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Agenda

Existence and Uniqueness

Properties and Structure of Solutions of Homogeneous Systems
I Principle of Superposition
I Linear Independence of Solutions
I Wronskian
I Existence of a Fundamental Set of Solutions

Linear nth order ODEs

Homework
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Existence and Uniqueness

The general first order linear system of dimension n has the following form:

x′ = P(t)x + g(t) (1)

where P(t) is an n × n matrix and g(t) a n × 1 vector.

Theorem

If P(t) and g(t) are continuous on an open interval I = (α, β), then there exists a
unique solution x = z(t) of the initial value problem

x′ = P(t)x + g(t), x(t0) = x0, (2)

where t0 ∈ I , and x0 is any constant vector with n components. Moreover, the
solution exists throughout the interval I .

Important Special Case: Consider the following IVP:

x′ = Ax, x(t0) = x0, (3)

where A is a constant n × n matrix. The above theorem guarantees that a
solution exists and is unique on the entire t-axis.
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Principle of Superposition

Consider the homogeneous system

x′ = P(t)x (4)

Definition

If x1, . . . , xk are solutions of system (4), then an expression of the form

c1x1 + . . .+ ckxk , (5)

where c1, . . . , ck are arbitrary constants, is called a linear combination of
solutions.

Principle of Superposition

If x1, . . . , xk are solutions of system (4) on the interval I , then any linear
combination c1x1 + . . .+ ckxk is also a solution of (4) on I .

Using the Principle of Superposition, we can enlarge a finite set of solutions
{x1, . . . , xk} to a k-dimensional infinite family of solutions c1x1 + . . .+ ckxk
parameterized by c1, . . . , ck .
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Linear (In)Dependence

Goal: to show that all solutions of n-dimensional system x′ = P(t)x are contained
in an n-parameter family c1x1 + . . .+ cnxn, provided that the n solutions
x1, . . . , xn are distinct (=linearly independent).

Definition

The n vector functions x1(t), . . . , xn(t) are said to be linearly independent
on an interval I if the only constants c1, . . . , cn such that

c1x1(t) + . . .+ cnxn(t) = 0 (6)

for all t ∈ I are c1 = c2 = . . . = cn = 0.

If there exist constants c1, . . . , cn, not all zero, such that (6) is true for all
t ∈ I , the vector functions are said to be linearly dependent on I .

Example: Show that the following vector functions are linearly independent on
I = (−∞,∞)

x1(t) =

 e−2t

0
−e−2t

 x2(t) =

et

et

et


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Wronskian

Let x1, . . . , xn be n solutions of x′ = P(t)x and let X(t) be n× n matrix whose jth

column is xj(t), j = 1, . . . , n.

Definition

The Wronskian W = W [x1, . . . , xn] of the n solutions x1, . . . , xn is defined by

W [x1, . . . , xn](t) = detX(t) (7)

Theorem

Let x1, . . . , xn be solutions of x′ = P(t)x on an interval I = (α, β) in which P(t)
is continuous.

If x1, . . . , xn are linearly independent on I , then W [x1, . . . , xn](t) 6= 0
at every point in I

If x1, . . . , xn are linearly dependent on I , then W [x1, . . . , xn](t) = 0
at every point in I

Konstantin Zuev (USC) Math 245, Lecture 31 April 4, 2012 6 / 10



Structure of Solutions

The following theorem shows that all solutions of an n-dimensional homogeneous
system are contained in the n-parameter infinite family of solutions, provided that
these solutions are linearly independent.

Theorem
Let x1, . . . , xn be solutions of

x′ = P(t)x (8)

on an interval I = (α, β) such that, for some point t0 ∈ I , the Wronskian is
nonzero, W [x1, . . . , xn](t0) 6= 0. Then each solution x = z(t) of (8) can be
written as a linear combination of x1, . . . , xn,

z(t) = ĉ1x1(t) + . . .+ ĉnxn(t), (9)

where the constants ĉ1, . . . , ĉn are uniquely defined.

Remark: If W [x1, . . . , xn](t0) 6= 0, then

c1x1(t) + . . .+ cnxn(t) is called the general solution.

{x1(t), . . . , xn(t)} is called a fundamental set of solutions.
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Existence of a Fundamental Set of Solutions

Example: Let

A =

0 −1 2
2 −3 2
3 −3 1


show that the following solutions of x′ = Ax form a fundamental set

x1(t) = e−2t

 1
0
−1

 x2(t) = e−t

1
1
0

 x3(t) = et

1
1
1


It turns out that x′ = P(t)x always has a fundamental set of solutions.

Theorem

Let e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . ., en = (0, . . . , 0, 1)T .
Let x1, . . . , xn be solutions of x′ = P(t)x that satisfy the initial conditions

x1(t0) = e1, . . . , xn(t0) = en, t0 ∈ I

Then x1, . . . , xn form a fundamental set of solutions.
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Linear nth order ODEs
The IVP for the linear nth order ODE is given by{

y (n) + p1(t)y (n−1) + . . .+ pn−1(t)y ′ + pn(t)y = g(t),

y(t0) = y0, y ′(t0) = y1, . . . , y (n−1)(t0) = yn−1.
(10)

Corollary

If the functions p1(t), . . . , pn(t), and g(t) are continuous on the open interval
I = (α, β), then there exists exactly one solution y = z(t) of the initial value
problem (10). This solution exists throughout the interval I .

Corollary

Let y1, . . . , yn be solutions of

y (n) + p1(t)y (n−1) + . . .+ pn−1(t)y ′ + pn(t)y = 0 (11)

on I in which p1(t), . . . , pn(t) are continuous. If for some point t0 ∈ I , the
Wronskian W [y1, . . . , yn] 6= 0, then any solution y = z(t) of (11) can be written
as a linear combination of y1, . . . , yn, z(t) = ĉ1y1(t) + . . .+ ĉnyn(t), where the
constants ĉ1, . . . , ĉn are uniquely determined.
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Homework

Homework:

Section 6.2
I 5, 9, 11
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