Math 245 - Mathematics of Physics and Engineering I

Lecture 9. Systems of Two First Order Linear ODEs

January 30, 2012

Agenda

- General Form and Matrix Notation
- Trajectories and Phase Portraits
- Existence and Uniqueness of Solutions
- Autonomous Systems
- Equilibrium Solutions
- \bullet Transformation of a $2^{\rm nd}$ order ODE to a system of two $1^{\rm st}$ order ODEs
- Summary and Homework

The **general** system of two first order linear ODEs has the following form:

$$\begin{cases} \frac{dx_1}{dt} = p_{11}(t)x_1 + p_{12}(t)x_2 + g_1(t) \\ \frac{dx_2}{dt} = p_{21}(t)x_1 + p_{22}(t)x_2 + g_2(t) \end{cases}$$
(1)

- x_1 and x_2 are unknown functions, we refer to x_1 and x_2 as state variables, and to the x_1x_2 -plane as the phase plane.
- $p_{11}(t)$, $p_{12}(t)$, $p_{21}(t)$, $p_{22}(t)$, $g_1(t)$, and $g_2(t)$ are given.

The equations (1) cannot be solved separately, but must be investigated together. In dealing with systems of equations, it is most advantageous to use matrix notation: this facilitates calculations and saves space. Using matrix notation, we can rewrite (1) as

$$\frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t) \tag{2}$$

3 / 15

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad \mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t) \end{pmatrix} \qquad \mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix}$$
(3)

• We refer to $\mathbf{x} = (x_1, x_2)^T$ as the state vector.

Example

$$\begin{cases} \frac{dx_1}{dt} = x_2\\ \frac{dx_2}{dt} = -x_1 + 2\sin t \end{cases}$$

- Write this system in matrix notation
- Show that

$$\mathbf{x} = \begin{pmatrix} \sin t - t \cos t \\ t \sin t \end{pmatrix}$$

is a solution of the system

4 / 15

Trajectories and Phase Portraits

If $x_1(t)$ and $x_2(t)$ are the components of a solution to

$$\frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$$

then the parametric equations

$$x_1 = x_1(t)$$
 $x_2 = x_2(t)$

give the coordinates x_1 and x_2 of a point in the phase plane as a function of time. Each value of the parameter t determines a point $(x_1(t), x_2(t))$, and the set of all such point is a curve in the phase plane. This curve is called a **trajectory** or **orbit**, that graphically displays the path of the state of the system in the state plane.

A plot of a representative sample of the trajectories is called a **phase portrait** of the system of equations.

5 / 15

Initial Value Problem

Frequently, there will also be given initial conditions:

$$x_1(t_0) = x_1^0 x_2(t_0) = x_2^0 (4)$$

We can write (4) in matrix form:

$$\mathbf{x}(t_0) = \mathbf{x}_0 = \begin{pmatrix} x_1^0 \\ x_2^0 \end{pmatrix} \tag{5}$$

Then equations

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$
 (6)

6 / 15

form an initial value problem.

Existence and Uniqueness of Solutions

Theorem

Let

- each of the functions $p_{11}(t)$, $p_{12}(t)$, $p_{21}(t)$, $p_{22}(t)$, $g_1(t)$, and $g_2(t)$ be continuous on an open interval $I = (\alpha, \beta)$
- $t_0 \in I$
- x_1^0 and x_2^0 be any given numbers

Then there exists a unique solution of the initial value problem

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

on the interval I.

Importance of the theorem:

- it ensures that the problem we are trying to solve actually has a solution
- if we are successful in finding a solution, we can be sure that it is the only one
- it promotes confidence in using numerical approximation methods when we are sure that a solution exists

Autonomous Systems

Definition

If the right hand side of

$$\frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$$

does not depend explicitly on t, the system is said to be **autonomous**.

For the system to be autonomous, the elements of the coefficient matrix ${\bf P}$ and the components of the vector ${\bf g}$ must be constants. In this case we will usually use the notation

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b} \tag{7}$$

where $\bf A$ is a constant matrix and $\bf b$ is a constant vector.

It follows from the theorem, that the solution of the initial value problem for an autonomous system exists and is unique on the entire *t*-axis

Equilibrium Solutions of Autonomous Systems

Constant solutions are called **equilibrium solutions**. For autonomous system

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}$$

we find the equilibrium solutions by setting $d\mathbf{x}/dt = 0$. Hence any solution of

$$\mathbf{A}\mathbf{x} = -\mathbf{b} \tag{8}$$

9 / 15

is an equilibrium solution.

- If ${\bf A}$ is nonsingular, then (8) has a single solution ${\bf x}=-{\bf A}^{-1}{\bf b}$
- If A is singular. then (8) has either no solution or infinitely many.

Remark:

It is important to understand that equilibrium solutions are found by solving algebraic, rather than differential equations.

Example

• Find all equilibrium solutions of the following system of ODEs

$$\begin{cases} \frac{dx_1}{dt} = 3x_1 - x_2 - 8\\ \frac{dx_2}{dt} = x_1 + 2x_2 - 5 \end{cases}$$

2^{nd} order ODE ightarrow system of two 1^{st} order ODEs

Consider the second order linear ODE

$$y'' + p(t)y' + q(t)y = g(t)$$
 (9)

This equation can be transformed into a system of two first order linear ODEs.

First, let us introduce new variables x_1 and x_2 :

$$x_1 = y, \quad x_2 = y' \tag{10}$$

Next, by differentiation, we obtain

$$x_1' = y', \quad x_2' = y''$$
 (11)

11 / 15

Now we can express the right hand sides of Eqs (11) in terms of x_1 and x_2 using (9) and (10):

$$\begin{cases} x_1' = x_2 \\ x_2' = -q(t)x_1 - p(t)x_2 + g(t) \end{cases}$$
 (12)

2^{nd} order ODE ightarrow system of two 1^{st} order ODEs

Using matrix notation, we can write (12) as

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ g(t) \end{pmatrix}$$
 (13)

12 / 15

Initial conditions for

$$y'' + p(t)y' + q(t)y = g(t)$$

are of the form

$$y(t_0) = y_0, \quad y'(t_0) = y_1$$

These initial conditions are then transferred to the state variables x_1 and x_2 :

$$\mathbf{x}(t_0) = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$$

Example

Consider the differential equation

$$u'' + 0.25u' + 2u = 3\sin t$$

together with the initial conditions

$$u(0) = 2, \quad u'(0) = -2$$

Write this initial value problem in the form of a system of two first order linear ODEs

Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 13 / 15

Summary

General system of two first order linear ODEs:

$$\boxed{\frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad \mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t) \end{pmatrix} \quad \mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix}$$

- $\mathbf{x} = (x_1, x_2)^T$ is the state vector
- $\{x(t), t \in I\}$ is the trajectory
- {trajectories} is the phase portrait
- \bullet If P and g are continuous, then there exists a unique solution of the initial value problem

$$\frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

- Autonomous systems: P(t) = A, g(t) = b
- If A is nonsingular, then the equilibrium solution of autonomous system is

$$\mathbf{x}_{eq} = -\mathbf{A}^{-1}\mathbf{b}$$

 Any second order linear ODE can be transformed into a system of two first order linear ODEs

14 / 15

Homework

Homework:

- Section 3.2
 - ▶ 5, 10(a), 15(a), 26