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Variation of Parameters

In this Lecture, we will learn another method for finding a particular solution of a

nonhomogeneous equation, known as variation of parameters or variation of
constants. This method is due to Lagrange

@ The main advantage of this method is that it is a general method . In
principle, at least, it can be applied to any nonhomogeneous equation.
@ The main drawback is that computations are often tedious.
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Variation of Parameters for Systems

Let us first consider the nonhomogeneous system

x = P(t)x + g(t) (1)
where
_ (pu(t)  p2(t) _ (&)
P(t) = (,D21(t) p22(t)> and g(t) = <g2(t)> 2)

Suppose that
con () oG o

form a fundamental set of solutions for the homogeneous system x’ = P(t)x.
This means that

A0 ()
A% 2@)!#0 @)

xp=P(t)x1, X3 =P(t)xz, W1, xo] =detX(t) = || (t) x5

1 1
e Matrix X(t) = (228; XZE;;) is called a fundamental matrix
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The Method

In terms of a fundamental matrix X(t) = (x1(t),x2(t)), the fact that x;(t) and
x2(t)) are a fundamental set of solutions of X" = P(t)x is written as follows:

X'(t) = P(t)X(t), detX(t)#0 (5)

The method of variation of parameters consists of 3 steps:

@ Find a fundamental set of solutions x; and x, of x’ = P(t)x.
Then the general solution of the homogeneous equation is

x(t) = axi(t) + exa(t) (6)

@ To find a particular solution of x’ = P(t)x + g(t), replace the ¢; and ¢, by
functions u1(t) and uy(t). In other words, vary the parameters ¢; and c:

xp(t) = un(t)xa(t) + ta(t)xa(t) = X(t)u(t) (7)

@ Find functions uy(t) and ux(t) such that (7) is a solution of X' = P(t)x +g(t)
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Main Result

Theorem
If each entry of P(t) and g(t) is a continuous function on an interval |, then

o A particular solution of X' = P(t)x + g(t) is

x,(t) = X(t) / X~ (t)g(t)dt | X(t) = (228 2;8) ©

@ The general solution of X' = P(t)x + g(t) is

[X(8) = axa(e) + oxa(t) + %,(1) | (9)

Remark: There are two major problems with using this method:
o If P(t) is not a constant matrix, then it is difficult to find a fundamental set
of solutions x; and x, of the homogeneous system x’ = P(t)x.

@ The evaluation of the integrals appearing in (5) may be difficult.
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Example

Find the solution of the initial value problem:

x = (; :g) X + (1(2);:ost t) , x(0) = <1f>
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Summary: Variation of Parameters for Systems

x' = P(t)x + g(t)
Let
@ each entry of P(t) and g(t) be a continuous function on an interval /

@ xj and x, be a fundamental set of solutions of X = P(t)x

1 1
o X(t) = (x1,x2) = (22%3 iégg) be the corresponding fundamental matrix
Then

@ A particular solution of x' = P(t)x + g(t) is

xo(t) = X(t) [ X (0(0)de

@ The general solution of x' = P(t)x + g(t) is

\ x(t) = c1x1(t) + cxa(t) + x,(t) \
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Homework

Homework:
@ Section 4.7
» 3,59

Konstantin Zuev (USC) Math 245, Lecture 21



