Math 245 - Mathematics of Physics and Engineering I

Lecture 16. Theory of Second Order Linear Homogeneous ODEs

February 17, 2012

Agenda

- Existence and Uniqueness of Solutions
- Linear Operators
- Principle of Superposition for Homogeneous Equations
- Summary and Homework

Consider the second order linear ODE:

$$y'' + p(t)y' + q(t)y = g(t)$$
 (1)

where p, q and g are continuous functions on the interval I. By introducing the state variables

$$x_1 = y, \quad x_2 = y' \tag{2}$$

3 / 12

we convert (1) to the system of two first order linear ODEs

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ g(t) \end{pmatrix}$$
(3)

where $\mathbf{x} = (x_1, x_2)^T$. Trivial, yet very important observation:

 $y = \phi(t)$ is a solution of (1) if and only if $\mathbf{x} = (\phi(t), \phi'(t))^T$ is a solution of (3)

Konstantin Zuev (USC) Math 245, Lecture 16 February 17, 2012

If in addition to equation (1) we also have initial conditions

$$\begin{cases} y'' + p(t)y' + q(t)y = g(t), \\ y(t_0) = y_0, \\ y'(t_0) = y_1. \end{cases}$$
(4)

then the initial value problem (4) is equivalent to

$$\begin{cases}
\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ g(t) \end{pmatrix}, \\
\mathbf{x}(t_0) = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}
\end{cases} (5)$$

"Equivalent" in the following sense:

 $y = \phi(t)$ is a solution of (4) if and only if $\mathbf{x} = (\phi(t), \phi'(t))^T$ is a solution of (5)

Konstantin Zuev (USC) Math 245, Lecture 16 February 17, 2012

Observe that (3) is a special case of the general system of two first order ODEs:

$$\mathbf{x}' = \begin{pmatrix} p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t) \end{pmatrix} \mathbf{x} + \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$$
(6)

In Lecture 9, we described sufficient conditions for the existence of a unique solution to an initial value problem for (6):

Theorem

Let

- all functions $p_{11}(t)$, $p_{12}(t)$, $p_{21}(t)$, $p_{22}(t)$, $g_1(t)$, and $g_2(t)$ be continuous on an open interval $I = (\alpha, \beta)$, $t_0 \in I$, and
- x₀ be any given vector

Then there exists a unique solution of the initial value problem

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

on the interval I.

5 / 12

As a corollary, we obtain the following result:

Corollary

- Let p(t), q(t), and g(t) be continuous functions on an open interval I
- Let t₀ be any point in I, and
- Let y_0 and y_1 be any given numbers.

Then there exists a unique solution of the initial value problem

$$\begin{cases} y'' + p(t)y' + q(t)y = g(t), \\ y(t_0) = y_0, \\ y'(t_0) = y_1. \end{cases}$$

on the interval I.

 $\frac{\text{Example:}}{\text{problem}} \ \text{Find the longest interval in which the solution of the initial value} \\$

$$(t^2-3t)y''+ty'-(t+3)y=0, y(1)=2, y'(1)=1$$

Definition

An **operator** A is a map that associates one function to another function,

$$A: f \rightarrow g = A[f]$$

Examples:

• Operator of multiplication by function *h*:

$$h: f \to h[f], \quad h[f](t) = h(t)f(t)$$

• Operator of differentiation:

$$D: f \to D[f], \quad D[f](t) = \frac{df}{dt}(t)$$

Definition

Operator A is called **linear** if

$$A[c_1f_1 + c_2f_2] = c_1A[f_1] + c_2A[f_2]$$

Both $h[\cdot]$ and $D[\cdot]$ are linear operators

7 / 12

Using $h[\cdot]$ and $D[\cdot]$, we can construct new linear operators. For example, if p and q are continuous functions on an interval I, we can define the second order differential operator:

$$L = D^2 + pD + q \equiv \frac{d^2}{dt^2} + p\frac{d}{dt} + q \tag{7}$$

If y is twice continuously differentiable, $y \in C^2(I)$, then

$$L[y](t) = y''(t) + p(t)y'(t) + q(t)y(t)$$
(8)

8 / 12

Remark: Function L[y] is continuous on I, $L[y] \in C(I)$

In terms of L,

- Nonhomogeneous equation y'' + py' + qy = g is written as L[y] = g
- Homogeneous equation y'' + py' + qy = 0 is written as L[y] = 0

Important property of L: L is a linear operator

Linearity of *L* has an important consequence for homogeneous equations:

Principle of Superposition

If y_1 and y_2 are two solutions of

$$L[y] = y'' + py' + qy = 0$$

then any linear combination

$$y = c_1 y_1 + c_2 y_2$$

is also a solution.

All above results can be extended to the homogeneous system

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} \tag{9}$$

We can define operator $\mathbf{K}:\mathbf{x}=egin{pmatrix}x_1\\x_2\end{pmatrix}
ightarrow \mathbf{K}[\mathbf{x}]$

$$K[x] = x' - P(t)x \tag{10}$$

Then, it is easy to show that

- **K** is a linear operator $(\mathbf{K}[c_1\mathbf{x}_1 + c_2\mathbf{x}_2] = c_1\mathbf{K}[\mathbf{x}_1] + c_2\mathbf{K}[\mathbf{x}_2])$
- Principle of Superposition: If $x_1(t)$ and $x_2(t)$ are two solutions of

$$\mathbf{K}[\mathbf{x}] = \mathbf{x}' - \mathbf{P}(t)\mathbf{x} = 0$$

then any linear combination

$$\mathbf{x}(t) = c_1\mathbf{x}_1 + c_2\mathbf{x}_2$$

is also a solution.

Summary

- Existence and Uniqueness:
 - Let p(t), q(t), and g(t) be continuous functions on an open interval I
 - ▶ Let t_0 be any point in I, and
 - Let y_0 and y_1 be any given numbers.

Then, on I, there exists a unique solution of the initial value problem

$$\begin{cases} y'' + p(t)y' + q(t)y = g(t), \\ y(t_0) = y_0, \\ y'(t_0) = y_1. \end{cases}$$

• Principle of Superposition for Homogeneous Equations: If y_1 and y_2 are two solutions of

$$y'' + p(t)y' + q(t)y = 0$$

then any linear combination

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is also a solution.

Homework

Homework:

- Section 4.2
 - **▶** 1, 3, 5