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Fundamental Matrix

In this Lecture, the goal is to describe the structure of the solutions of the
general homogeneous system of linear first order ODEs:

x' = P(t)x (1)
Suppose x1(t), ..., xn(t) form a fundamental set of solutions for (1) on some
interval t € (a, 8). Then the fundamental matrix is
() .. xkt)
X(t) =Dba(t), - xa(O)] = | = 0 (@)
x7(t) ... x}(t)
@ X(t) is nonsingular (det X(t) # 0 for t € («, §8)), since its columns are
linearly independent vectors.
The general solution of (1) is then
x(t) = axi(t) + ... + caxa(t) = X(t)c, 3)
where ¢ = (c1,...,¢,)".
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Fundamental Matrix ®(t)

If we have an IVP:

x'=P(t)x, x(to) =x0, to€ (,p) (4)

then ¢ must satisfy
X(t)e=xo = ¢=X"(to)xo (5)

Therefore, the solution of (4) is given by

x(£) = X(£)X " (t0)xo (6)
Let ®(t) be the special fundamental matrix whose columns are the vectors
x1(t),...,x,(t) that are solutions of (4) with the initial conditions
1 0 0
0 1 0
xi(to) = [ O] xe(t0) = | © xn(to) = | ()
: : 0
0 0 1
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Fundamental Matrix ®(t)

e Example: Find the fundamental matrix ®(t) for the following system:

1 1
X/:<4 l)X, tp=20

et/2+e7t/2 &3t/4— e_t/4)

Answer:
¢(t) = ( e3t _ et e3t/2 + e—t/2

Fundamental matrix ®(t) has the following property:
®(to) = I (8)
Thus, in terms of ®(t), the solution of the initial value problem
x'=P(t)x, x(to) = xg (9)

s x(t) = ®(t)xo (10)
This, if we know ®(t), then it is very easy to solve the IVP (9) for any initial
condition xq: just use (10).
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The Matrix Exponential Function

Motivation: Let us compare the following two observations:
@ The solution of the IVP x’ = ax, x(0) = xo is

ay

@ The solution of the IVP x’ = Ax, x(0) = xo is

x(t) = ®(t)xo (12)

Comparing the problems and solutions (11) and (12), suggests that
o(t) = eht,

whatever the last equation means...
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The Matrix Exponential Function

Recall that the scalar exponential function can be represented by the power series:

1 1 — a“tk
T —1tatd Pttt = ac (13)
2! 3! pare k!

Definition

Let A be an n X n constant matrix. The matrix exponential function is defined
as follows:

At_l A ]‘A22 ]‘A33 _ooAktk 14
A =1, + At + A%+ o t+..._kz:O i (14)

o AK= A x Ax... xA (ktimes)
k  k

. N
@ More accurately, et = limpy_ o0 Y ko Ak—f

@ It can be shown that the above sum indeed converges (quite rapidly), and the
limit matrix is denoted by e”t
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Example

o Find eMt if

11
A= (o 1)
et tet
e = <O et>

In general, it is not possible to express the entries of e
functions. But if A is diagonal, then it is easy to do:

Answer:

At in terms of elementary

A 0 ... 0 ehit 0 0

0 X ... O 0 et 0
A= . = M= . :

0 0 ... A\ 0 0 ... e\t
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d(t) = Mt

The following theorem shows the equivalence between e?t and ®(t).

Theorem
Consider the following IVP x’ = Ax, x(0) = xo. Then

o(t) = M

Therefore, the solutions of the IVP is

x(t) = erxg

Konstantin Zuev (USC) Math 245, Lecture 34

April 11, 2012

8/ 10




Summary

o If X(t) is any fundamental matrix for system x’ = P(t)x, then the solution of
the IVP x" = P(t)x, x(tp) = xq is

x(t) = X(t)X " (to)xo

o If ®(t) is the special fundamental matrix (see Slide 4), then the solution of
the IVP can be written as follows:

x(t) = ®(t)xg

o Consider the system with constant coefficients: x’ = Ax, to = 0.

Then
1 1 2\ AFtF
> eAt:|n+At+jA2t2—|—§A3t3+...: klt
' ' k=0 :
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Homework

Homework:
@ Section 6.5
» 3,5, 7
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