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Homogeneous Systems

An autonomous system of two first order linear ODEs has the following form:

dx

dt
= Ax + b (1)

where A is a constant matrix and b is a constant vector.

Definition

System (1) is called homogeneous if b = 0.

Important message: if A is nonsingular, then it is possible to

reduce a nonhomogeneous system to a homogeneous one

If A is nonsingular, then (1) has a unique equilibrium solution:

xeq = −A−1b

Let
x̃ = x− xeq

Then
d x̃

dt
= Ax̃ (2)
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Homogeneous Systems

Thus, if x̃ is a solution of the homogeneous system

d x̃

dt
= Ax̃

then the solution of the nonhomogeneous system

dx

dt
= Ax + b

is given by

x = x̃ + xeq = x̃− A−1b

Thus, to solve a nonhomogeneous autonomous system (with nonsingular A), we
need

Find its equilibrium solution (linear algebra problem)

Solve the corresponding homogeneous system

This shows that homogeneous systems are of fundamental importance
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The Eigenvalue Method for Solving x ′ = Ax

Our goal: to learn how to solve homogeneous autonomous systems

dx

dt
= Ax (3)

Let us look for solutions of (3) in the following form:

x = eλtv (4)

where v is a constant vector and λ is a scalar to be determined.

Remark: Why? Motivation comes from a simple case x′ =

(
λ1 0
0 λ2

)
x

It follows from (3) and (4) that

(A− λI)v = 0 (5)

Thus, x = eλtv is a solution of (3), if

λ is an eigenvalue of A

v is a corresponding eigenvector of A
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Example

Find at least one nontrivial solution of the system

x′ =

(
1 1
4 1

)
x
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The Eigenvalue Method for Solving x ′ = Ax

The eigenvalues λ1 and λ2 are the roots of the characteristic equation

det(A− λI) =

∣∣∣∣a11 − λ1 a12
a21 a22 − λ2

∣∣∣∣ = λ2 − tr(A)λ+ det (A) = 0 (6)

For each eigenvalue λ, we can solve

(A− λI)v = 0

and obtain corresponding eigenvector v.

In general, there three possibilities for λ1 and λ2:

λ1 and λ2 are real and different

λ1 and λ2 are real and equal

λ1 and λ2 are complex conjugate
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Real and Different Eigenvalues

Assume that λ1 and λ2 are real and different. Then, using the corresponding
eigenvectors v1 and v2, we can write down two solutions of

dx

dt
= Ax

Namely,
x1 = eλ1tv1, x2 = eλ2tv2

Principle of Superposition

Suppose that x1 and x2 are (any) solutions of

dx

dt
= Ax

Then, any linear combination of these two solutions

x = c1x1 + c2x2

is also a solution.

⇒ x = c1e
λ1tv1 + c2e

λ2tv2 is a solution for any constants c1, c2.
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Wronskian

Suppose now that we also have an initial condition: x(t0) = x0 =

(
x10
x20

)
Question: Is it possible to find c1 and c2 such that x = c1x1 + c2x2 satisfies (7)?
We need to solve for c1 and c2 the following equation:

c1x1(t0) + c2x2(t0) = x0 (7)

In more detail: (
x11 (t0) x12 (t0)
x21 (t0) x22 (t0)

)(
c1
c2

)
=

(
x10
x20

)
(8)

System (8) has a unique solution ⇔
∣∣∣∣x11 (t0) x12 (t0)
x21 (t0) x22 (t0)

∣∣∣∣ 6= 0

Definition
The determinant

W [x1, x2](t) =

∣∣∣∣x11 (t) x12 (t)
x21 (t) x22 (t)

∣∣∣∣
is called the Wronskian.
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Fundamental Set of Solutions

If solutions x1 and x2 are given by

x1 = eλ1tv1, x2 = eλ2tv2 (9)

then their Wronskian is

W [x1, x2](t) =
∣∣v1 v2

∣∣ e(λ1+λ2)t =

∣∣∣∣v1
1 v1

2

v2
1 v2

2

∣∣∣∣ e(λ1+λ2)t

e(λ1+λ2)t 6= 0

Since λ1 6= λ2,

∣∣∣∣v1
1 v1

2

v2
1 v2

2

∣∣∣∣ 6= 0 (see Lecture 8)

Therefore, the Wronskian of the vectors (9) is nonzero.

Definition
Two solutions x1 and x2 whose Wronskian is not zero are referred to as a
fundamental set of solutions.

x1 = eλ1tv1 and x2 = eλ2tv2 is a fundamental set of solutions of dx/dt = Ax
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Importance of a Fundamental Set of Solutions

Theorem
Suppose that x1 and x2 are solutions of

dx

dt
= Ax (10)

and suppose that their Wronskian is not zero

W [x1, x2](t) 6= 0

Then

1 x1 and x2 form a fundamental set of solutions

2 the general solution of (10) is given by

x = c1x1 + c2x2
where c1 and c2 are arbitrary constants.

3 if there is a given initial condition x(t0) = x0, then this condition determines
the constants c1 and c2 uniquely.

Konstantin Zuev (USC) Math 245, Lecture 10 February 1, 2012 11 / 14



Example

Find the general solution of the system

x′ =

(
1 1
4 1

)
x

Find the solution that also satisfies the initial condition

x(0) =

(
2
0

)
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Summary

Homogeneous autonomous systems d x̃/dt = Ax̃ are of fundamental
importance since (if A is nonsingular) it is possible to reduce a
nonhomogeneous system dx/dt = Ax + b to a homogeneous one

x = x̃ + xeq = x̃− A−1b

If x1 and x2 are solutions of dx/dt = Ax, then the determinant

W [x1, x2](t) =

∣∣∣∣x11 (t) x12 (t)
x21 (t) x22 (t)

∣∣∣∣
is called the Wronskian

x1 and x2 form a fundamental set of solutions ⇔ W [x1, x2](t) 6= 0

How to solve dx/dt = Ax? The Eigenvalue Method:
I Let λ1 6= λ2 be two different real eigenvalues of A, and let v1 and v2 be the

corresponding eigenvectors.
I Then the general solution of dx/dt = Ax is

x = c1e
λ1tv1 + c2e

λ2tv2
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Homework

Homework:

Section 3.3
I find the general solution: 3, 11
I solve the initial value problem: 14, 16
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