Math 245 - Mathematics of Physics and Engineering I

Lecture 23. The Laplace Transform

March 7, 2012

1 / 10

Agenda

- Integral Transforms
- Laplace Transform
- Linearity of the Laplace Transform
- Functions of Exponential Order
- Existence of the Laplace Transform
- Basic Examples
- Summary and Homework

Integral Transforms

An integral transform is a map of the form

$$F(s) = \int_{\alpha}^{\beta} K(t, s) f(t) dt$$
 (1)

that maps a given function f(t) into another function F(s).

Q: Why do we call it "transform" and not "operator" as in Lecture 16?

A: Operator: $f(t) \mapsto F(t)$; Transform: $f(t) \mapsto F(s)$.

Terminology:

- f(t) is a function or signal in the time or "t-domain"
- F(s) is its representation in the frequency or "s-domain"
- K(t, s) is called kernel

The Laplace transform is a special case of (1) with

- \bullet $\alpha = 0$
- $\beta = \infty$
- $K(t,s) = e^{-st}$

Laplace Transform

Definition

Let f be a function on $[0,\infty)$. The Laplace transform of f is the function F defined by the integral

$$\mathcal{L}\lbrace f(t)\rbrace = F(s) = \int_0^\infty e^{-st} f(t) dt$$
 (2)

The domain of F(s) is the set of all values of s for which the integral converges.

Q: Why do wee need the Laplace transform?

<u>A:</u> The Laplace transform is often used in engineering to study input-output relations of linear systems, feedback control systems, and electric circuits.

The Laplace transform is also used for solving ODEs:

- Transform a "difficult" problem for f (ODE) to a "simpler" (algebraic) problem for F
- Solve this simpler problem to find F
- Recover the desired function f from F

Examples

Compute the Laplace transform of

•
$$f(t) = 1$$

$$F(s) = \frac{1}{s} \quad \text{for } s > 0$$

•
$$f(t) = e^{(a+ib)t}$$

$$F(s) = \frac{1}{s - a - ib} \quad \text{for } s > a$$

Linearity of the Laplace Transform

Theorem

Suppose that f_1 and f_2 are two functions whose Laplace transforms exist for $s > a_1$ and $s > a_2$, respectively. Then for any constants c_1 and c_2

$$\mathcal{L}\{c_1f_1 + c_2f_2\} = c_1\mathcal{L}\{f_1\} + c_2\mathcal{L}\{f_2\}, \quad s > \max\{a_1, a_2\}$$
(3)

Example: Find the Laplace transform of $f(t) = \sin at$, $t \ge 0$.

Hint: Use Euler's formula

$$e^{iat} = \cos at + i \sin at$$

Answer:

$$\mathcal{L}\{\sin at\} = \frac{a}{s^2 + a^2}, \quad s > 0$$

Functions of Exponential Order

<u>Goal:</u> We want to describe a fairly general class of functions for which the Laplace transform is guaranteed to exist.

Simple observation: f(t) can not grow too fast, since $f(t)e^{-st}$ must vanish sufficiently rapidly as $t \to \infty$ to insure that $\int_0^\infty e^{-st} f(t) dt$ converges.

Definition

A function f(t) is of exponential order (as $t \to \infty$) if

$$|f(t)| \le Me^{at}, \quad \text{for } t \ge t_0$$
 (4)

for some constants t_0 , M, and a.

Remark: To show that f(t) is of exponential order, it is suffices to show that $|f(t)|/e^{at}$ is bounded for all sufficiently large t.

Examples: Are the following function of exponential order?

- $f(t) = \cos at$ yes
- $f(t) = t^{10}$ yes
- $f(t) = e^{t^2}$ no

Existence of the Laplace Transform

The following theorem guarantees that the Laplace transform $\mathcal{L}\{f\}$ exists if f(t) is a piecewise continuous function of exponential order.

Theorem

Suppose that

- f is piecewise continuous on the interval $0 \le t \le T$ for any T > 0
- f is of exponential order, $|f(t)| \leq Me^{at}$ when $t \geq t_0$

Then the Laplace transform $\mathcal{L}\{f(t)\}$ exists for s > a ($\lim_{s \to \infty} F(s) = 0$)

Reminder: f is piecewise continuous on $[\alpha, \beta]$ if it is continuous at all but possible finitely many points of $[\alpha, \beta]$, at which the function has a finite jump discontinuity

Example: Find the Laplace transform of

$$f(t) = \begin{cases} 4, & 0 \le t < 1 \\ e^{2t}, & t \ge 1 \end{cases}$$

8 / 10

Summary

• Laplace transform: $f(t) \mapsto F(s)$

$$\mathcal{L}\lbrace f(t)\rbrace = F(s) = \int_0^\infty e^{-st} f(t) dt$$

- f(t) is a signal in the t-domain
- F(s) is its representation in the s-domain
- Laplace transform is linear:

$$\mathcal{L}\{c_1f_1 + c_2f_2\} = c_1\mathcal{L}\{f_1\} + c_2\mathcal{L}\{f_2\}$$

• f(t) is of exponential order (as $t \to \infty$) if for some constants t_0, M , and a

$$|f(t)| \leq Me^{at}$$
, for $t \geq t_0$

• Laplace transform $\mathcal{L}\{f\}$ exists if f(t) is a piecewise continuous function of exponential order.

Homework

Homework:

- Section 5.1
 - **7**, 10, 17, 25