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Lecture 19. Nonhomogeneous Equations:
Method of Undetermined Coefficients
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Nonhomogeneous Equations

In Lecture 18, we learned how to solve linear homogeneous second order ODE
with constant coefficients,

ay ′′ + by ′ + cy = 0 (1)

In this lecture, our goal is learn how to solve nonhomogeneous equations:

ay ′′ + by ′ + cy = g(t) (2)

The structure of the general solution of (2) is described by the following theorem:

Theorem

If Y1 and Y2 are two solutions of (2), then (Y1 − Y2) is a solution of (1).

The general solution of (2) can be written in the form

y(t) = c1y1(t) + c2y2(t) + Y (t) (3)

I y1(t) and y2(t) form a fundamental set of (1)
I Y (t) is some specific solution of (2)
I c1 and c2 are arbitrary constants
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Nonhomogeneous Equations

General Strategy for Solving ay ′′ + by ′ + cy = g(t):

1 Find the general solution c1y1 + c2y2 of the corresponding homogeneous
equation ay ′′ + by ′ + cy = 0. This solution is called the complementary
solution.

2 Find some single solution Y of the nonhomogeneous equation. Often this
solution is referred to as a particular solution.

3 The general solution of ay ′′ + by ′ + cy = g(t) is then y = c1y1 + c2y2 + Y .

Question: How to find a particular solution Y ?

We will discuss two methods:

Method of Undetermined Coefficients
I Advantage: easy to use
I Disadvantage: sometimes does not work

Method of Variation of Parameters
I Advantage: general method (always works)
I Disadvantage: computationally difficult
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Method of Undetermined Coefficients: Main Idea

In the method of undetermined coefficients, we assume that the particular solution
Y has a specific form, but with coefficient left unspecified,

Y (t) = f (t;A,B,C , . . .) (4)

f is some function that depends on parameters A,B,C , . . .

We then substitute the assumed expression (4) into our equation

ay ′′ + by ′ + cy = g(t)

and attempt to determine the coefficients A,B,C , . . . so as to satisfy that
equation.There are two possible outcomes:

If we are successful ⇒ we have found Y

If not ⇒ there is no solution of the form (4). In this case, we may modify (4)
and try again.

Important Remark:

This method is usually used only for equation in which g(t) consists of
polynomials, exponential functions, sines, cosines, or sums or products of these
functions.
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Examples

Find a particular solution of

y ′′ − 3y ′ − 4y = 3e2t

Find a particular solution of

y ′′ − 3y ′ − 4y = 2 sin t

Find a particular solution of

y ′′ − 3y ′ − 4y = 4t2 − 1
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Method of Undetermined Coefficients

ay ′′ + by ′ + cy = g(t)

Half-Way Results:

If g(t) = eαt , then assume that Y (t) = Aeαt

If g(t) = sinβt or g(t) = cosβt, then assume that
Y (t) = A sinβt + B cosβt

If g(t) is a polynomial, then assume that Y (t) is a polynomial of the same
degree.

Important Remark: As we will see next time, these guidelines will not lead us to
success every time: in some cases, we will not be able to find a particular solution.
In such cases, we will need to slightly modify the expressions for Y (t).

Question: What if g(t) is a product of eαt , sinβt, cosβt, and polynomials?

Example: Find a particular solution of

y ′′ − 3y ′ − 4y = −8et cos 2t
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Summary

The general solution of

ay ′′ + by ′ + cy = g(t)

can be written in the form

y(t) = c1y1(t) + c2y2(t) + Y (t) (5)

I y1(t) and y2(t) form a fundamental set of the corresponding homogeneous
equation ay ′′ + by ′ + cy = 0

I Y (t) is some specific solution of the nonhomogeneous equation
I c1 and c2 are arbitrary constants

How to find a particular solution Y (t)?
I Method of Undetermined Coefficients

Half-Way Results:
F If g(t) = eαt , then assume that Y (t) = Aeαt

F If g(t) = sinβt or g(t) = cosβt, then assume that Y (t) = A sinβt + B cosβt
F If g(t) is a polynomial, then assume that Y (t) is a polynomial of the same

degree.
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Homework

Homework:

Section 4.5
I 1, 2, 13
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