Math 245 - Mathematics of Physics and Engineering I

Lecture 24. Properties of the Laplace Transform

March 9, 2012

In this Lecture, we will prove several properties of the Laplace transform

$$\mathcal{L}{f}(s) = \int_0^\infty e^{-st} f(t) dt$$

that greatly simplify computation of $\mathcal{L}\{f\}(s)$.

• Laplace transform of $e^{ct}f(t)$ If $F(s) = \mathcal{L}\{f(t)\}$ exists for s > a, and c is a constant, then

$$\boxed{\mathcal{L}\{e^{ct}f(t)\} = F(s-c) \mid s > a+c}$$

Geometrically: multiplication of f(t) by e^{ct} results in a translation of the transform F(s) a distance c.

Example: Find the Laplace transform of $f(t) = e^{-2t} \sin 4t$

$$\overline{\text{Answer:}} F(s) = \frac{4}{(s+2)^2+16}, \quad s > -2.$$

- Laplace transform of f'(t)Suppose that
 - ► f is continuous.
 - f' is piecewise continuous on the interval $0 \le t \le T$, for any T.
 - f and f' are of exponential order: $|f(t)|, |f'(t)| \leq Me^{at}$.

Then

$$\boxed{\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0) \mid s > a}$$

Suppose now that f' is continuous, f'' is piecewise continuous, and both are of exponential order, then

$$\mathcal{L}\{f''(t)\} = s^2 \mathcal{L}\{f(t)\} - sf(0) - f'(0)$$
 $s > a$

This can be generalized. Suppose that

- $ightharpoonup f, f', \dots, f^{(n-1)}$ are continuous
- $f^{(n)}$ is piecewise continuous on the interval $0 \le t \le T$, for any T.
- $f, f', \ldots, f^{(n)}$ are of exponential order: $|f^{(i)}(t)| \leq \overline{M}e^{at}$.

Then

$$\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - \ldots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$
 $s > a$

3 / 7

Example: Consider the following initial value problem:

$$y'' + 2y' + 5y = e^{-t}, y(0) = 1, y'(0) = -3$$

Assume that the solution of this problem satisfies the above hypotheses. Find its Laplace transform.

Answer:

$$Y(s) = \frac{s^2}{(s+1)(s^2+2s+5)}$$

- Laplace transform of tⁿf(t)
 Suppose that
 - f is piecewise continuous on the interval $0 \le t \le T$
 - f is of exponential order: $|f(t)| \leq Me^{at}$

Then for any positive integer n

$$\boxed{\mathcal{L}\{t^n f(t)\} = (-1)^n F^{(n)}(s) \mid s > a}$$

A simple corollary: for any positive integer n,

$$\left| \mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \right| \quad s > 0$$

Summary

• If $F(s) = \mathcal{L}\{f(t)\}$ exists for s > a, and c is a constant, then

$$\boxed{\mathcal{L}\{e^{ct}f(t)\} = F(s-c) \mid s > a + c}$$

If

- $ightharpoonup f, f', \dots, f^{(n-1)}$ are continuous
- $f^{(n)}$ is piecewise continuous on the interval $0 \le t \le T$, for any T.
- $f, f', \ldots, f^{(n)}$ are of exponential order: $|f^{(i)}(t)| \leq Me^{at}$.

Then

$$\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - \ldots - sf^{(n-2)}(0) - f^{(n-1)}(0) \quad s > s$$

- If
- f is piecewise continuous on the interval $0 \le t \le T$
- f is of exponential order: $|f(t)| \leq Me^{at}$

Then for any positive integer n

$$\left|\mathcal{L}\left\{t^nf(t)\right\}=(-1)^nF^{(n)}(s)\right|\ s>a$$

• For any positive integer n,

$$\boxed{\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \quad s > 0}$$

Homework

Homework:

- Section 5.2
 - **3**, 5, 7, 9, 19

7 / 7