Math 245 - Mathematics of Physics and Engineering I

Lecture 19. Nonhomogeneous Equations: Method of Undetermined Coefficients

February 27, 2012

Nonhomogeneous Equations

In Lecture 18, we learned how to solve linear homogeneous second order ODE with constant coefficients,

$$ay'' + by' + cy = 0 (1)$$

In this lecture, our goal is learn how to solve nonhomogeneous equations:

$$ay'' + by' + cy = g(t) \tag{2}$$

The structure of the general solution of (2) is described by the following theorem:

Theorem

- If Y_1 and Y_2 are two solutions of (2), then $(Y_1 Y_2)$ is a solution of (1).
- The general solution of (2) can be written in the form

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$
(3)

- $y_1(t)$ and $y_2(t)$ form a fundamental set of (1)
- Y(t) is some specific solution of (2)
- $ightharpoonup c_1$ and c_2 are arbitrary constants

Nonhomogeneous Equations

General Strategy for Solving ay'' + by' + cy = g(t):

- Find the general solution $c_1y_1 + c_2y_2$ of the corresponding homogeneous equation ay'' + by' + cy = 0. This solution is called the complementary solution.
- **②** Find some single solution *Y* of the nonhomogeneous equation. Often this solution is referred to as a particular solution.
- **1** The general solution of ay'' + by' + cy = g(t) is then $y = c_1y_1 + c_2y_2 + Y$.

Question: How to find a particular solution Y?

We will discuss two methods:

- Method of Undetermined Coefficients
 - ► Advantage: easy to use
 - ▶ Disadvantage: sometimes does not work
- Method of Variation of Parameters
 - Advantage: general method (always works)
 - ► Disadvantage: computationally difficult

Method of Undetermined Coefficients: Main Idea

In the method of undetermined coefficients, we assume that the particular solution Y has a specific form, but with coefficient left unspecified,

$$Y(t) = f(t; A, B, C, \ldots)$$
(4)

• f is some function that depends on parameters A, B, C, \dots

We then substitute the assumed expression (4) into our equation

$$ay'' + by' + cy = g(t)$$

and attempt to determine the coefficients A, B, C, \ldots so as to satisfy that equation. There are two possible outcomes:

- If we are successful \Rightarrow we have found Y
- If not ⇒ there is no solution of the form (4). In this case, we may modify (4) and try again.

Important Remark:

This method is usually used only for equation in which g(t) consists of polynomials, exponential functions, sines, cosines, or sums or products of these functions.

Examples

• Find a particular solution of

$$y'' - 3y' - 4y = 3e^{2t}$$

• Find a particular solution of

$$y'' - 3y' - 4y = 2\sin t$$

• Find a particular solution of

$$y'' - 3y' - 4y = 4t^2 - 1$$

Method of Undetermined Coefficients

$$ay'' + by' + cy = g(t)$$

Half-Way Results:

- If $g(t) = e^{\alpha t}$, then assume that $Y(t) = Ae^{\alpha t}$
- If $g(t) = \sin \beta t$ or $g(t) = \cos \beta t$, then assume that $Y(t) = A \sin \beta t + B \cos \beta t$
- If g(t) is a polynomial, then assume that Y(t) is a polynomial of the same degree.

Important Remark: As we will see next time, these guidelines will not lead us to success every time: in some cases, we will not be able to find a particular solution. In such cases, we will need to slightly modify the expressions for Y(t).

Question: What if g(t) is a product of $e^{\alpha t}$, $\sin \beta t$, $\cos \beta t$, and polynomials?

Example: Find a particular solution of

$$y'' - 3y' - 4y = -8e^t \cos 2t$$

Summary

The general solution of

$$ay'' + by' + cy = g(t)$$

can be written in the form

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$
 (5)

- ▶ $y_1(t)$ and $y_2(t)$ form a fundamental set of the corresponding homogeneous equation ay'' + by' + cy = 0
- ightharpoonup Y(t) is some specific solution of the nonhomogeneous equation
- $ightharpoonup c_1$ and c_2 are arbitrary constants
- How to find a particular solution Y(t)?
 - Method of Undetermined Coefficients Half-Way Results:
 - * If $g(t) = e^{\alpha t}$, then assume that $Y(t) = Ae^{\alpha t}$
 - * If $g(t) = \sin \beta t$ or $g(t) = \cos \beta t$, then assume that $Y(t) = A \sin \beta t + B \cos \beta t$
 - * If g(t) is a polynomial, then assume that Y(t) is a polynomial of the same degree.

Homework

Homework:

- Section 4.5
 - **1**, 2, 13