Math 245 - Mathematics of Physics and Engineering I

Lecture 10. Homogeneous Autonomous Systems

February 1, 2012

Agenda

- Homogeneous Systems and their importance
- The Eigenvalue Method for Solving $\mathbf{x}' = \mathbf{A}\mathbf{x}$
- Real and Different Eigenvalues
- Wronskian
- Fundamental Set of Solutions
- Summary and Homework

Homogeneous Systems

An autonomous system of two first order linear ODEs has the following form:

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b} \tag{1}$$

where \mathbf{A} is a constant matrix and \mathbf{b} is a constant vector.

Definition

System (1) is called **homogeneous** if $\mathbf{b} = 0$.

Important message: if A is nonsingular, then it is possible to

reduce a nonhomogeneous system to a homogeneous one

If **A** is nonsingular, then (1) has a unique equilibrium solution:

$$\mathbf{x}_{\mathrm{eq}} = -\mathbf{A}^{-1}\mathbf{b}$$

Let

$$\mathbf{\tilde{x}} = \mathbf{x} - \mathbf{x}_{\mathrm{eq}}$$

Then

$$\frac{d\tilde{\mathbf{x}}}{dt} = \mathbf{A}\tilde{\mathbf{x}} \tag{2}$$

Homogeneous Systems

Thus, if $\tilde{\mathbf{x}}$ is a solution of the homogeneous system

$$\frac{d\tilde{\mathbf{x}}}{dt} = \mathbf{A}\tilde{\mathbf{x}}$$

then the solution of the nonhomogeneous system

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

is given by

$$\mathbf{x} = \tilde{\mathbf{x}} + \mathbf{x}_{eq} = \tilde{\mathbf{x}} - \mathbf{A}^{-1}\mathbf{b}$$

Thus, to solve a nonhomogeneous autonomous system (with nonsingular ${\bf A}$), we need

- Find its equilibrium solution (linear algebra problem)
- Solve the corresponding homogeneous system

This shows that homogeneous systems are of fundamental importance

The Eigenvalue Method for Solving x' = Ax

Our goal: to learn how to solve homogeneous autonomous systems

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} \tag{3}$$

Let us look for solutions of (3) in the following form:

$$\mathbf{x} = e^{\lambda t} \mathbf{v} \tag{4}$$

where \mathbf{v} is a constant vector and λ is a scalar to be determined.

<u>Remark:</u> Why? Motivation comes from a simple case $\mathbf{x}' = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \mathbf{x}$

It follows from (3) and (4) that

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0 \tag{5}$$

Thus, $\mathbf{x} = e^{\lambda t} \mathbf{v}$ is a solution of (3), if

- \bullet λ is an eigenvalue of **A**
- v is a corresponding eigenvector of A

Example

• Find at least one nontrivial solution of the system

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

The Eigenvalue Method for Solving x' = Ax

The eigenvalues λ_1 and λ_2 are the roots of the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda_1 & a_{12} \\ a_{21} & a_{22} - \lambda_2 \end{vmatrix} = \lambda^2 - \operatorname{tr}(\mathbf{A})\lambda + \det(\mathbf{A}) = 0$$
 (6)

For each eigenvalue λ , we can solve

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0$$

and obtain corresponding eigenvector \mathbf{v} .

In general, there three possibilities for λ_1 and λ_2 :

- λ_1 and λ_2 are real and different
- ullet λ_1 and λ_2 are real and equal
- ullet λ_1 and λ_2 are complex conjugate

Real and Different Eigenvalues

Assume that λ_1 and λ_2 are real and different. Then, using the corresponding eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , we can write down two solutions of

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$$

Namely,

$$\mathbf{x}_1 = e^{\lambda_1 t} \mathbf{v}_1, \quad \mathbf{x}_2 = e^{\lambda_2 t} \mathbf{v}_2$$

Principle of Superposition

Suppose that \mathbf{x}_1 and \mathbf{x}_2 are (any) solutions of

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$$

Then, any linear combination of these two solutions

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$$

is also a solution.

• \Rightarrow $|\mathbf{x} = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2|$ is a solution for any constants c_1, c_2 .

Wronskian

Suppose now that we also have an initial condition: $\mathbf{x}(t_0) = \mathbf{x}_0 = \begin{pmatrix} x_0^1 \\ x_0^2 \end{pmatrix}$ Question: Is it possible to find c_1 and c_2 such that $\mathbf{x} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2$ satisfies (

Question: Is it possible to find c_1 and c_2 such that $\mathbf{x} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2$ satisfies (7)? We need to solve for c_1 and c_2 the following equation:

$$c_1 \mathbf{x}_1(t_0) + c_2 \mathbf{x}_2(t_0) = \mathbf{x}_0$$
 (7)

In more detail:

$$\begin{pmatrix} x_1^1(t_0) & x_2^1(t_0) \\ x_1^2(t_0) & x_2^2(t_0) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} x_0^1 \\ x_0^2 \end{pmatrix}$$
 (8)

9 / 14

System (8) has a unique solution $\Leftrightarrow \begin{vmatrix} x_1^1(t_0) & x_2^1(t_0) \\ x_1^2(t_0) & x_2^2(t_0) \end{vmatrix} \neq 0$

Definition

The determinant

$$W[\mathbf{x}_1,\mathbf{x}_2](t) = \begin{vmatrix} x_1^1(t) & x_2^1(t) \\ x_1^2(t) & x_2^2(t) \end{vmatrix}$$

is called the Wronskian.

Fundamental Set of Solutions

If solutions \mathbf{x}_1 and \mathbf{x}_2 are given by

$$\mathbf{x}_1 = e^{\lambda_1 t} \mathbf{v}_1, \quad \mathbf{x}_2 = e^{\lambda_2 t} \mathbf{v}_2 \tag{9}$$

10 / 14

then their Wronskian is

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{vmatrix} e^{(\lambda_1 + \lambda_2)t} = \begin{vmatrix} v_1^1 & v_2^1 \\ v_1^2 & v_2^2 \end{vmatrix} e^{(\lambda_1 + \lambda_2)t}$$

- $e^{(\lambda_1+\lambda_2)t} \neq 0$
- Since $\lambda_1 \neq \lambda_2$, $\begin{vmatrix} v_1^1 & v_2^1 \\ v_1^2 & v_2^2 \end{vmatrix} \neq 0$ (see Lecture 8)

Therefore, the Wronskian of the vectors (9) is nonzero.

Definition

Two solutions x_1 and x_2 whose Wronskian is not zero are referred to as a fundamental set of solutions.

 $\mathbf{x}_1 = e^{\lambda_1 t} \mathbf{v}_1$ and $\mathbf{x}_2 = e^{\lambda_2 t} \mathbf{v}_2$ is a fundamental set of solutions of $d\mathbf{x}/dt = \mathbf{A}\mathbf{x}$

Importance of a Fundamental Set of Solutions

Theorem

Suppose that \mathbf{x}_1 and \mathbf{x}_2 are solutions of

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} \tag{10}$$

11 / 14

and suppose that their Wronskian is not zero

$$W[\mathbf{x}_1,\mathbf{x}_2](t)\neq 0$$

Then

- \bullet \mathbf{x}_1 and \mathbf{x}_2 form a fundamental set of solutions
- ② the general solution of (10) is given by

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$$

where c_1 and c_2 are arbitrary constants.

3 if there is a given initial condition $\mathbf{x}(t_0) = \mathbf{x}_0$, then this condition determines the constants c_1 and c_2 uniquely.

Example

Find the general solution of the system

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

• Find the solution that also satisfies the initial condition

$$\mathbf{x}(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

February 1, 2012

Summary

• Homogeneous autonomous systems $d\tilde{\mathbf{x}}/dt = \mathbf{A}\tilde{\mathbf{x}}$ are of fundamental importance since (if \mathbf{A} is nonsingular) it is possible to reduce a nonhomogeneous system $d\mathbf{x}/dt = \mathbf{A}\mathbf{x} + \mathbf{b}$ to a homogeneous one

$$\textbf{x} = \tilde{\textbf{x}} + \textbf{x}_{\rm eq} = \tilde{\textbf{x}} - \textbf{A}^{-1}\textbf{b}$$

• If \mathbf{x}_1 and \mathbf{x}_2 are solutions of $d\mathbf{x}/dt = \mathbf{A}\mathbf{x}$, then the determinant

$$W[\mathbf{x}_1,\mathbf{x}_2](t) = \begin{vmatrix} x_1^1(t) & x_2^1(t) \\ x_1^2(t) & x_2^2(t) \end{vmatrix}$$

is called the Wronskian

- \mathbf{x}_1 and \mathbf{x}_2 form a fundamental set of solutions $\Leftrightarrow W[\mathbf{x}_1,\mathbf{x}_2](t) \neq 0$
- How to solve $d\mathbf{x}/dt = \mathbf{A}\mathbf{x}$? The Eigenvalue Method:
 - Let $\lambda_1 \neq \lambda_2$ be two different real eigenvalues of **A**, and let \mathbf{v}_1 and \mathbf{v}_2 be the corresponding eigenvectors.
 - ▶ Then the general solution of dx/dt = Ax is

$$\mathbf{x} = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$$

Homework

Homework:

- Section 3.3
 - ▶ find the general solution: 3, 11
 - solve the initial value problem: 14, 16