution, written X, N X,
if

lim F,(x) = F(x)

n—oo

for all x for which F is continuous.

X, -5 X implies that X, = X
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Law of Large Numbers and Central Limit Theorem

The LLN says that the mean of a large sample is close to the mean of the
distribution.

The Law of Large Numbers
Let Xi,...,X, be i.id. with mean y and variance o2 let X, =1 Z, 1 Xi. Then

1
:;ZX;LM as n— oo

The CLT says that X, has a distribution which is approximately Normal with
mean  and variance o2/n. This is remarkable since nothing is assumed about the
distribution of X;, except the existence of the mean and variance.

The Central Limit Theorem

Let Xi,..., X, be i.id. with mean y and variance o2, Then
Z—7 L 27 ~N(0,1)| asn— oo
— a/Vn
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The Central Limit Theorem

The central limit theorem tells us that

Xn—p
Z, ="
TN

< N(0,1)

However, in applications, we rarely know o. We can estimate o2 from Xi,. ..

by sample variance

1 < -
52 = — D (X = X,)?
i=1

Question: If we replace o with S, is the central limit theorem still true?

Answer: Yes!

Theorem

Assume the same conditions as in the CLT. Then,

X
|
=

L2y Z~N(0,1)| asn— o

»
~
B

s Xn
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Multivariate Central Limit Theorem

Let Xi,..., X, bei.i.d. random vectors with mean g and covariance matrix X:

Xii M1 E[X4i]
X — X-2i . /l.z _ E[)in]
X H'k E[in]
V[Xi] Cov(Xii, Xa/) . Cov(Xij, Xii)
Cov(Xa;, X1/) V[Xai] e Cov(Xai, Xii)
Cov(Xei, Xu1) . Cov(Xer, Xe 1) V[Xa]

Let X, = (X1, .-+, Xkn)". Then

V(Xn — 1) 25 N(0,5)| as n— oo
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