Math 245 - Mathematics of Physics and Engineering I

Lecture 8. Systems of Two Linear Algebraic Equations: A Review

January 27, 2012

Agenda

- Systems of Two Linear Algebraic Equations
- Geometric interpretation
- Solutions, Cramer's rule, Determinants
- Identity matrix, Inverse Matrix
- Singular and Nonsingular Matrices
- Homogeneous Systems
- Eigenvalues and Eigenvectors
- Important Theorem
- Homework

Question: Why do we need to review systems of algebraic equations?

<u>Answer:</u> We studied first order ODEs. Our next goal is to study systems of two linear ODEs. It turns out that the solution of a system of two linear ODEs is directly related to the solutions of an <u>associated</u> system of two linear algebraic equations.

In this lecture we will review the properties of such linear algebraic systems.

Consider the system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

where a_{11} , a_{12} , a_{21} , a_{22} , b_1 , b_2 are given coefficients and x_1 and x_2 are to be determined. Geometrically, each equation defines a straight line in the x_1x_2 -plane.

- If the two lines intersect at a single point $(x_1^*, x_2^*) \Rightarrow (x_1^*, x_2^*)$ is the single solution of the system.
- If the two lines are parallel \Rightarrow the system has no solution.
- If the two lines are coincide ⇒ the system has infinitely many solutions.

Konstantin Zuev (USC) Math 245, Lecture 8 January 27, 2012

3 / 11

Our system

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 = b_1 \\
a_{21}x_1 + a_{22}x_2 = b_2
\end{cases}$$
(1)

can be rewritten in matrix form:

$$Ax = b$$
 $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$

Cramer's rule:

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{\det A} \qquad x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{\det A}$$
 (2)

4 / 11

where

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Theorem

- The system (1) has a unique solution $\Leftrightarrow \det A \neq 0$
- In this case the solution is given by (2)
- If $\det A = 0$, then (1) has either no solution or infinitely many

Let us introduce two important matrices.

Definition

The 2×2 identity matrix is denoted by I and is defined to be

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{3}$$

• For any 2×2 matrix A, AI = IA = A (hence the name)

Definition

Let A be a 2×2 matrix. Matrix B is called the **inverse** of A if

$$AB = BA = I \tag{4}$$

5 / 11

- The inverse matrix is denoted by $B = A^{-1}$
- If A^{-1} exists, then A is called **nonsingular** or **invertible**.
- If A^{-1} does not exist, then A is called **singular** or **noninvertible**.

Konstantin Zuev (USC) Math 245, Lecture 8 January 27, 2012

Theorem

Matrix A is nonsingular \Leftrightarrow det $A \neq 0$.

If A is nonsingular, then the inverse matrix is

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$
 (5)

Recall, that the system Ax = b has a unique solution \Leftrightarrow det $A \neq 0$ (i.e. A is nonsingular). In this case, this unique solution can be written in the following form: $x = A^{-1}h$

6 / 11

Definition

The system Ax = b is called **homogeneous** is b = 0 (i.e. $b_1 = b_2 = 0$); otherwise, it is called **nonhomogeneous**.

- The homogeneous system always has the **trivial solution** $x_1 = x_2 = 0$.
- The **trivial solution is the only solution** of the system \Leftrightarrow det $A \neq 0$
- Nontrivial solution exists \Leftrightarrow det A=0
 - If A = 0, then every point (x_1, x_2) is a solution of the system.
 - ▶ If $A \neq 0$, det A = 0, then all solutions lie on a line through the origin.

Characteristic Equation

The equation y=Ax can be considered as a transformation of vector x to a new vector y. In many applications it is of particular importance to find those vectors x that are transformed into λx , where λ is a scalar factor. These vectors satisfy

$$Ax = \lambda x \tag{7}$$

• x = 0 is always (\Rightarrow "not interesting") a solution of (7). So we require $x \neq 0$. System (7) can be written in the following homogeneous form:

$$(A - \lambda I)x = 0 (8)$$

As we already know, (8) has nontrivial $(x \neq 0)$ solutions if and only if

$$\det(A - \lambda I) \equiv \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$
 (9)

Definition

Equation (9) is called the **characteristic equation** of the matrix A.

Konstantin Zuev (USC) Math 245, Lecture 8 January 27, 2012 7 / 11

Eigenvalues and Eigenvectors

It can be shown that the characteristic equation

$$\det\left(A-\lambda I\right)=0$$

can be written in the following form:

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0$$
 (10)

8 / 11

where $tr(A) = a_{11} + a_{22}$. Characteristic equation is a quadratic equation in λ , so it has two roots λ_1 and λ_2 .

Definition

The values λ_1 and λ_2 are called **eigenvalues** of A.

The corresponding vectors x_1 and x_2 are called the **eigenvectors** of A.

There are 3 possible options for eigenvalues:

- λ_1 and λ_2 are real and different, $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$
- ullet λ_1 and λ_2 are real and equal, $\lambda_1,\lambda_2\in\mathbb{R}$, $\lambda_1=\lambda_2$
- λ_1 and λ_2 are complex and conjugate, $\lambda_1, \lambda_2 \in \mathbb{C}$, $\lambda_1 = a + ib$, $\lambda_2 = a ib$.

Konstantin Zuev (USC) Math 245. Lecture 8 January 27, 2012

Examples

• Find the eigenvalues and eigenvectors of the matrices

•

$$A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

•

$$A = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}$$

Important Theorem

Theorem

Let A have two distinct eigenvalues $\lambda_1 \neq \lambda_2$, and let the corresponding eigenvectors be

$$x_1 = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$
 $x_2 = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$

If X is the matrix with first and second columns taken to be x_1 and x_2 , respectively,

$$X = \begin{pmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{pmatrix}$$

then

$$\det X \neq 0$$

Homework

Homework:

- Section 3.1
 - **13**, 15, 17, 33.