Math 245 - Mathematics of Physics and Engineering I

Lecture 18. Linear Homogeneous Second Order ODEs with Constant Coefficients

February 24, 2012

In this Lecture, we study the problem of finding a fundamental set of solutions of the linear homogeneous second order ODE with constant coefficients

$$ay'' + by' + cy = 0, \qquad a \neq 0$$
 (1)

Using the state variables $x_1 = y$ and $x_2 = y'$, we transform (1) into the first order linear system

$$\mathbf{x}' = \mathbf{A}\mathbf{x} = \begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix} \mathbf{x} \tag{2}$$

As we know (Lecture 16),

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$
 (3)

is a general solution of (1) if and only if

$$\mathbf{x} = c_1 \begin{pmatrix} y_1(t) \\ y'_1(t) \end{pmatrix} + c_2 \begin{pmatrix} y_2(t) \\ y'_2(t) \end{pmatrix} \tag{4}$$

2/9

is a general solution of (2).

We know how to find general solutions of systems (2): the eigenvalue method.

Theorem

• The eigenvalues of $\mathbf{A}=\begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix}$ are the roots of

$$Z(\lambda) = a\lambda^2 + b\lambda + c = 0$$
 (5)

3 / 9

- If λ is an eigenvalue of A, then
 - the corresponding eigenvector is $v = \begin{pmatrix} 1 \\ \lambda \end{pmatrix}$
 - $\mathbf{x} = \begin{pmatrix} e^{\lambda t} \\ \lambda e^{\lambda t} \end{pmatrix}$ is a solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$
 - $y = e^{\lambda t}$ is a solution of ay'' + by' + cy = 0
- Eq. (5) is called the characteristic equation for the ODE ay'' + by' + cy = 0The roots of the characteristic equation (=eigenvalues of **A**) are:

$$\lambda_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad \lambda_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 (6)

Case I: Distinct Real Roots, $b^2 - 4ac > 0$

The eigenvectors corresponding to the eigenvalues λ_1 and λ_2 are

$$v_1 = \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix}$

The general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is then

$$\mathbf{x} = c_1 e^{\lambda_1 t} \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix} + c_2 e^{\lambda_2 t} \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix}$$

and the general solution of ay'' + by' + cy = 0 is

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

Case II: Repeated Roots, $b^2 - 4ac = 0$

When we studied autonomous homogeneous systems with repeated eigenvalues $\lambda_1 = \lambda_2$ (Lecture 13), we considered two cases:

- A is diagonal $\Leftrightarrow \lambda$ has two independent eigenvectors
- A is nondiagonal $\Leftrightarrow \lambda$ has one independent eigenvector \mathbf{v}

In our case,
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix}$$
 is always nondiagonal.

In this case, the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x} = c_1 e^{\lambda t} \mathbf{v} + c_2 e^{\lambda t} (t \mathbf{v} + \mathbf{w}) \tag{7}$$

where \mathbf{w} is a generalized eigenvector corresponding to λ , that is any solution of

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{w} = \mathbf{v}$$

In our case,

$$\lambda = -b/2a, \quad \mathbf{v} = \begin{pmatrix} 1 \\ \lambda \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Thus, the general solution of ay'' + by' + cy = 0 is

$$y(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}$$

5 / 9

Case III: Complex Conjugate Roots: $b^2 - 4ac < 0$

In this case, the roots of the characteristic equation are

$$\lambda_1 = \underbrace{\frac{-b}{2a}}_{\alpha} + i \underbrace{\frac{\sqrt{4ac - b^2}}{2a}}_{\beta} \quad \text{and} \quad \lambda_2 = \underbrace{\frac{-b}{2a}}_{\alpha} - i \underbrace{\frac{\sqrt{4ac - b^2}}{2a}}_{\beta}$$

The corresponding eigenvectors:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ \alpha + i\beta \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \\ \alpha \end{pmatrix}}_{\mathbf{a}} + i \underbrace{\begin{pmatrix} 1 \\ \beta \end{pmatrix}}_{\mathbf{b}} \quad \text{and} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ \alpha - i\beta \end{pmatrix}$$

Then, the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x} = c_1 e^{\alpha t} (\mathbf{a} \cos \beta t - \mathbf{b} \sin \beta t) + c_2 e^{\alpha t} (\mathbf{a} \sin \beta t + \mathbf{b} \cos \beta t)$$

Thus, the general solution of ay'' + by' + cy = 0 is

$$y(t) = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t$$

6 / 9

Examples

Find the general solutions for the following ODEs:

- y'' + 5y' + 6y = 0
- y'' + y' + y = 0
- 4y'' 4y' + y = 0
 - Find the solution of the IVP, y(0) = 2, y'(0) = 1/3.

Find an ODE whose general solution is

$$y = c_1 e^{-3t} \cos 4t + c_2 e^{-3t} \sin 4t$$

Find the values of α for which all solutions tend to zero as $t \to \infty$.

$$y'' + (3 - \alpha)y' - 2(\alpha - 1)y = 0$$

Summary

The general solution of the ODE

$$ay'' + by' + cy = 0$$

is

▶ Distinct Real Roots, $\lambda_1 \neq \lambda_2$, $b^2 - 4ac > 0$

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

• Repeated Roots, $\lambda_1 = \lambda_2 = \lambda$, $b^2 - 4ac = 0$

$$y(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}$$

► Complex Conjugate Roots, $\lambda = \alpha \pm i\beta$, $b^2 - 4ac > 0$

$$y(t) = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t$$

Homework

Homework:

- Section 4.3
 - ▶ 9(a), 15(a), 17(a)
 - ► Solve the IVP 37
 - **45**, 47