Math 245 - Mathematics of Physics and Engineering I

Lecture 29. Convolution Integrals and Their Applications

March 30, 2012

Agenda

- Convolution
 - Motivation
 - Definition
 - Properties
- The Convolution Theorem
- Input-Output Problems
- Summary and Homework

Motivation and Definition of Convolution

Consider the initial value problem

$$y'' + y = g(t), \quad y(0) = 0, \quad y'(0) = 0,$$

It is easy to check that the following function is the solution

$$y(t) = \int_0^t \sin(t - \tau)g(\tau)d\tau$$

The integral that appears on the r.h.s. is called a convolution integral.

Definition

Let f(t) and g(t) be piecewise continuous functions on $[0,\infty)$.

The **convolution of** f **and** g is defined by

$$(f \star g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau$$
 (1)

Convolution integrals arise often in representing the output y(t) of a linear ODE with constant coefficients to an input g(t) in the t-domain.

Properties of Convolution

$$(f\star g)(t)=\int_0^t f(t-\tau)g(\tau)d\tau$$

The notation $f \star g$ is used to emphasize that the convolution has several properties of ordinary multiplication, and $f \star g$ can be considered as a "generalized product".

Theorem

- $f \star g = g \star f$
- $f \star (g_1 + g_2) = f \star g_1 + f \star g_2$
- $\bullet (f \star g) \star h = f \star (g \star h)$
- $f \star 0 = 0$

<u>Remark:</u> There are properties of ordinary multiplication that convolution does not have:

- In general $f \star 1 \neq f$
- $f \star f$ is not necessarily nonnegative.

The Convolution Theorem

Let us again consider the initial value problem

$$y'' + y = g(t), y(0) = 0, y'(0) = 0,$$

Using Laplace transform, we obtain that

$$Y(s) = \frac{1}{1+s^2}G(s), \quad G(s) = \mathcal{L}\{g(t)\}\$$

Therefore the solution of the IVP is

$$y(t) = \mathcal{L}^{-1}\left\{\frac{1}{1+s^2}G(s)\right\}$$

But we already know that, $y(t) = \int_0^t \sin{(t-\tau)}g(\tau)d\tau$ is the solution. Thus,

$$\mathcal{L}\left\{\int_0^t \sin{(t- au)}g(au)d au
ight\} = rac{1}{1+s^2}G(s) = \mathcal{L}\{\sin{t}\}\mathcal{L}\{g(t)\}$$

Equivalently,

$$\mathcal{L}\{\sin t \star g(t)\} = \mathcal{L}\{\sin t\}\mathcal{L}\{g(t)\}$$

The Convolution Theorem

The Convolution Theorem

If $F(s) = \mathcal{L}\{f(t)\}$ and $G(s) = \mathcal{L}\{g(t)\}$ both exist for $s > a \geq 0$, then

$$\mathcal{L}\{f(t)\star g(t)\}=\mathcal{L}\{f(t)\}\mathcal{L}\{g(t)\}$$

<u>Remark:</u> The convolution theorem can sometimes be effectively used to compute the inverse Laplace transform.

Example: Find the inverse Laplace transform of

$$F(s) = \frac{1}{(s^2+1)^2}$$

Answer:

$$\mathcal{L}^{-1}\{F(s)\} = \int_0^t \sin(t-\tau)\sin\tau d\tau = \dots$$

Input-Output Problems

Consider the following IVP:

$$ay'' + by' + cy = g(t), \quad y(0) = y_0, \quad y'(0) = y_1$$
 (2)

- Coefficients a, b, and c describe the properties of some physical system
- g(t) is the input to the system
- Values y_0 and y_1 describe the initial state of the system.

In this context, the initial value problem is often referred to as an **input-output problem**. The solution or output y(t) can be separated in two parts: the **free response** and the **forced response**:

$$y(t) = \underbrace{\mathcal{L}^{-1}\{H(s)[(as+b)y_0 + ay_1]\}}_{\text{free response}} + \underbrace{\int_0^t h(t-\tau)g(\tau)d\tau}_{\text{forced response}}$$
(3)

7 / 13

where

$$H(s) = \frac{1}{as^2 + bs + c}$$
 is called the transfer function

Input-Output Problems

• Input-output problem:
$$ay'' + by' + cy = g(t)$$
, $y(0) = y_0$, $y'(0) = y_1$

• Response:
$$y(t) = \underbrace{\mathcal{L}^{-1}\{H(s)[(as+b)y_0 + ay_1]\}}_{\text{free response}} + \underbrace{\int_0^t h(t-\tau)g(\tau)d\tau}_{\text{forced response}}$$

• $H(s) = \frac{1}{as^2 + bs + c}$ is the transfer function, and $h(t) = \mathcal{L}^{-1}\{H(s)\}$

Important observations:

• The free response is the solution of the IVP

$$ay'' + by' + cy = 0, \quad y(0) = y_0, \quad y'(0) = y_1$$

- ► Therefore, $\mathcal{L}^{-1}\{H(s)[(as+b)y_0+ay_1]\}=c_1y_1(t)+c_2y_2(t)$ where $y_1(t)$ and $y_2(t)$ is a fundamental system for the homogeneous ODE
- The forced response is the solution of the IVP

$$ay'' + by' + cy = g(t), \quad y(0) = 0, \quad y'(0) = 0$$

8 / 13

• The transfer function contains all information about the system (a, b, c).

Input-Output Problems

In many applications, the dominant component of the total response is the forced response and the free response is of little importance.

If $g(t) = \delta(t)$, then the forced response is $h(t) = \mathcal{L}^{-1}\{H(s)\}$, and it is the solution of the IVP

$$ay'' + by' + cy = \delta(t), \quad y(0) = 0, \quad y'(0) = 0$$

Thus, h(t) is the response of the system to a unit impulse at time t=0 under zero initial conditions. It is natural to call h(t) the **impulse response** of the system.

Forced response y_g is the convolution of the impulse response h and the input g

$$y_g(t) = \int_0^t h(t-\tau)g(\tau)d au$$
 or in the s -domain $Y_g(s) = H(s)G(s)$

Q: How to find the forced response $y_g(t)$?

- Find the transfer function H(s)
 - ② Find the Laplace transform of the input G(s)
 - **1** Then $y_g(t) = \mathcal{L}^{-1}\{H(s)G(s)\}$

Example

Consider the input-output system

$$y'' + 2y' + 5y = t$$
, $y(0) = 1$, $y'(0) = -3$

 Find the transfer function and the impulse response Answer:

$$H(s) = \frac{1}{s^2 + 2s + 5}, \quad h(t) = \frac{1}{2}e^{-t}\sin 2t$$

• Find the forced response

Answer:

$$y_g(t) = \frac{1}{5}t - \frac{2}{25} + \frac{2}{25}e^{-t}\cos 2t - \frac{3}{50}e^{-t}\sin 2t$$

Summary

• The convolution of f and g is

$$f(t \star g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau$$

►
$$f \star g = g \star f$$

► $f \star (g_1 + g_2) = f \star g_1 + f \star g_2$
► $(f \star g) \star h = f \star (g \star h)$
► $f \star 0 = 0$

Convolution Theorem:

$$\mathcal{L}\lbrace f(t)\star g(t)\rbrace = \mathcal{L}\lbrace f(t)\rbrace \mathcal{L}\lbrace g(t)\rbrace$$

March 30, 2012

Summary

• Input-output problem:

$$ay'' + by' + cy = g(t), \quad y(0) = y_0, \quad y'(0) = y_1$$

► Total response:
$$y(t) = \underbrace{\mathcal{L}^{-1}\{H(s)[(as+b)y_0 + ay_1]\}}_{\text{free response}} + \underbrace{\int_0^t h(t-\tau)g(\tau)d\tau}_{\text{forced response}}$$

- ► Transfer function: $H(s) = \frac{1}{as^2 + bs + c}$
- ▶ Impulse response: $h(t) = \mathcal{L}^{-1}\{H(s)\}$
 - * is the solution of

$$ay'' + by' + cy = \delta(t), \qquad y(0) = 0, \qquad y'(0) = 0$$

▶ Forced response y_g is the convolution of the impulse response and the input:

$$y_g(t) = \int_0^t h(t-\tau)g(\tau)d\tau$$
 or in the s-domain $Y_g(s) = H(s)G(s)$

Homework

Homework:

- Section 5.8
 - **5**, 9, 19