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ODE with Discontinuous or Periodic Forcing Functions

In Lecture 26, we discussed the general procedure used for solving initial value
problems be means of the Laplace transform.

ay" +by' +cy=g(t), y(0)=y, Y'(0)=xn

@ Transform the IVP into an algebraic equation in the s—domain.
@ Find the Laplace transform Y(s) nof the solution.
© Find the solution of the IVP y(t) = L71{Y(s)}.

In many applications, the nonhomogeneous term g(t), also called forcing function,
is modeled by a discontinuous function or by a periodic function
Examples:

@ In the actual physical system the forcing function is continuous, but it
sometimes changes rapidly over a very short period of time.
@ Engineering systems are often tested by subjecting them to discontinuous
forcing functions.
@ Vibrations of mechanical systems.
Goal: to develop properties of the Laplace transform of discontinuous
and periodic functions.
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The Unit Step Function

To deal effectively with functions having jump discontinuities, it is helpful to
introduce the unit step function or Heaviside function:

w={ 1 130 &

@ In applications, the Heaviside function often represents a force or signal that
turned on at time t = 0.

Translation of the Heaviside function:
0, t<c
) ={ 3§56 @

The signal that is turned on at time t = ¢ and then turned off at time t =d > ¢
can be modeled by an indicator function:

0, t<cort>d
vea®) = uelt) ~wal) = { 3 £S5 ®)
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Laplace Transform of the Unit Step Function

Theorem
@ The Laplace transform of u. with ¢ > 0 is

efCS

L{u(t)} = < s>0

@ The Laplace transform of ucg = uc — ug with0 < c <d is

e—c _ e—ds

L{uc(t)} = ——| s>0
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Time-Shifted Functions

For a given function f(t) defined for t > 0, define

0 t<c
f(t) = ’
(1) { f(t—c), t>c
In terms of the unit step function, f.(t) can be written as follows:

fe(t) = u(t)f(t — ¢)

Theorem
If F(s) = L{f(t)} exists for s > a and ¢ > 0, then

L{fe(t)} = L{uc(t)f(t —c)} =e “F(s)| s>a

()

Example: Find the Laplace transform of the function
t, 0<t<?2
f(ty=14 1, 2<t<3
e % 3<t
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Periodic Functions

Definition

A function f is said to be periodic with period T > 0 if
f(t+ T)=1(t)

for all t is the domain of f.

In discussing a periodic function f(t) it is convenient to introduce a window
function fr(t) defined by

fT(t)Z{ 0 L0 T) _ py(ue) - ur(e)) (6)

0, otherwise

The entire periodic function is then can be written in terms of its window function
as follows:

F(t)=>_ fr(t—nT)u.r(t) (7)
n=0
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Laplace Transform of a Periodic Function

Theorem
If f is periodic with period T and is piecewise on [0, T], then

Fr(s)
L{f(1)} = 1 e-sT
where
T
Fr(s) = £{fr} = / et (t)dt
0
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Examples

@ Find the Laplace transform of the following periodic function with period
T=2
t, O0<t<l1
”“%‘{Q 1<t<?2

Answer:
_ l-—e® e *
C2(1—e%)  s(1—e %)

F(s)

@ Find the inverse Laplace transform of

Answer: f(t) has period T =2

1, 0<t<l
fﬂ”:{o,lgt<2

Konstantin Zuev (USC) Math 245, Lecture 27 March 23, 2012 8 /10



Summary

@ The unit step function (or Heaviside function) and its translation:

0, t<0 0,
u(t):{l t>0 UC(t):{l

@ The Laplace transform of u. with ¢ > 0 is

—Cs

L{uc(t)} = es s>0

@ The Laplace transform of the shifted function

t<c
t>c

L{fe(t)} = L{uc(t)f(t — c)} = e"“F(s)

e If f is periodic with period T and is piecewise on [0, T], then

Fr(s)

L{F(e)} = 17 Fr(s) = L{fr} = /o et F(t)dt
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Homework

Homework:
@ Section 5.5
» 5,0, 13,23
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