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Generalization of the Eigenvalue Method

In Lectures 10-13, we discussed the eigenvalue method for solving linear systems
with constants coefficients of dimension 2:

x′ =

(
a11 a12
a21 a22

)
x

Goal: to extend the eigenvalue method to systems of dimension n > 2

x′ = Ax (1)

As before, we look for a solution of (1) in the following form:

x = eλtv (2)

λ is the scalar,

v is the constant n × 1 vector.

This leads to the eigenvalue problem for A:

(A− λIn)v = 0 (3)
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Three Cases

When solving the eigenvalue problem

(A− λIn)v = 0

there are 3 possible cases:

1 A has a complete set of n linearly independent eigenvectors and
all eigenvalues are real,

2 A has a complete set of n linearly independent eigenvectors and
one or more pairs of complex conjugate eigenvalues,

3 A is defective, i.e. there are one or more eigenvalues of A for which the
geometric multiplicity is less than the algebraic multiplicity (out of our scope)

In this Lecture, we focus of Case 1.
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Fundamental System of Solutions

The general solution of x′ = Ax is described by the following theorem

Theorem

Let (λ1, v1), . . . , (λn, vn) be eigenpairs for the real n × n matrix A.
Assume that

the eigenvalues λ1, . . . , λn are real,

the eigenvectors v1, . . . , vn are linearly independent

Then
x1 = eλ1tv1, . . . , xn = eλntvn

is a fundamental set of solutions of x′ = Ax on the interval (−∞,∞).
The general solution of x′ = Ax is then given by

x(t) = c1e
λ1tv1 + . . .+ cne

λntvn

Remark: In this theorem, the eigenvalues need not be distinct.
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Real and Distinct Eigenvalues

A frequently occurring special case for which the general solution of x′ = Ax is
always of the form

x(t) = c1e
λ1tv1 + . . .+ cne

λntvn

is when all eigenvalues are distinct.

Theorem

Suppose that the matrix A has n eigenpairs (λ1, v1), . . . , (λn, vn) with the
property that the eigenvalues λ1, . . . , λn are real and distinct. Then

x1 = eλ1tv1, . . . , xn = eλntvn

is a fundamental set of solutions of x′ = Ax on the interval (−∞,∞).
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Symmetric Matrices

Recall that matrix A is called symmetric if A = AT , i.e. aij = aji .

Eigenvalues and eigenvectors of symmetric matrices have the following useful
properties:

All eigenvalues are real.

There always exists a complete set of n linearly independent eigenvectors.

If v1 and v2 are eigenvectors that correspond to different eigenvalues, then

〈v1, v2〉 = 0

Moreover, all eigenvectors belonging to the same eigenvalue can be chosen to
be orthogonal to one another.

Therefore, if A is symmetric, then x′ = Ax will always have a fundamental set of
solutions of the form

x1 = eλ1tv1, . . . , xn = eλntvn
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Example: Diffusion of a One-Dimensional Lattice

Consider the following continuous time, discrete space model of particle diffusion.

Suppose that particles can occupy any of n equally spaced sites lying along the
real line. Let xi (t) be the number of particles residing at the i th site at time t.
Assume that

particle transition to site i are permitted only from the nearest-neighbor sites

particles move from more populated sites to less populated sites

the rate of transition is proportional to the difference between the numbers of
particles at adjacent sites.

Then the differential equation describing the rate of change in the number of
particles at site i is:

If i = 2, . . . , n − 1
x ′i = k(xj−1 − 2xj + xj+1)

If i = 1
x ′1 = k(x2 − x1)

If i = n
x ′n = k(xn−1 − xn)
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Example: Diffusion of a One-Dimensional Lattice

Consider a special case:

k = 1

n = 3

Then

x′ =

−1 1 0
1 −2 1
0 1 −1

 x

The general solution is

x(t) = c1

1
1
1

+ c2e
−t

 1
0
−1

+ c3e
−3t

 1
−2
1


Therefore

lim
t→∞

x(t) =

c1
c1
c1


That is, all solutions approach an equilibrium state in which the numbers of
particles at each site are identical (uniform distribution).
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Summary

Let (λ1, v1), . . . , (λn, vn) be eigenpairs for the real n × n matrix A.
Assume that

I the eigenvalues λ1, . . . , λn are real,
I the eigenvectors v1, . . . , vn are linearly independent

Then

x1 = eλ1tv1, . . . , xn = eλntvn

is a fundamental set of solutions of x′ = Ax on the interval (−∞,∞).

Suppose that eigenvalues λ1, . . . , λn of matrix A are real and distinct. Then

x1 = eλ1tv1, . . . , xn = eλntvn

is a fundamental set of solutions of x′ = Ax on the interval (−∞,∞).

Symmetric Matrices A = AT :
I All eigenvalues are real.
I There always exists a complete set of n linearly independent eigenvectors.
I x1 = eλ1tv1, . . . , xn = eλntvn is a fundamental set of solutions.
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Homework

Homework:

Section 6.3
I 3, 7
I Solve the IVP: 9
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