Math 245 - Mathematics of Physics and Engineering I

Lecture 12. Matrices, Determinants, Complex Variables: a Brief Overview

February 6, 2012

Agenda

- Linear Algebra
 - Matrices and operations with them
 - Determinants and their properties
- Complex Variables
 - Geometric Representation
 - ► Modulus, Argument
 - Euler's formula
- Homework

Matrices

Matrix is a fundamental object in mathematics

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

Elements a_{ij} may be real or complex numbers.

Definition

A matrix is an array of mathematical objects arranged in n rows and m columns.

- If m = n, then **A** is a square matrix.
- If m=1, then **A** is a vector

Frequently the condensed notation is used:

$$\mathbf{A} = (a_{ij})$$

Basic Operations with Matrices

• Matrix Addition: The sum $\mathbf{A} + \mathbf{B}$ of two *n*-by-*m* matrices $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$ is calculated componentwise:

$$\mathbf{A} + \mathbf{B} = (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$$

• Product of a Matrix and a Scalar: The product of a matrix $\mathbf{A} = (a_{ij})$ and a scalar α is given by multiplying every entry of \mathbf{A} by α :

$$\alpha \mathbf{A} = \alpha(\mathbf{a}_{ij}) = (\alpha \mathbf{a}_{ij})$$

Transpose: The transpose of an n-by-m matrix A is the m-by-n matrix A^T formed by turning rows into columns and vice versa:

$$\mathbf{A}^T = (a_{ij})^T = (a_{ji})$$

Algebraic Properties

Theorem

If **A**, **B**, and **C** are matrices and α and β are scalars, then

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$\alpha(\beta \mathbf{A}) = (\alpha \beta) \mathbf{A}$$

•
$$(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A}$$

•
$$\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$$

•
$$(-1)A = -A$$

•
$$-(-A) = A$$

•
$$0A = 0$$

•
$$\alpha 0 = 0$$

All these properties simply extend the properties equivalent operations for real or complex numbers.

Matrix Multiplication

Definition

If $\mathbf{A} = (a_{ij})$ is an $n \times m$ matrix and $\mathbf{B} = (b_{ij})$ is an $m \times k$ matrix, then \mathbf{AB} is defined to be the $n \times k$ matrix $C = (c_{ij})$ where

$$c_{ij} = \sum_{s=1}^{m} a_{is} b_{sj}, \quad 1 \le i \le n, \quad 1 \le j \le k$$

It is convenient to think of c_{ij} as the dot product of the $i^{\rm th}$ row of ${\bf A}$ and the $j^{\rm th}$ column of ${\bf B}$

$$c_{ij} = (a_{i1}, \ldots, a_{im}) \begin{pmatrix} b_{1j} \\ \vdots \\ b_{mj} \end{pmatrix} = \sum_{s=1}^{m} a_{is} b_{sj}$$

<u>Remark:</u> Note that the matrix product **AB** is defined only if the number of columns in the first factor **A** is equal to the number of rows in the second factor **B**:

$$\underbrace{\mathbf{A}}_{n \times m} \quad \underbrace{\mathbf{B}}_{m \times k} = \underbrace{\mathbf{C}}_{n \times k}$$

Properties of Matrix Multiplication

Theorem

Suppose that **A**, **B**, and **C** are matrices for which the following products are defined and let α be a scalar. Then

- \bullet $AB \neq BA$
- $\bullet \overline{(AB)C = A(BC)}$
- $\mathbf{A}(\alpha \mathbf{B}) = (\alpha \mathbf{A})\mathbf{B} = \alpha(\mathbf{A}\mathbf{B})$
- $\bullet \ \mathsf{A}(\mathsf{B}+\mathsf{C}) = \mathsf{A}\mathsf{B} + \mathsf{A}\mathsf{C}$
- $\bullet \ (A+B)C=AC+BC$

Inverse Matrix

Definition

The square $n \times n$ matrix **A** is said to be nonsingular or invertible it there is another matrix **B** such that

$$\mathbf{AB} = \mathbf{BA} = \mathbf{I}_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

In this case, the matrix **B** is called the inverse of A and denoted as $\mathbf{B} = \mathbf{A}^{-1}$.

- $I_n^{-1} = I_n$
- ullet If $oldsymbol{A}$ and $oldsymbol{B}$ are nonsingular, then $oldsymbol{A}oldsymbol{B}$ is nonsingular and $oldsymbol{(AB)^{-1}=B^{-1}A^{-1}}$
- If **A** is nonsingular, then so is \mathbf{A}^{-1} , and $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- ullet If $oldsymbol{\mathsf{A}}$ is nonsingular, then so is $oldsymbol{\mathsf{A}}^{\mathcal{T}}$, and $oldsymbol{\left[(oldsymbol{\mathsf{A}}^{\mathcal{T}})^{-1}=(oldsymbol{\mathsf{A}}^{-1})^{\mathcal{T}}
 ight]}$

Determinants

With each square matrix ${\bf A}$, we can associate a number called its determinant, denoted by det ${\bf A}$

$$\mathbf{A} \mapsto \det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

• 1 × 1 matrix

$$\det(a_{11})=a_{11}$$

• 2×2 matrix

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Geometric interpretation: the absolute value of det **A** equals to the area of the parallelogram defined by vectors $(a_{11}, a_{21})^T$ and $(a_{12}, a_{22})^T$.

Determinants

Determinants of square matrices of higher order are defined recursively.

If **A** is $n \times n$ matrix, denote by M_{ij} , the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting the $i^{\rm th}$ row and $j^{\rm th}$ column from **A**. M_{ij} is called the minor of a_{ij} . Then the expansion of det **A** along the $i^{\rm th}$ row is defined by

$$\det \mathbf{A} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$
 (1)

The expansion of det **A** along the $j^{\rm th}$ column is defined by

$$\det \mathbf{A} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$
 (2)

10 / 14

Remark: To compute det \mathbf{A} , we can use either (1) or (2) for any i and j.

Properties of Determinants

Theorem

Let **A** and **B** be $n \times n$ matrices. Then

- If ${\bf B}$ is obtained from ${\bf A}$ by adding a constant multiple of one row (or column) to another row (or column), then $\det {\bf B} = \det {\bf A}$
- \bullet If B is obtained from A by interchanging two rows or two columns, then $\det B = \det A$
- If **B** is obtained from **A** by multiplying any row or any column by a scalar α , then $\det \mathbf{B} = \alpha \det \mathbf{A}$
- If ${\bf A}$ has zero row or zero column, then $\det {\bf A}=0$
- ullet If $oldsymbol{A}$ has two identical rows (or two identical columns), then $\det oldsymbol{A} = 0$
- If one row (or column) of $\bf A$ is a constant multiple of another row (or column), then $\det {\bf A}=0$
- $\det \mathbf{A} = \det \mathbf{A}^T$
- $\bullet \quad \mathsf{det} \, \mathbf{AB} = \mathsf{det} \, \mathbf{A} \, \mathsf{det} \, \mathbf{B}$
- ullet If $oldsymbol{\mathsf{A}}$ is nonsingular, then $\det oldsymbol{\mathsf{A}}^{-1} = 1/\det oldsymbol{\mathsf{A}}$

Complex Variables

- A complex number is z = x + iy, where x and y are real numbers and i satisfies $i^2 = -1$.
 - x = Rez is called the real part of z
 - y = Imz is called the imaginary part of z
- Two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are equal if and only if $x_1 = x_2$ and $y_1 = y_2$.
 - Geometric interpretation: it is convenient to think of z = x + iy as about a vector with coordinates $(x, y)^T$.
 - ▶ In particular, z = 0 if and only if Rez = 0 and Imz = 0
- The complex conjugate of z = x + iy is the complex number $\bar{z} = x iy$.

$$\operatorname{Re} z = \frac{z + \overline{z}}{2} \qquad \operatorname{Im} z = \frac{z - \overline{z}}{2i}$$

$$\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2$$

$$\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}$$

Complex Variables

• The absolute value or modulus of z = x + iy is the nonnegative real number

$$|z| = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}$$

• In geometric representation, the absolute value r = |z| = |x + iy| is simply the length of the vector $\overrightarrow{OP} = (x, y)^T$. The angle θ between the positive real axis and vector \overrightarrow{OP} is called the argument of x + iy, denoted arg (x + iy).

$$x = r\cos\theta \quad y = r\sin\theta$$

$$z = x + iy = r(\cos\theta + i\sin\theta)$$

The right hand side is called the polar coordinate representation of z = x + iy.

Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

• Special case: if $\theta = \pi$, then $e^{i\pi} + 1 = 0$

Homework

Homework:

- Appendix A.1
 - **1**
- Appendix A.3
 - Compute the determinant 6, 7
- Appendix B
 - **1**2, 21, 27