Math 245 - Mathematics of Physics and Engineering I

Lecture 5. Existence and Uniqueness of Solutions: Linear and Nonlinear first order ODEs

January 20, 2012

Existence and Uniqueness of Solutions

In Lecture 4, we discussed two initial value problems, Escape Velocity and Mixing, each of which had a solution and apparently only one solution.

Question: Does every initial value problem have exactly one solution?

Q: Why is this question important?

- we might want to know that the problem has a solution before spending time and effort in trying to find it
- if we find one solution, we might be interested in knowing whether other solutions exist

Theorem

Consider the following first order linear ODE:

$$y' + p(t)y = g(t)$$

If p(t) and g(t) are continuous on an open interval (α,β) containing the point $t=t_0$, then there exists a unique function $y=\phi(t)$ that satisfies this ODE for each $t\in(\alpha,\beta)$, and that also satisfies the initial condition $y(t_0)=y_0$ where y_0 is an arbitrary prescribed initial value.

Existence and Uniqueness of Solutions

Using the Method of Integrating Factors, we can obtain the unique solution of the initial value problem

$$\begin{cases} y'+p(t)y=g(t),\\ y(t_0)=y_0. \end{cases}$$

The unique solution is

$$y(t) = \frac{1}{\mu(t)} \left(\int_{t_0}^t \mu(s)g(s)ds + y_0 \right),$$

where

$$\mu(t) = \exp \int_{t_0}^t p(s) ds$$

Existence and Uniqueness of Solutions

Q: What about nonlinear equations?

Theorem

Consider the following first order nonlinear ODE:

$$y'=f(t,y)$$

Let the functions f and $\partial f/\partial y$ be continuous in some open rectangle $t \in (\alpha, \beta)$, $y \in (y_1, y_2)$ containing the point (t_0, y_0) . Then, in some interval $t \in (t_0 - h, t_0 + h) \subset (\alpha, \beta)$, there is a unique solution $y = \phi(t)$ of the initial value problem

$$y'=f(t,y), y(t_0)=y_0$$

Remarks:

- The proof of this theorem is relatively complicated.
- Conditions stated are sufficient to guarantee the existence of a unique solution, but they are not necessary. In fact, the existence of a solution (but not uniqueness!) can be proved on the basis of the continuity of *f* alone.

Example 1

Problem

Find an interval in which the initial value problem

$$ty' + 2y = 4t^2$$
 $y(1) = 2$

has a unique solution

Example 2

Problem

Prove that the initial value problem

$$y' = \frac{3x^2 + 4x + 2}{2(y - 1)},$$
 $y(0) = -1$

has a unique solution in some interval about x = 0.

Example 3

Problem

Consider the following initial value problem

$$y' = y^{1/3}, y(0) = 0$$

- 1 Is Theorem 2 applicable?
- 2 Does the initial problem have a solution?
- Is the solution unique?

<u>Remark:</u> The nonuniqueness of the solution does not contradict the existence and uniqueness theorem. The theorem is just not applicable!

Summary and Homework

- We discussed the existence and uniqueness of the first order ODEs
- The **linear** ODEs y' + p(t)y = g(t) has several nice properties:
 - ▶ If coefficient p and g are continuous, then there is a general solution that includes all solutions of the equation. A particular solution that satisfies a given initial condition can be picked by choosing the proper value for the constant.
 - An expression for the solution is

$$y(t) = \frac{1}{\mu(t)} \left(\int_{t_0}^t \mu(s)g(s)ds + y_0 \right) \qquad \mu(t) = \exp \int_{t_0}^t p(s)ds$$

- The points of discontinuity, or singularities, of the solution can be identified without solving the problem (!) by finding the points of discontinuity of the coefficients.
- Careful! None of this properties is true, in general, for nonlinear ODEs.

Homework:

- Section 2.3
 - **1**, 9, 15