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Advanced stochastic simulation methods for solving

high-dimensional reliability problems

by Konstantin Zuev

Abstract

This work is dedicated to the exploration of commonly used and development of new advanced

stochastic simulation algorithms for solving high-dimensional reliability problems.

Firstly, adopting a geometric point of view we highlight and explain a range of results

concerning the performance of several reliability methods. Namely, we discuss Importance

Sampling in high dimensions and provide a geometric understanding as to why Importance

Sampling does generally “not work” in high dimensions. We furthermore challenge the sig-

nificance of “design point” when dealing with strongly nonlinear problems. We conclude by

showing that for the general high-dimensional nonlinear reliability problems the selection of

an appropriate Importance Sampling density (ISD) is practically impossible. Also, we pro-

vide a geometric explanation as to why the standard Metropolis-Hastings (MH) algorithm

does “not work” in high-dimensions.

Next, we develop two useful modifications of the well-known reliability methods. The

first is Adaptive Linked Importance Sampling (ALIS), which generalizes Subset Simulation

(SS) and in some cases can offer drastic improvements over SS. The second is Modified

Metropolis-Hastings algorithm with Delayed Rejection (MMHDR) which is a novel modifica-

tion of the MH algorithm, designed specially for sampling from conditional high-dimensional

distributions.

Finally, we propose a novel advanced stochastic simulation algorithm called Horseracing

Simulation (HRS). The idea behind HS is the following. Although the reliability problem itself

is high-dimensional, the limit-state function maps this high-dimensional parameter space into

a one-dimensional real line. This mapping transforms a high-dimensional random parameter

vector, which represents the input load, into a random variable with unknown distribution,

which represents the structure response. It turns out, that the corresponding cumulative dis-

tribution function (CDF) of this random variable of interest can be accurately approximated

by empirical CDFs constructed from specially designed samples. The accuracy and efficiency

of the new method is demonstrated with a real-life wind engineering example.

x



Chapter 1

Introduction

”Where shall I begin, please your Majesty ?“
”Begin at the beginning,“ the King said gravely,

”and go on till you come to the end: then stop.“

Alice’s Adventures in Wonderland, Lewis Carroll

In reliability engineering our task is to calculate the reliability or equivalently the prob-

ability of failure of a given structure under uncertain loading conditions. The mathematical

models of the uncertain input load x and the structure response f(x) are random vector

x ∈ RN with joint probability density function (PDF) π0 and function f : RN → R+ corre-

spondingly. For example, if our structure is a tall building, the stochastic input may represent

wind velocities along the building height and the response may represent the maximum roof

displacement or the maximum interstory drift (absolute value) under the given wind load.

Define the failure domain F ⊂ RN as the set of inputs that lead to the exceedance of

some prescribed critical threshold b ∈ R+:

F = {x ∈ RN |f(x) > b} (1.1)

In the above example the critical threshold b represents the maximum permissible roof dis-

placement or maximum permissible interstory drift and the failure domain F represents the

set of all wind loads that lead to the collapse or to some other damage of the tall building.

So, the structural reliability problem is to compute the probability of failure, that is given

by the following expression:

pF = P (x ∈ F ) =

∫

F

π0(x)dx =

∫

RN

IF (x)π0(x)dx = Eπ0 [IF ] (1.2)

1



where IF is the indicator function (= 1 if x ∈ F , = 0 otherwise) and Eπ0 denotes expectation

with respect to the distribution π0.

Throughout this work we assume we are dealing with probability integrals (1.2) under

the following context:

i. The computation of probability integral (1.2) is extremely challenging for real-world

structures and can be done only in approximate ways. A well established methodology

(see, for example, [10]) consists of introducing a one-to-one transformation Υ between

the physical space of variables x and the standard Gaussian space of variables y and

then computing the probability of failure as pF =
∫
Υ(F )

N (y)dy, where N denotes

the standard Gaussian joint PDF and Υ(F ) is the image of the failure domain in the

standard Gaussian space, Υ(F ) = {y ∈ RN |f(Ω−1(y)) > b}. Abusing the notation, we

shall assume that the PDF π0 is the N-dimensional standard Gaussian distribution, in

particular we can evaluate π0(x) for any given x and we can generate random samples

from π0 efficiently.

ii. The relationship between x and IF (x) is not explicitly known. Although for any x we

can check whether it is a failure point or not, i.e. calculate the value IF (x) for a given

x, we cannot obtain other information (such as explicit formula, gradient, and so on).

iii. The computational effort for evaluating IF (x) for each value of x is assumed to be

significant so that it is essential to minimize the number of such function evaluations.

In the context of the tall building example the last two statements mean the following.

Since the structure is too complex, we cannot predict whether a given wind load will

cause a damage or not. The only one thing we can do is to check the latest by performing

an experiment (for instance, a wind tunnel test). However, such an experiment is very

expensive, so we want to reduce the number of experiments.

iv. The probability of failure pF is assumed to be very small. In other words, the structure is

assumed to be design properly, so that the failure is a very rare event. In our examples

we shall consider pF ∼ 10−3 − 10−6.

v. The parameter space RN is assumed to be high-dimensional. As we have already men-

tioned before, for real-world structures the reliability problem has no exact analytical

2



solution and one has to use a computer in order to find an approximate value of the

failure probability. Any continuous problem must be discretized before it can be treated

computationally, that is why the input load x is modeled as a random vector in RN .

The bigger N the more precisely this discrete model describes the continuous input. So,

the assumption of high dimensionality of parameter space comes from the aspiration to

use a good discrete model of a real continuous problem. Also computational algorithms

that are applicable in high dimensions are generally more robust. In our examples we

shall consider N ∼ 103.

He probably said to himself,
“Must stop or I shall be getting silly.”

That is why there are only ten commandments.

Mrs. Patrick Campbell on Moses

The first idea that comes to mind is to use straightforward numerical integration for esti-

mation probability integral (1.2), where the integral is approximated by a linear combination

of values of the integrand. It is well known that in this method the number of function

evaluations needed for a certain degree of accuracy increases very fast as the dimension of

integration increases (for example, see [21]). So, due to the above assumptions (iii) and (v),

numerical integration cannot be efficiently used for solving reliability problems.

Among all procedures developed for estimation of pF , a prominent position is held by

stochastic simulation methods. The expression of pF as a mathematical expectation (1.2)

renders standard Monte Carlo method [26] directly applicable, where pF is estimated as a

sample average of IF over independent and identically distributed samples of x drawn from

the PDF π0 :

p̂mc =
1

n

n∑

k=1

IF (x(k)), x(k) ∼ π0 (1.3)

This estimate is unbiased and the coefficient of variation (CV), serving as a measure of the

statistical error, is

δmc =

√
(1− pF )

npF

(1.4)

Although standard Monte Carlo is independent of the dimension N of the parameter space,

it is inefficient in estimating small probabilities because it requires a large number of samples

(∼ 1/pF ) to achieve an acceptable level of accuracy. For example, if pF = 10−4 and we

want to achieve an accuracy of δmc = 10% we need approximately 106 samples. Therefore,

3



due to the earlier assumptions (iii) and (iv), standard Monte Carlo becomes computationally

prohibitive for our problems of interest involving small failure probabilities.

The main goal of present research is to investigate well-known and to develop new ad-

vanced stochastic simulation methods for solving reliability problems under the real-life con-

ditions (i)-(v).

This Thesis is organized as follows. In the Chapter 2 the widely used stochastic simulation

algorithms are discussed from the geometric point of view. We highlight the difficulties asso-

ciated with these methods when dealing with high-dimensional problems. Next, in Chapters

3 and 4 we introduce useful modifications of the well-known reliability methods: Adaptive

Linked Importance Sampling (Chapter 3) and Modified Metropolis-Hastings algorithm with

Delayed Rejection (Chapter 4). Finally, in Chapter 5 we propose a completely novel ad-

vanced stochastic simulation algorithm, called Horseracing Simulation, and demonstrate its

accuracy and efficiency with real-life example.

4



Chapter 2

A Geometric Perspective

All my physics is nothing but geometry.

Rene Descartes

In this chapter we adopt a geometric perspective to highlight the challenges associated

with solving high-dimensional reliability problems. Adopting a geometric point of view we

highlight and explain a range of results concerning the performance of several well-known

reliability methods. This chapter is based on the papers [17, 18].

Taking into account the term (i), let us start the discussion with the investigation of

geometric properties of the N -dimensional standard Gaussian space and the distribution of

samples in such a space.

2.1 Geometry of high-dimensional Gaussian space

Let x = (x1, . . . , xN) be a random vector in RN where each of its components follows the

standard Gaussian distribution:

xi ∼ N (0, 1), i = 1, . . . , N. (2.1)

By definition the square of the Euclidean norm of x is distributed according to the chi-square

distribution with N degrees of freedom:

R2 =
N∑

i=1

x2
i ∼ χ2

N . (2.2)

As N tends to infinity, the distribution of R2 tends to normality (by Central Limit Theorem).

In particular, it becomes more and more symmetric. However, the tendency is slow: the

5
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Figure 2.1: PDF and CDF of chi-square distribution with N = 103 degrees of freedom.

skewness is
√

8/N . The probability density function (PDF) and cumulative distribution

function (CDF) of R2 for N = 103 are plotted in Fig. 2.1. It can be shown (see, for example,

[4], [11]) that
√

2R2 is approximately normally distributed with mean
√

2N − 1 and unit

variance. Hence the norm of the random vector ‖x‖ = R is also approximately a Gaussian

random variable:

R
app∼ N

(√
N − 1/2, 1/2

)
≈ N

(√
N, 1/2

)
, (2.3)

when N → ∞ . This means that the huge part of probability mass in the N-dimensional

standard Gaussian space belongs in a spherical ring, so called Important Ring,

√
N − r < R <

√
N + r, (2.4)

where r depends on the amount of probability mass that we want to contain inside the

Important Ring. For example, if N = 103 and r = 3.46 the probability of the corresponding

Important Ring 28.16 < R < 35.08 is more than 1 − 10−6. Thus, any sample x ∈ RN

distributed according to the high-dimensional standard Gaussian distribution will lie with

extremely large probability in the Important Ring.

Now let us fix one particular direction (here direction means a ray passing through zero),
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say e = (1, 0, . . . , 0), and explore the distribution of the angle α = x̂e between this direction

and a random vector x. By definition

fα(α0)dα = P (α0 ≤ α ≤ α0 + dα) = P (α0 ≤ x̂e ≤ α0 + dα), (2.5)

where fα is the PDF of α. Since the Gaussian space is isotropic (there are no preferable

directions) and any point that lies along a particular ray forms the same angle with e, we

can simplify the problem by considering the (N − 1)-dimensional sphere of unit radius SN−1
1 .

Note that herein a sphere is defined, as usually in geometry, as the set of all points located

at distance equal to R from a given fixed point corresponding to the center of the sphere.

Thus, in a three dimensional space, according to our definition, a sphere is a two-dimensional

surface, while the interior of the sphere, comprised of all points at distance smaller than R

from the center, is a three-dimensional manifold. Clearly, on the sphere SN−1
1 all points are

uniformly distributed. Therefore, fα(α0) is proportional to the geometric volume of part of

this sphere:

fα(α0) ∼ V ol(Ωα0), (2.6)

Ωα0 = {x ∈ SN−1
1 : x̂e = α0}. (2.7)

If 〈·, ·〉 denotes the standard scalar product in RN then 〈x, e〉 = x1. On the other hand

〈x, e〉 = ‖x‖‖e‖ cos x̂e. Therefore

Ωα0 = {x ∈ SN−1
1 : x1 = cos α0}. (2.8)

One can rewrite (2.8) as the intersection of the hypersphere SN−1
1 with the hyperplane

πN−1
α0

= {x ∈ RN : x1 = cos α0}. (2.9)

Thus,

Ωα0 = SN−1
1 ∩ πN−1

α0
. (2.10)

This intersection can be easily evaluated.





x2
1 + . . . + x2

N = 1,

x1 = cos α0.
⇔ (2.11)

x2
2 + . . . + x2

N = sin2 α0. (2.12)

7
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Figure 2.2: PDF and CDF of angle α.

Thus, the region in which we are interested is a (N − 2)-dimensional sphere of radius sin α0:

Ωα0 = SN−2
sin α0

. (2.13)

It is well known that the volume of a k-dimensional sphere is proportional to the radius in

the power k. So we have:

fα(α0) ∼ V ol(Ωα0) ∼ sinN−2 α0. (2.14)

Finally, we can obtain that the PDF and the CDF of α (Fig. 2.2) are correspondingly equal

to

fα(α) =
sinN−2 α∫ π

0
sinN−2 αdα

, (2.15)

Fα(α) =

∫ α

0
sinN−2 αdα∫ π

0
sinN−2 αdα

. (2.16)

From this result and by plotting these distributions for large N it follows that if we fix

a particular direction e then a sample x ∈ RN that is distributed according to the high-

dimensional standard Gaussian distribution will be with high probability almost perpendicular

to e. Although we proved this result for the specific direction e = (1, 0, . . . , 0) this also holds

for arbitrary e since the Gaussian space is isotropic.

8



This also can be argued in a more intuitive way. If x is such a sample then

cot2 α =
x2

1

x2
2 + . . . + x2

N

. (2.17)

Since xi are independent and identically distributed random variables we have that expecta-

tion:

E[cot2 α] =
1

N − 1
→ 0 as N →∞. (2.18)

Therefore,

α → π/2 as N →∞. (2.19)

2.2 Importance Sampling

Importance Sampling is a fundamental technique in stochastic simulation that tries to reduce

the CV of the Monte Carlo estimate. In statistical physics literature this procedure is also

called “simple importance sampling” and “free energy perturbation”. The basic idea of

Importance Sampling is to generate more samples in the important region of the failure

domain, i.e., in the region of the failure domain that contains most of the probability mass

and, therefore, contributes mostly to the integral (1.2). Roughly speaking standard Monte

Carlo does not work because the vast majority of terms in the sum (1.3) are zero and only

very few are equal to one. Using Importance Sampling we want instead of estimating pF as

the average of a vast majority of 0’s and, occasionally some (if any) 1’s, to calculate it as the

average of less zeros and many more nonzero small numbers, each being ideally of the order

of pF .

Specifically, let πis be any PDF on the parameter space RN such that its support (domain

where πis is not zero) contains the intersection of failure domain with the support of π0:

supp πis ⊃ F ∩ supp π0. (2.20)

Then we can rewrite the probability integral (1.2) as follows:

pF =

∫

RN

IF (x)π0(x)dx =

∫

RN

IF (x)
π0(x)

πis(x)
πis(x)dx = Eπis

[
IF

π0

πis

]
. (2.21)

Suppose that we are able to generate random samples from πis, called importance sampling

density (ISD), and compute the value of πis(x) easily for any given x. Then similarly to (1.3)
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we have:

p̂is =
1

n

n∑

k=1

IF (x(k))
π0(x

(k))

πis(x(k))
, x(k) ∼ πis. (2.22)

Note that the standard Monte Carlo method is a special case of Importance Sampling when

πis = π0. The estimate p̂is in (2.22) has the same statistical properties as p̂mc in (1.3), i.e., it

is unbiased and it converges to pF with probability 1. Choosing πis in some appropriate way

we hope to be able to reduce the CV.

The most important task in applying Importance Sampling is the construction of the ISD

πis. If it is “good” then we can get great improvement in efficiency.

What does it mean: “good” ISD ? Let us consider an example. Suppose we know that

a certain vector ξ belongs to the failure domain ξ ∈ F . It is natural to assume that in the

neighborhood of ξ there are more points from F . Thus, we can consider πis to be a Gaussian

PDF centered at ξ:

πis(x|ξ) = Nξ,1(x) =
1

(
√

2π)N
exp

(
−‖x− ξ‖2

2

)
. (2.23)

As discussed in the previous section, the main part of probability mass is concentrated

inside the Important Ring. This means that we can restrict the sample space and consider

only the part of failure domain that belongs to the Important Ring, since the contribution of

the remaining part of the failure domain to the probability pF is comparatively very small. So

we can consider that ξ belongs in the Important Ring. Again, from the previous section we

know that the angle between the vectors ξ and (y−ξ), where y is a random vector drawn from

πis, is approximately equal to π/2. Moreover y will lie in the Important Ring corresponding

to πis. This is schematically shown in Fig. 2.3.

It follows that in high dimensions we will have:

‖ξ‖ ≈
√

N, ‖y − ξ‖ ≈
√

N. (2.24)

Therefore

‖y‖ ≈
√

2N. (2.25)

Now the estimator (2.22) gives:

p̂is =
1

n

n∑

k=1

IF (y(k))
π0(y

(k))

πis(y(k)|ξ) . (2.26)
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Figure 2.3: Vectors ξ, y ∈ RN are drawn from the standard Gaussian and Gaussian centered at ξ distribu-

tions, respectively, N = 1000.

Since each y(k) is drawn from the Gaussian distribution centered at ξ and, therefore, satisfies

(2.25), it follows from (2.24), (2.25) that the ratio

π0(y
(k))

πis(y(k)|ξ) ≈ e−N/2, (2.27)

which is extremely small in high dimensions. Thus, Importance Sampling leads to underesti-

mation of pF . Here we provided a geometrical explanation as to why this happens; specifically,

we showed that the simulation of samples distributed according to the chosen importance

sampling density is very unlikely to yield samples that lie within the Important Ring cen-

tered at zero. Note that the important region of any failure domain should be a subset of

this important ring, as the probability volume outside the important ring can be considered

to be negligible. Therefore, we can conclude that the chosen importance sampling density

fails to generate samples in the important region of the failure domain rendering Importance

Sampling inapplicable, severely underestimating the true failure probability.

The above results are next confirmed using simulations. A linear failure domain with

reliability index β = 3 is considered and Importance sampling is applied using a Gaussian

ISD with unit variance centered at one of the failure points, i.e., πis is given by (2.23).
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Figure 2.4: The ratio π0(y
(k))

πis(y(k)|ξ) plotted in log scale against the sample number, for n = 104 samples and

for N = 1000.

Fig. 2.4 shows for a single run the ratio π0(y(k))

πis(y(k)|ξ) plotted in log scale against the sample

number, for n = 104 samples and for N = 1000. Note that this figure shows only the

ratio for those samples corresponding to failure points, in this case for 6042 points. The

horizontal line shows the mean value of the log of these values which is calculate to be equal

−481. This is consistent with the rough estimate −500 given by (2.27). Fig. 2.5 shows the

failure probability estimate pis in log scale, as a function of the dimension N . Here, n = 104

samples were used for each run; the plotted value of pis corresponds to the average value

of 50 runs. Confirming the earlier discussion, the failure probability is found to be severely

underestimated, the underestimation becoming worse as the dimension N increases. Note

that pis is found to be of order not quite as low as exp(−N/2). The reason is that the ratios

π0(y(k))

πis(y(k)|ξ) are, when plotted in linear scale, varying tremendously, so that the order of pis as

calculated by (2.26) is governed by the largest of these terms. For example, in the case of

the run corresponding to Fig. 2.4 the maximum term was of the order of exp(−350). This

explains why the dependency on N is not quite as bad as exp(−N/2).
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Figure 2.5: Failure probability estimate p̂is plotted in log scale, as a function of the dimension N .

2.3 Design points and nonlinear problems

The next question we discuss is the significance of design points when dealing with strongly

nonlinear problems.

First, returning to the definition of the failure domain (1.1), define the limit-state function

(LSF):

G(x) = b− f(x), (2.28)

so that failure domain F is defined as the subset of RN where G is negative. Basically, the

calculation of the probability of failure pF in (1.2) is the evaluation of the total probability

volume corresponding to the failure domain F ⊂ RN defined by G(x) < 0.

The design point is defined as the point x∗ on the limit-state surface {x : G(x) = 0} that is

nearest to the origin when the random variables are assumed to have been transformed to the

standard Gaussian space (see (i)). Due to the rotational symmetry of the standard Gaussian

distribution, the design point is the most likely single realization of the random variables

that gives rise to the failure event, i.e., it is the failure point with the largest probability

density. The norm of the design point, i.e., its distance from the origin, is referred to as the
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reliability index β. Note that in the case of high-dimensional reliability problems it is always

true that β << R =
√

N . This leads to the important, although often misunderstood, point

that the design point does not belong in the important ring and, therefore, according to our

earlier discussions, it is practically impossible during simulations to obtain a sample in its

neighborhood. Thus, although the design point is the point with the maximum likelihood,

a sample in its vicinity will practically never be realized through simulations. The reason

for this is that the geometric volume describing the vicinity of the design point is extremely

small in high dimensions, making the probability mass associated with the neighborhood

of the design point negligible. In other words, the relatively smaller probability density

corresponding to the failure points located in the important ring is overcompensated by the

vast number of these failure points so that if one tries to simulate a failure realization it is

almost certain that he will obtain a sample belonging in the important ring rather than in

the vicinity of the design point.

It is considered to be that design points play very important role in solving reliability

problems. Without doubt this is true in the linear case. Consider a linear reliability problem

with LSF expressed in terms of the standard Gaussian vector x as follows:

G(x) = aT x + b, (2.29)

where a ∈ RN and b are fixed coefficients. The design point x∗ is then the point on the plane

G(x) = 0 that is located closest to the origin and can be easily calculated in terms of a and

b as follows:

x∗ = − b

‖a‖2
a, (2.30)

which reliability index is given by:

β = ‖x∗‖ =
b

‖a‖ . (2.31)

It is well known that the failure probability corresponding to this linear failure domain is

given in terms of β by the expression:

pF = P (x : G(x) < 0) = 1− Φ(β), (2.32)

where Φ denotes the CDF of the standard Gaussian variable. So, the failure probability

in the linear case is completely defined by the design point. In the case where the failure
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domain is almost linear the first order reliability method (FORM) based on (2.32) for the

given design point provides a good approximation of pF .

In the case where the LSF can be approximated by a second order polynomial function,

the design point still plays a very important role and is the basis of the second order reliability

method (SORM). However in nonlinear case the significance of the design point(s) is not as

clear and is in need of research.

In the next section we consider a nonlinear dynamic problem to show that the design point

does not provide sufficient information to describe the complex geometry of the corresponding

nonlinear failure domain.

2.3.1 Duffing oscillator subjected to white noise

This nonlinear elastic system is taken from [20]. Consider the Duffing oscillator defined by

mz̈(t) + cż(t) + k[z(t) + γz(t)3] = f(t), (2.33)

with m = 1000 kg, c = 200π Ns/m, k = 1000(2π)2 N/m, and γ = 1 m−2, and assume the

input is white-noise with intensity S0 = 106 N2s/rad. Then in the discrete form f(t) is a

vector of pulses f = [f1, . . . , fN ]T = σx, where σ =
√

2πS0/∆t and x is a standard Gaussian

random vector. As described in [8], most events of interest in random vibration analysis can

be represented in terms of the instantaneous failure event

Eτ = {z(τ) > z0}, (2.34)

i.e., the event that the response at a specified time τ exceeds a specified threshold z0. The

corresponding failure domain is:

Fτ = {x : z(τ) > z0}, (2.35)

We consider the specific time instance τ = 12s, three different thresholds z0 = Kσ0, where

K = 3, 4, 5 and σ2
0 = πS0/ck is the stationary response variance for the linear case (γ = 0).

We use ∆τ = 0.01s so that the dimension dim x = N = τ/∆τ + 1 = 1201.

If the threshold is too large, then the probability pF = P (Fτ ) is small and the intersection

of Fτ with a random 2-dimensional plane is the empty set. Let x∗ and x∗L denote the design

points for the nonlinear and for the linear (γ = 0) problems correspondingly. Then, the 2-

dimensional plane P(x∗, x∗L) formed by x∗ and x∗L contains failure points for sure. Note, that
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Figure 2.6: Intersection of failure domain Fτ with the 2-dimensional plane P(x∗, x∗L) for K = 3.

x∗ can be found using a mirror-image excitation, [20]. In Figures 2.6, 2.7, 2.8 the intersections

Fτ ∩ P(x∗, x∗L) for K = 3, 4, 5 are shown. The concentric circles are the intersection of the

Important Ring with this plane and the rays shown are the directions of x∗ (the ray in the

horizontal direction) and x∗L. The reliability index for this nonlinear problem is β = 3.76,

with corresponding failure probability 1 − Φ(β) = 8.5 · 10−5. Note, that the true failure

probability is equal to 0.0092 (Monte Carlo with 104 samples).

Let f ∗s denote an excitation along the design point direction f ∗ = σx∗ , i.e.

f ∗s = sf ∗ = sσx∗, (2.36)

where s is a scaling factor allowing to realize scaled versions of the design excitation. The

corresponding response z(τ) at a specified time τ is shown in Fig. 2.9 plotted against the

norm of f ∗s . When s = 1 we have an excitation that correspond to the design point itself

and the response reaches the threshold z0. Then there is a small period of exceedance of the

threshold and after that the response begins to decrease so that around the Important Ring

(s ∼ √
N = 34.64) we have a safe region.

These figures show that the design point itself as well as the direction of the design point
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−50 0 50
−40

−30

−20

−10

0

10

20

30

40

Figure 2.8: Intersection of failure domain Fτ with the 2-dimensional plane P(x∗, x∗L) for K = 5.
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Figure 2.9: Response of Duffing oscillator along design point direction.

can be of no consequence when searching the main parts of the failure domain (intersections

of failure domain with the Important Ring).

2.3.2 Parabolic failure domain

The design points are usually used in conjunction with Importance Sampling for calculating

the failure probability. For the first passage problem the failure domain F corresponding

to a time duration T can be represent as a union of elementary failure regions Fi, defined

similarly to (2.35) as exceedance at time τi = i∆τ :

Fi = {x : z(τi) > z0}, i = 0, . . . , N =
T

∆τ
. (2.37)

When the design points x∗i are known, the ISD can be constructed as a weighted sum of

Gaussian PDFs centered at the design points, i.e.:

πis(x) =
N∑

i=1

wiNx∗i ,1(x) =
N∑

i=1

wiN0,1(x− x∗i ). (2.38)

Our goal is to demonstrate that when the failure domain is strongly nonlinear Importance

Sampling with ISD (2.38) can be feeble.
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Figure 2.10: Failure domain of parabolic shape.

We consider a paraboloid in N -dimensional space defined as follows:

Par : x1 = a

N∑
i=2

x2
i − b, (2.39)

and define failure domain as the interior of this paraboloid:

F =

{
x ∈ RN : x1 > a

N∑
i=2

x2
i − b

}
. (2.40)

The intersection of this high-dimensional failure domain with an arbitrary plane containing

the x1 direction is shown in Fig. 2.10. In this example a = 0.025, b = 20.27 and N = 1000.

The probability of this parabolic failure domain calculated using standard MC simulation

(104 samples and 100 runs) is equal to pF = 0.00074 with CV δ = 0.41.

However if we will use Importance Sampling method with Gaussian ISD centered at the

design point x∗ = (−b, 0, . . . , 0) we will get underestimation. For 104 samples and 20 runs

we got pis
F = 0. This happens because, as was explained in section 2.2, all samples generated

from the Gaussian density centered at x∗ will lie in the Important Ring centered at x∗ and will

be almost perpendicular to the fixed x1-direction. In the 2-dimensional picture of Fig.2.10

these regions are denoted as D1 and D2 which clearly do not correspond to failure regions.
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Thus, all samples generated by such an ISD yield zero indicator function and, therefore, the

resulting Importance Sampling estimate of the failure probability turns out to be zero.

Suppose now that we know the shape of the failure domain. Then from the previous

discussion a good choice of ISD would be a Gaussian PDF N (ξ∗, σ2) centered at ξ∗, where

ξ∗ is a point along the x1-direction, such that

Par ∩ P⊥ξ∗ = Par ∩ SN−1√
N

, (2.41)

where P⊥ξ∗ is a hyperplane passing through ξ∗ and normal to the x1 direction, SN−1√
N

is a

hypersphere of radius
√

N (middle hypersphere in the Important Ring). In Fig. 2.10 regions

C1 and C2 belong to the intersection described by (2.41). The value of ξ∗ can be easily

calculated as:

ξ∗ =

√
4a2N − 4ab + 1− 1

2a
. (2.42)

The variance σ2 of this Gaussian ISD has to be such that

E‖x− ξ∗‖2 = ‖ξ∗C1‖2, x ∼ N (ξ∗, σ2). (2.43)

Since

E‖x− ξ∗‖2 = Nσ2, ‖ξ∗C1‖2 = N − (ξ∗)2, (2.44)

we finally obtain:

σ2 =
N − (ξ∗)2

N
. (2.45)

Now if we will use the described ISD then almost all samples will lie in the important region

of the failure domain, that is, in the intersection of the failure domain and the important ring

and as a result the estimate of the failure probability obtained will be unbiased and accurate.

The result obtained from simulations is pF = 0.00076 with CV δ = 0.83 (104 samples and

100 runs), showing that the obtained failure probability estimate is unbiased. However, the

coefficient of variation is larger than that obtained from Monte Carlo.

Note that finding ξ∗ assumes knowledge not only of the axis of the paraboloid but also of

its curvature. Furthermore, in non-toy problems the geometry of the important region of the

failure domain is by far not as simple as the N−2 dimensional sphere described by (2.41). As

has become evident by now, in order for Importance Sampling to be successful its ISD must

be chosen such that its corresponding Important Ring contains the important region of the

failure domain; the latter is a subset of the Important Ring corresponding to the standard
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Gaussian distribution. Thus, the question of finding an appropriate ISD is analogous to

finding a sphere (corresponding to the ISD), such that its intersection with a fixed sphere

(corresponding to the standard Gaussian density) is a given set of fixed, generally complex,

geometry. Clearly selecting such a sphere is impossible, unless the specified intersection is a

sphere in itself (of one dimension lower) as in the paraboloid example considered earlier.

The above point is made again more formally as follows. Let F denote the failure domain

and S the Important Ring corresponding to the standard Gaussian. Then, the Important

Region of the failure domain is F̃ = F ∩ S. Based on the earlier discussions: p eF = pF .

Let now Sis denote the Important Ring corresponding to the ISD. A necessary condition for

Importance Sampling to work is that it must satisfy F̃ ⊂ Sis. Therefore, since F̃ ⊂ S also

the following must hold: F̃ ⊂ (Sis ∩ S). The intersection of two N-dimensional spherical

rings has very specific geometry. In particular, if we idealize the spherical rings by spheres,

this intersection is a sphere itself of one dimension less. In the general case where F̃ is of

arbitrary geometry, the necessary condition F̃ ⊂ (Sis ∩ S) can therefore, not be satisfied,

unless S ≡ Sis which reduces to standard Monte Carlo.

Therefore, we conclude that Importance Sampling is not applicable in general nonlinear

high-dimensional reliability problems of practical interest.

2.4 Subset Simulation

In the previous section we saw that getting information about the failure domain is quite

difficult. Another approach for evaluating failure probability is Subset Simulation introduced

by Au and Beck in [1].

The main idea of this method is as follows. Given the original failure domain F let

RN = F0 ⊃ F1 ⊃ . . . ⊃ Fn = F be a filtration, in other words a sequence of failure events so

that Fk = ∩k
i=0Fi. Using the definition of conditional probability it can be shown that,

pF = P (F1)
n−1∏
i=1

P (Fi+1|Fi). (2.46)

The main observation is that, even if pF is small, by choosing n and Fi, i = 1, . . . , n − 1

appropriately, the conditional probabilities can be made large enough for efficient evaluation

by simulation.

21



As it was discussed in introduction, in engineering applications the failure event usually

can be expressed in terms of exceedance of some demand-capacity ratio and, therefore, the

probability of failure can be written in the form pF = P (f(x) > b), where f is the re-

sponse function and b is a critical threshold. The sequence of intermediate failure events

{F1, . . . , Fn−1} can then be chosen as Fi = {f(x) > bi} for some intermediate thresholds

b1 < . . . < bn = b. During Subset Simulation, b1, . . . , bn−1 are adaptively chosen such that all

probabilities P (F1), P (F2|F1), . . . , P (Fn|Fn−1) are equal to, say, p0 = 0.1.

Let us briefly recall how Subset Simulation works. We start by simulating n samples

{x(k)
0 , k = 1, . . . , n} from π0 by standard Monte Carlo simulation. Perform n system analysis

to obtain the corresponding response values {f(x
(k)
0 ), k = 1, . . . , n}. Then, the first interme-

diate threshold b1 is adaptively chosen as the ((1 − p0)n − 1)-th value in the ascending list

of response values, so that the sample estimate for P (F1) = P (f(x) > b1) is equal to p0.

There are np0 samples among {x(k)
0 , k = 1, . . . , n} whose response f is greater than b1, and

hence lie in F1. These samples are distributed as π0(·|F1) and provide “seeds” for simulating

additional samples. Starting from each of these samples Markov chain Monte Carlo1 simu-

lation (MCMC) is used to obtain an additional (1 − p0)n samples, making up a total of n

conditional samples {x(k)
1 , k = 1, . . . , n} distributed according to π0(·|F1). The intermediate

threshold b2 is then adaptively chosen as the ((1− p0)n− 1)-th value in the ascending list of

{f(x
(k)
1 ), k = 1, . . . , n}, and it defines the next intermediate failure event F2 = {f(x) > b2}.

The sample estimate for P (F2|F1) is automatically equal to p0. Repeating this process, one

can generate conditional samples for higher conditional levels until the target failure proba-

bility level has been reached.

Original Metropolis algorithm

The Metropolis algorithm belongs to the class of very powerful techniques, called Markov

chain Monte Carlo simulations, for simulating samples according to an arbitrary distribution.

In these methods samples are simulated as the states of a Markov chain which has the target

distribution as its invariant distribution.

The significance of the Metropolis algorithm in Subset Simulation is that it allows to

construct a Markov chain with π0(·|Fi) as its stationary distribution. Therefore, we can

1A brief review of Markov chains theory and Markov chain Monte Carlo simulation is given in the Ap-

pendix.
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use this algorithm for simulating new samples starting from “seeds” that were obtained in

the previous step of Subset Simulation. Even if the current sample is not distributed as

π0(·|Fi), the limiting distribution property of Markov chain guarantees that the distribution

of simulated samples will tend to π0(·|Fi) as the number of Markov steps increases.

Given a current sample x(1) (a “seed” point) the original Metropolis algorithm works

as follows. Let S(·|x), called proposal PDF, be a N -dimensional PDF centered at x with

symmetry property S(ξ|x) = S(x|ξ). Generate a sequence of samples {x(1), x(2), . . .} starting

from a given sample x(1) by computing x(k+1) from x(k) as follows:

1) Generate candidate state x̃.

Simulate ξ according to S(·|x(k)), compute the acceptance ratio a(x(k), ξ) = π0(ξ)

π0(x(k))
,

set x̃ = ξ with probability min{1, a(x(k), ξ)} and set x̃ = x(k) with the remaining

probability.

2) Accept/Reject x̃.

If x̃ ∈ Fi accept it as a next step, i.e. x(k+1) = x̃; otherwise reject it and take the

current sample as a next state of the Markov chain, i.e., x(k+1) = x(k).

One can show that such updates leave π0(·|Fi) invariant, and hence the chain will eventually

converge to π0(·|Fi) as its equilibrium distribution.

Au and Beck in [1] realized that the original Metropolis algorithm does not work in high

dimensions. The geometric reason of this inapplicability is that the same effect as that

explained by Fig. 2.3 arises, where the symbols ξ and y in this Figure now represent x(k) and

ξ, respectively. Therefore, for the reasons explained previously, in each step of the original

Metropolis algorithm the ratio a(x(k), ξ) = π0(ξ)/π0(x
(k)) will be extremely small, broadly

speaking of the order of exp(−N/2). Therefore, with extremely high probability one obtains

repeated samples. Thus, a chain of practically meaningful length may consist of as few as a

single sample. This renders Subset Simulation practically inapplicable.

Modified Metropolis algorithm

The modified Metropolis algorithm (Au and Beck, [1]) differs from the original Metropolis

algorithm in the way the candidate state x̃ is generated. Rather than using a N -dimensional

proposal to directly obtain the candidate state x̃, in the modified algorithm a sequence of

one-dimensional proposals Sj(·|x(k)
j ), j = 1, . . . , N is used. Specifically, each component of x̃j
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of the candidate state x̃ is generated separately using a one-dimensional proposal centered

at x
(k)
j . Thus, being at state x(k) the candidate x̃ for the next state xk+1 of the Markov chain

is generated as follows:

1′) For each component j = 1, . . . , N :

Simulate ξj from Sj(·|x(k)
j ), compute the acceptance ratio aj(x

(k)
j , ξj) =

π0,j(ξj)

π0,j(x
(k)
j )

, set

x̃j = ξj with probability min{1, aj(x
(k)
j , ξj)} and set x̃j = x

(k)
j with the remaining

probability.

Once the candidate state x̃ has been generated according to the above procedure, the second

step of the standard Metropolis algorithms is performed involving the acceptance/rejection

of x̃ as the next state of the Markov chain. Thus, if x̃ is a found to be a failure point it is

accepted as the next state xk+1; otherwise, x(k+1) = x(k), i.e., one obtains a repeated sample.

It can be easily seen that the modified Metropolis algorithm overcomes the deficiency of

standard Metropolis algorithm by producing distinct candidate states, rather than repeated

samples. Specifically, for large N it is highly unlikely that the candidate state x̃ is equal to

the current state x(k), because this would mean that all N components ξj were rejected as

candidate state components, which is highly unlikely.

However, it can be shown that the above modified algorithm is not perfect, in the sense

that it does not guarantee for a chain starting within the important ring that it will remain

within this ring at all times. Specifically, we will show that there is a speculative chance that

such a chain may exit the important ring for a while. This is demonstrated by the following

example. Ignore for a moment the acceptance/rejection step, in other words assume that

the entire space RN is a failure domain. Consider a Markov chain starting from a random

vector x̂ drawn from the N -dimensional standard Gaussian distribution and governed by

the modified Metropolis algorithm with proposal PDF Sj(·|xj) = N (xj, 1). In Fig. 2.11 the

evolution of the Euclidean norm (length) of the Markov chain state is shown. The horizontal

lines show the inner and outer radii of the Important Ring. This Figure demonstrates that

all states of the generated chain belong in the Important Ring.

Now consider the same Markov chain but starting not from a random point within the

important ring but from a point along one of the coordinate axes. For example, consider as

starting point the point x̂ = (
√

N, 0, . . . , 0) which clearly also belongs in the important ring.

The evolution of the Euclidean norm of the states of such a Markov chain is shown in the
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Figure 2.11: Markov chain using MMA starting from random Gaussian vector, N = 103.
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Figure 2.12: Markov chain using MMA starting from x̂ = (
√

N, 0, . . . , 0), N = 103.
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Fig. 2.12. As can be seen from this figure the Markov chain jumps out of the Important Ring

and only after approximately 50 steps returns to it. Thus, using a chain of small length, as

is done in practical applications, will result into misleading conclusions. This is because such

chain has anything but reached its underlying stationary distribution.

This happens because the modified Metropolis algorithm assumes some structure while

the standard Gaussian space is isotropic and has no preferred directions. However, in the

modified Metropolis algorithm each coordinate axis direction is a special direction. The

closer the initial state of a Markov chain is to one of the xj-directions the worse the modified

Metropolis algorithm works. Of course the probability to obtain an initial state closely aligned

to one of the coordinates is very small.

To demonstrate the effect of the above behavior when calculating reliability estimates con-

sider a linear problem with LSF (2.29) with corresponding failure probability (2.32). Let us

apply Subset Simulation with modified Metropolis algorithm for evaluating the failure prob-

abilities of two “equivalent” linear failure problems. The design point of the first problem

is chosen as x∗1 = β x
‖x‖ , where x is drawn from N -dimensional standard Gaussian distrib-

ution, while that of the second problem is along one of the “preferred” directions, namely,

x∗2 = (β, 0, . . . , 0). These failure domains have equal probabilities, since they have the same

reliability index β. In Fig. 2.13 the CV for corresponding estimators for different values of

n (number of samples in each intermediate Subset Simulation level) are shown. Here β = 3,

N = 103 and 50 runs of the algorithm are used. Clearly in the second case the modified

Metropolis algorithm works worse. This is due to the existence of preferred directions and

the earlier discussed deficiency of Markov Chains generated from points closely aligned with

these directions.

In the implementation of Subset Simulation the choice of proposal distribution is very

important since it governs the efficiency in generating the samples by MCMC. Let us again

consider a Markov chain simulated by the modified Metropolis algorithm when the entire

space is a failure domain, i.e., when there is no acceptance/rejection step. For each component

we use a Gaussian proposal as before but instead of using unit variance we consider it as a

parameter:

Sj(·|xj) = N (xj, σ
2), j = 1, . . . , N. (2.47)

The question we consider is how σ affects the correlation between samples. The expected

26



100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

n

C
V

random DP
fixed DP

Figure 2.13: CV of pF estimator for linear failure domain with random and fixed design points.

value of the angle α between two consecutive samples is a good parameter for measuring the

correlation of the Markov chain states as it provides a measure of the separation of samples

that is independent of the dimension N while alternative measures, such as the Euclidean

distance between samples, depend on N . The larger the angle, the more independent are the

samples and, therefore, the more ergodic the chain. Clearly, standard Monte Carlo provides

the most uncorrelated samples satisfying:

E[α] = π/2. (2.48)

For the described one-parameter family of Markov chains the expected value of α is shown

in Fig. 2.14. As we can see the “optimal” standard deviation is somewhere between 2 and

3.

Of course in real engineering applications the failure domain is only a small subset of the

parameter space and, therefore, adopting too large standard deviation in the proposal PDF

may lead to too many rejections in the second step of the modified Metropolis algorithm

yielding a highly correlated chain.

Spherical Subset Simulation (S3)
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Figure 2.14: Expected value of angle between samples plotted against standard deviation of proposal,

N = 103.

A new MCMC algorithm was proposed by Katafygiotis and Cheung in [15]. Given a

sample x = Ru, where u = x/‖x‖ ∈ SN−1 is a vector of unit length and R = ‖x‖, this

algorithm consists of two steps. The first step involves sampling an intermediate failure

point x′ = Ru′, having the same length R as the current sample x. That is, in the first

step we simulate a new failure point lying on the sphere of radius R. Clearly, all failure

points on this sphere are uniformly distributed as they have equal corresponding PDF values.

Therefore, the selection of one such failure point is performed by first selecting a random plane

P(u, ũ) containing the direction u and a uniformly distributed random direction ũ realized

as ũ = y/‖y‖ where y is distributed according to the standard Gaussian. Next, we consider

the circle C of radius R defined as the intersection of the sphere of radius R and the random

plane P(u, ũ), i.e.,

C =

{
x : x = R

(u cos φ + ũ sin φ)

‖u cos φ + ũ sin φ‖
}

, (2.49)

where φ ∈ [0, 2π]. Finally, we simulate uniformly distributed points on this circle, by drawing

φ uniformly from the the interval [0, 2π] until a failure point Ru′ is reached.

The second step involves radial sampling along the direction u′ to obtain R′. The distinct
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Figure 2.15: Expected value of angular distance between samples plotted against dimension N for MMA,

S3 and MC.

sample x′′ = R′u′ is then the next state of the chain, i.e. it is accepted with probability

one. For more details, refer to [15]. From a geometric point of view the advantage of this

method is that it is consistent with the nature of the Gaussian space, namely there are no

preferred directions as in the modified Metropolis algorithm. If we assume that the entire

domain corresponds to failure it is clear that the expectation of the angle between samples

generated by the S3 method is equal to π/2 as in standard Monte Carlo.

Next, we compare the angular distances between failure samples generated by standard

Monte Carlo, modified Metropolis algorithm (MMA) with σ = 1, 2 and the above described

S3 MCMC algorithm in the case of a linear failure domain, where the Markov chain is

initiated at one of the failure points obtained by Monte Carlo simulations. The results are

presented in Fig. 2.15. We can see that in terms of the angular distances between samples,

the S3 method is much closer to Monte Carlo simulation and, therefore, one can argue that

it provides a better quality Markov chain.

Finally Fig. 2.16 shows the CV of the failure probability estimates obtained using Subset

Simulation employing two alternative Markov chain algorithms: a) the S3 MCmC algorithm
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Figure 2.16: The CV of pF estimator for linear failure domain using S3 and MMA.

described in this section and b) MMA (σ = 1). Here reliability index β = 3 and 50 runs of

each algorithms were used. As can be seen, the S3 algorithm provides better estimates due

to the higher quality (more uncorrelated) chain it produces.

2.5 Summary

In this chapter a geometric perspective has been adopted to provide insight into the compu-

tational difficulties arising in high-dimensional reliability problems. Several important results

are explained following this perspective. An explanation is provided as to why Importance

Sampling using a fixed importance sampling density is inapplicable in moderate to strongly

nonlinear high-dimensional reliability problems. The reason why the standard Metropolis

Algorithm is inapplicable in high dimensions and is bound to produce repeated samples is

also given. Potential deficiencies of the modified Metropolis algorithm are revealed and an

alternative algorithm that overcomes these deficiencies is presented.

In summary, this chapter provides a deeper understanding of the geometric features of

high-dimensional reliability problem. This understanding is invaluable in developing novel
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efficient algorithms for treating such problems.
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Chapter 3

Adaptive Linked Importance Sampling

The theoretical understanding of the world,
which is the aim of philosophy,

is not a matter of great practical importance to animals,
or to savages, or even to most civilised men.

Bertrand Russell

In this chapter we propose a novel advanced simulation approach, called Adaptive Linked

Importance Sampling (ALIS), for estimating small failure probabilities encountered in high-

dimensional reliability analysis of engineering systems.

It was shown by Au and Beck in [2] that Importance Sampling does generally not work

in high dimensions. A geometric understanding of why this is true when one uses a fixed

importance sampling density (ISD) was given in chapter 2 (see also [17]). The basic idea of

ALIS is instead of using a fixed ISD, as done in standard Importance Sampling, to use a family

of intermediate distributions that will converge to the target optimal ISD corresponding to

the conditional probability given the failure event. We show that Subset Simulation, which

was introduced in [1] and discussed in the section 2.4, does correspond to a special case of

ALIS, where the intermediate ISDs are chosen to correspond to the conditional distributions

given adaptively chosen intermediate nested failure events. However, the general formulation

of ALIS allows for a much richer choice of intermediate ISDs. As the concept of subsets

is not a central feature of ALIS, the failure probability is not any longer expressed as a

product of conditional failure probabilities as in the case of Subset Simulation. Starting with

a one-dimensional example we demonstrate that ALIS can offer drastic improvements over

Subset Simulation. In particular, we show that the choice of intermediate ISDs prescribed by
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Subset Simulation is far from optimal. The generalization to high-dimensions is discussed.

The accuracy and efficiency of the method is demonstrated with numerical examples. This

chapter is based on the paper [19].

3.1 Proposed methodology

We proceed from the classical Importance Sampling that was described in the section 2.2.

For convenience, from now on we shall use π1 to denote ISD instead of πis.

It is easy to see that the theoretically optimal choice of π1 is the conditional PDF:

πopt
1 (x) = π0(x|F ) =

π0(x)IF (x)

pF

. (3.1)

For this ISD the estimate (2.22) is pis = pF for any number of samples n (even for n = 1)

with resulting CV δis = 0. We can conclude that the problem of estimating the failure

probability is equivalent to estimating the normalizing constant for the following “optimal”

non-normalized density function:

popt
1 (x) = π0(x)IF (x). (3.2)

Now we will reformulate the problem of estimating the failure probability in that of

estimating the ratio of the normalizing constants of two distributions.

3.1.1 Reformulation of the problem

Consider two PDFs π0 and π1 on the same space RN :

π0(x) =
p0(x)

Z0

, π1(x) =
p1(x)

Z1

, (3.3)

where Z0 and Z1 are the corresponding normalizing constants ensuring the total probability

is equal to one. Suppose that we are not able to directly compute π0 and π1 since we do not

know the normalizing constants Z0 and Z1, but p0 and p1 are known pointwise. Our goal is

to find a Monte Carlo estimate for the ratio

r =
Z1

Z0

. (3.4)
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Assuming this problem can be tackled, the estimation of failure probability easily follows by

appropriately choosing p0 and p1:

p0(x) = π0(x), Z0 = 1,

p1(x) = π0(x)IF (x), Z1 = pF ,
⇒ r = pF . (3.5)

This observation links the problem of estimating failure probabilities to two other exten-

sively researched problems that can also be considered as problems of estimating the ratio of

normalizing constants:

• Finding the free energy of a physical system (Statistical Physics),

• Finding the marginal likelihood of a Bayesian statistical model (Bayesian Statistics).

In this chapter we will address the problem of reliability estimation as a special case of

calculating the ratio r of normalizing constants of two distributions.

Using (3.3), (3.4) it is follows that

Eπ0

[
p1

p0

]
=

∫

RN

p1(x)

p0(x)
π0(x)dx =

∫

RN

Z1

Z0

π1(x)dx =
Z1

Z0

. (3.6)

This means that we can estimate r by

r̂mc(sis) =
1

n

n∑

k=1

p1(x
(k))

p0(x(k))
, x(k) ∼ π0. (3.7)

In the context of failure probabilities, i.e., using (3.5), one can easily recognize that (3.7)

becomes exactly the expression for estimating pF using standard Monte Carlo. In statistical

physics (3.7) is also known as the Simple Importance Sampling (SIS) estimate. Now we turn

to the idea of intermediate distributions.

3.1.2 Intermediate distributions

If π0 and π1 are not close enough, the estimate (3.7) will be improper: the variance of this

estimate will be very large. In such a situation, it may be possible to obtain a good estimate

by introducing artificial intermediate distributions (AIDs).

Let us define a sequence pα0 , . . . , pαm of non-normalized (or unnormalized) density func-

tions (UDF) using 0 = α0 < α1 < . . . < αm−1 < αm = 1, so that the first and last functions

in the sequence are p0 and p1 with the intermediate UDF’s interpolating between them. Let
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Zα =
∫

pα(x)dx and πα0 , . . . , παm denote the corresponding sequence of normalizing constants

and PDFs, respectively. Then we can represent the ratio r = Z1/Z0 as follows:

Z1

Z0

=
Zα1

Z0

Zα2

Zα1

. . .
Zαm−1

Zαm−2

Z1

Zαm−1

. (3.8)

Now, if παj
and παj+1

are sufficiently close and we can sample from παj
, we can accurately esti-

mate each factor Zαj+1
/Zαj

using simple importance sampling (3.7), and from these estimates

obtain an estimate for r:

r̂gis =
m−1∏
j=0

(
1

n

n∑

k=1

pαj+1
(x

(k)
j )

pαj
(x

(k)
j )

)
, x

(k)
j ∼ παj

. (3.9)

We will refer to (3.9) as Generalized Importance Sampling (GIS).

From (3.9) it follows that Subset Simulation (section 2.4) is exactly Generalized Impor-

tance Sampling with specific intermediate distributions:

παj
(x) = π0(x|Fαj

), j = 0, . . . , m. (3.10)

Intuition suggest that it is rather unlikely for the family of conditional intermediate distrib-

utions (3.10) with sharp boundaries to be optimal for estimating failure probability. Indeed,

our numerical examples will show that this family of AIDs is far from optimal and, therefore,

there is room to further improve efficiency beyond that offered by Subset Simulation.

Here we propose two smooth families of AIDs designed for reliability problems:

pI
α(x) = π0(x) min{e−αG(x), 1}, (3.11)

pII
α (x) =

π0(x)

1 + eαG(x)
, (3.12)

where G is a LSF. It is easy to check, that for both distributions we have:

lim
α→+∞

pα(x) = p0(x)IF (x) = p∞(x). (3.13)

Although before it was assumed that α ∈ [0, 1], in (3.11), (3.12) the α belongs in the

ray α ∈ [0, +∞]. Obviously this is not of fundamental importance. We will refer to (3.11),

(3.12) as to the distributions of the first and the second types correspondingly. Note, that for

the first type distributions p0 = π0 and Z0 = 1 as in (3.5), but for the second ones we have

p0 = π0/2 and therefore Z0 = 0.5. Again this can be easily incorporated in the expression

for the estimate of pF . Specifically, as can be easily derived from (3.4) and (3.5), one simply

has to multiply the estimate for r by Z0, i.e., pF = 0.5r.

The intermediate distributions (3.10) for Subset Simulation and (3.11), (3.12) for ALIS

are shown in Figures 3.1, 3.2, and 3.3, respectively.
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Figure 3.1: Intermediate distributions in Subset Simulation.

−5 0 5
0

0.2

0.4

0.6

0.8
AID’s of the 1st type in ALIS 

π α

−5 0 5
0

0.1

0.2

0.3

0.4
UDF’s of the 1st type in ALIS 

p α

Figure 3.2: Intermediate distributions in ALIS, type I.
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Figure 3.3: Intermediate distributions in ALIS, type II.
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3.1.3 Bridging

There is a potential problem one needs to be aware of when using intermediate distributions

and that is the following. If the distributions {πα} are not nested, one can not hope to

estimate Zαj+1
/Zαj

by sampling just from παj
. Indeed, this can be easily demonstrated with

the following example involving uniform distributions.

Let pαj
= I[0,4] and pαj+1

= I[3,5], so that Zαj
= 4, Zαj+1

= 2 and Zαj+1
/Zαj

= 1/2.

Suppose we have n points drawn uniformly from [0, 4], i.e. from παj
. The fraction of these

that lie in [3, 5], i.e. the simple importance sampling estimate (3.7), will obviously not give

an estimate of Zαj+1
/Zαj

since it converges to 1/4 when n →∞ rather than 1/2. Instead it

will be an estimate of Z∗/Zαj
, where Z∗ is the length of [3, 4] = [0, 4] ∩ [3, 5]. Suppose now

that we also have n samples drawn uniformly from [3, 5], i.e., from παj+1
. The fraction of

these that lie in [0, 4] will be an estimate of Z∗/Zαj+1
. Taking the ratio of these two estimates

(Z∗/Zαj
)/(Z∗/Zαj+1

) gives an estimate of Zαj+1
/Zαj

.

This idea can be generalized and non-nested distributions can be worked up by “bridging”.

In this method we replace the simple importance sampling estimate for Zαj+1
/Zαj

by a ratio

of estimates for Z∗/Zαj
and Z∗/Zαj+1

, where Z∗ is the normalizing constant for a “bridge

distribution”, π∗(x) = p∗(x)/Z∗, which is chosen so that it is overlapped by both παj
and

παj+1
. Using simple importance sampling estimates for Z∗/Zαj

and Z∗/Zαj+1
, we can obtain

the estimate for Zαj+1
/Zαj

:

Zαj+1

Zαj

=
Eπαj

[
p∗
pαj

]

Eπαj+1

[
p∗

pαj+1

] ≈
1
n

∑n
k=1

p∗(x
(k)
j )

pαj (x
(k)
j )

1
n

∑n
k=1

p∗(x
(k)
j+1)

pαj+1 (x
(k)
j+1)

,
x

(k)
j ∼ παj

,

x
(k)
j+1 ∼ παj+1

.
(3.14)

This technique was introduced by Bennett in [3], who called it the “acceptance ratio”

method. This method was later rediscovered by Meng and Wong in [24], who called it

“bridge sampling”. Lu, Singh and Kofke in [22] give a recent review.

One natural choice for the bridge distribution is the “geometric” bridge:

pgeo
∗ (x) =

√
pαj

(x)pαj+1
(x), (3.15)

that is in some sense an average between παj
and παj+1

. It was shown in [3], that an asymp-

totically optimal choice of bridge distribution is

popt
∗ (x) =

pαj
(x)pαj+1

(x)
nj

nj+1

Zαj+1

Zαj
pαj

(x) + pαj+1
(x)

. (3.16)

37



0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Mean value α

E
st

im
at

e 
of

 Z
α/Z

0

SIS
Bridge

Figure 3.4: Estimate of ratio of normalizing constants for Gaussian distributions using SIS and geometrical

bridge.

In general we cannot use this bridge distribution in practice, since we do not know Zαj+1
/Zαj

beforehand. But we can use a preliminary guess of Zαj+1
/Zαj

to define a bridge distribution

(3.16) and then iterate until convergence is observed.

Next we discuss the meaning of “nested” for non-uniform distributions. Again let us start

with an easy example. Let x1, . . . , xn be samples following the standard one-dimensional

Gaussian distribution. It is easy to check that for n = 104 the probability that at least one

sample lies outside the interval [−6, 6] is smaller than 10−4. Although, strictly speaking, the

support of the standard Gaussian distribution is the entire real line (theoretical support),

in practice the support may be regarded as just a segment (practical support). So if παj

and παj+1
are two Gaussian distributions with different mean values we cannot hope to

estimate Zαj+1
/Zαj

by sampling just from παj
. The reason is the same as in the case of

uniform distributions: their practical supports are not nested. As an example, the dependence

between the estimate of Zα/Z0, where πα = N (α, 1) is a Gaussian distribution centered at

α and having unit variance is plotted against α in Fig. 3.4. Two methods are used: a)

SIS according to (3.7) and b) using geometrical bridge according to (3.14). Clearly the SIS
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estimate deteriorates as α increases, i.e., as the practical supports of the two distributions

become further apart. On the contrary, the results using bridge sampling remain relatively

unaffected. Note that the Important Ring that was introduced in the section 2.1 is the

practical support of the high-dimensional standard Gaussian distribution.

So, in order to apply AIDs for estimating the of ratio of normalizing constants we have

to use the concept of “bridge”, especially if these AIDs are not nested as is generally the

case. Thus, for each couple of adjacent intermediate distributions pαj
and pαj+1

we have to

construct a bridge pj∗j+1 using, for example, (3.15) or (3.16) and then for each multiplier in

(3.8) use the bridged approximation (3.14). Note, that in Subset Simulation the conditional

intermediate distributions (3.10) are nested and, therefore, bridging makes no sense.

3.1.4 Sampling

As we can see from the previous sections we need some procedure to sample independently

from an intermediate PDF πα. Although, by the assumption (i), we can always do this

directly for π0 it can not be done for other distributions with α 6= 0. Recall that we can only

evaluate the target distribution πα up to a normalizing constant Zα, i.e. πα = pα/Zα. Here

we assume that the non-negative function pα is known pointwise.

A practical framework for sampling under the above context is that provided by discrete

time Markov chains underlying the Markov chain Monte Carlo (MCMC) methods. The main

idea of all MCMC methods is the following: although it is difficult to efficiently generate

independent samples according to the target PDF, it is possible, using a specially designed

Markov chain, to efficiently generate dependent samples that are at least asymptotically (as

the number of Markov steps increases) distributed as the target PDF. For more details on

the MCMC, please, refer to the Appendix A.

So, for each α we define a Markov chain whose invariant distribution is πα. Simulating

such chain for some time, and discarding the early portion, provides dependent points sampled

approximately according to πα. It is importance to mention that usually it is difficult to tell

whether the chain reaches equilibrium in a reasonable time or not. Furthermore, even if it

has reached equilibrium, it is hard to find out for sure. This is a common drawback of all

MCMC methods.
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3.2 ALIS

We have described all the components for the ALIS and now we are ready to give a summary

of this algorithm.

Adaptive Linked Importance Sampling

I. Initialization

• Set j = 0, α0 = 0.

• For k = 1, . . . , n sample x
(k)
0 ∼ πα0 = π0.

• Evaluate the number nF of failure samples x̃
(k)
0 ∈ F ∩ {x(k)

0 }.

While nF

n
< T0 (for some threshold T0)

II. Construction the next AID

• Set j = j + 1.

• Find αj using equation 1
n

n∑
k=1

pαj (x
(k)
j−1)

pαj−1 (x
(k)
j−1)

= Tj, for some threshold Tj.

III. Construction the Bridge and Link State

• Define the bridge pj−1∗j between παj−1
and παj

using (3.15) or (3.16).

• For k = 1, . . . , n evaluate w(k) =
pj−1∗j(x

(k)
j−1)

pαj−1 (x
(k)
j−1)

and normalize these weights

w̃(k) = w(k)Pn
k=1 w(k) .

• Set the link state xj−1∗j equals to x
(k)
j−1 with probability w̃(k).

IV. Sampling

• Set x
(1)
j = xj−1∗j.

• Starting from x
(1)
j sample x

(k)
j ∼ παj

for k = 2, . . . , n using MCMC.

• Evaluate the estimate
Ẑαj

Zαj−1
of

Zαj

Zαj−1
using (3.14).

• Evaluate the number nF of failure samples x̃
(k)
j ∈ F ∩ {x(k)

j }.

End While

V. Estimate of the last factor

40



• Define the bridge pj∗∞ between παj
and π∞ = π0(·|F ) using (3.15) or (3.16).

• For k = 1, . . . , nF evaluate w
(k)
∞ =

pj∗∞(x̃
(k)
j )

pαj (x̃
(k)
j )

and normalize these weights

w̃
(k)
∞ = w(k)Pn

k=1 w(k) .

• Set the link state xj∗∞ equals to x̃
(k)
j with probability w̃

(k)
∞ .

• Starting from x
(1)
∞ = xj∗∞ sample x

(k)
∞ ∼ π∞ for k = 2, . . . , n using MCMC.

• Evaluate the estimate Ẑ∞
Zαj

of Z∞
Zαj

using (3.14).

VI. Estimate of r

• According to (3.8), estimate r as follows :

r̂alis =

j−1∏
i=0

Ẑαi+1

Zαi

· Ẑ∞
Zαj

. (3.17)

Estimate p̂alis is obtained from r̂alis by multiplication by Z0. For the first type of AIDs

Z0 = 1, but for the second one Z0 = 0.5.

We can use several runs of ALIS and average them in order to obtain the final estimate

of r, since it can be shown that estimate (3.17) is unbiased, see [27] for details. Here we

just want to mention that the crucial aspect of ALIS is that when moving from distribution

παj−1
to παj

, a link state, xj−1∗j, is randomly selected from the samples x
(1)
j−1, . . . , x

(n)
j−1 that

are drawn from παj−1
. We can consider the link state as a sample associated with παj−1

as

well as that associated with παj
.

Let us now discuss the details of this procedure. In the step (II) having UDF pαj−1
we

construct the next intermediate distribution pαj
adaptively using SIS (3.7). Namely, we try

to find αj such that the SIS estimate of Zαj
/Zαj−1

equals to some threshold Tj. Later in (IV)

we improve this estimate using bridging. Thus,
Ẑαj

Zαj−1
≈ Tj is refined estimate after fixing αj.

The step (V) highly depends on the type of AIDs. If the intermediate distributions are

of the first type, than it can be easily shown that both geometrical and optimal bridge from

pα to p∞ is equal to

pI
α∗∞(x) = p∞(x). (3.18)

And therefore the estimate of the last factor in this case :

Ẑ∞
Zαj

=
1

n

n∑

k=1

p∞(x
(k)
j )

pαj
(x

(k)
j )

=
1

n

n∑

k=1

IF (x
(k)
j )

min{e−αG(x
(k)
j ), 1}

=
nF

n
(3.19)
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So if we use the AIDs of the first type the step (V) in ALIS (in particular, sampling from

π∞) is no longer needed. The estimate of the last factor is given by (3.19).

The case of the second type AIDs is more complicated. The optimal bridge from pαj
to

p∞ has the following form :

pII,opt
αj∗∞(x) =

π0(x)IF (x)

1 + Tj + eαjG(x)
(3.20)

According to (3.14), the estimate of the last factor in this case :

Ẑ∞
Zαj

=
1

n

nF∑

k=1

1 + eαjG(x̃
(k)
j )

1 + Tj + eαjG(x̃
(k)
j )

/
1

n

n∑

k=1

1

1 + Tj + eαjG(x
(k)
∞ )

(3.21)

The similar formula can be obtained when geometrical bridge is used. The sampling from

π∞ can be done by modified Metropolis algorithm (section 4.1.3).

Suppose now that during the run of this procedure m AIDs were used : π0, πα1 , . . . , παm , πα∞ .

And from each of these distributions n samples were drawn. If we have used the AIDs of the

first type, than the total amount of samples is n(m + 1). Instead, if the second type AIDs

were used, than the total amount of samples is n(m + 2), since we need to sample from πα∞

too. So, in terms of computational effort (iii), the AIDs of the first type are more efficient.

3.3 Examples

The ALIS algorithm is applied to calculate the failure probability in two examples. In these

examples we use intermediate distributions of both types (3.11), (3.12) and optimal bridge

(3.16). The value Tj of all thresholds is chosen to be 0.1, which is found to yield good

efficiency. ALIS will be compared with Subset Simulation and standard Monte Carlo in

terms of the coefficient of variation (CV) of the failure probability estimates.

3.3.1 One-dimensional ray

Consider the simplest possible one-dimensional example. Let the failure domain F be a ray

on the real line:

F = {x ∈ R|x > b}, (3.22)

for some threshold b, where x is a standard Gaussian random variable, x ∼ N (0, 1). Obvi-

ously, the failure probability in this case is

pF = 1− Φ(b), (3.23)
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Figure 3.5: The CV of estimates obtained by ALIS, Subset Simulation and Monte Carlo in one-dimensional

problem.

where Φ is the CDF of the standard Gaussian distribution. We apply the described simulation

methods for estimating the following values of failure probability: pF = 10−k, k = 2, . . . , 10.

The corresponding thresholds are:

bk = Φ−1(1− 10−k). (3.24)

The CV of the estimates obtained by ALIS, Subset Simulation and Monte Carlo are given in

Fig. 3.5 using 100 runs. For each intermediate distribution n = 104 samples were drawn for

ALIS and Subset Simulation. The comparison between the different methods is made for the

same total computational effort. It can be clearly seen that ALIS clearly outperforms Subset

Simulation. Furthermore, the computational effort required by ALIS in order to achieve a

certain level of accuracy is found to increase only linearly with the order of target failure

probability while this is not the case for Subset Simulation.
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3.3.2 High-dimensional sphere

The next example is high-dimensional. Let x ∈ RN be a standard Gaussian random vector.

As discussed in section 2.1 and [17], the vast majority of the probability mass in the N -

dimensional standard Gaussian space belongs in an Important Ring (= practical support),

√
N − r < R <

√
N + r. (3.25)

Thus, a sample x ∈ RN distributed according to this high-dimensional standard Gaussian

distribution will lie with extremely large probability in this Important Ring.

Consider in RN the interior of a cone with axis a and angle ϕ:

Ca,ϕ = {x ∈ RN |x̂, a < ϕ}, (3.26)

and define the failure domain to be the intersection of Ca,ϕ and the hypersphere SN−1√
N

with

radius
√

N and center in the origin (i.e., the middle hypersphere in the Important Ring):

F = Ca,ϕ ∩ SN−1√
N

. (3.27)

Instead of a Gaussian distribution in RN , we consider here a uniform distribution on

the hypersphere SN−1√
N

with failure domain defined by (3.27). Unlike in the one-dimensional

example, where an input load x with sufficiently large “energy” causes failure, in this example

all inputs have the same energy. In this case safety or failure depends on the “direction” of

the input: the closer the direction of x to the cone axis a, the more unsafe the system is. In

this sense this example quite differs from the previous one.

We generate a candidate state in Metropolis update for sampling from πα in the following

way. If the current sate of the chain is x ∈ SN−1
√

N , we first generate a sample y ∼ N(x,1)

from the multidimensional Gaussian distribution centered in x. The candidate state is then

the projection of y on the sphere SN−1√
N

, x̃ = projSy. Obviously, the corresponding proposal

PDF is symmetric, S(x̃|x) = S(x|x̃), and the acceptance ratio a(x, x̃) = pα(x̃)/pα(x). Since

everything is taking place on a sphere, the probability to obtain a repeated sample during

these updates is not close to 1, and the corresponding Markov chain is able to explore the

entire parameter space.

Choosing ϕ we can vary the failure probability. We consider the following values of failure

probability: pF = 10−k, k = 2, . . . , 7. The CV of the failure probability estimates obtained by
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Figure 3.6: The CV of estimates obtained by ALIS, Subset Simulation and Monte Carlo in 100-dimensional

problem.
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problem.
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ALIS, Subset Simulation and Monte Carlo are given in Fig. 3.6 and Fig. 3.7 for dimensions

N = 100 and N = 1000 respectively, using 100 runs each time. For each intermediate

distribution n = 104 samples were drawn. The comparison between the different methods is

made for the same total computational effort. It can be clearly seen that ALIS clearly again

outperforms Subset Simulation although the computational effort does not quite increase

linearly with the order of failure probability in this case.
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Chapter 4

Modified Metropolis-Hastings

Algorithm with Delayed Rejection

It is a bad plan that admits of no modification.

Publilius Syrus

Each advanced stochastic simulation algorithm for computation of small failure proba-

bilities (1.2) encountered in reliability analysis of engineering systems consists of two main

steps. At first, we need to specify some artificial PDF(s) π̃ from which we are going to

sample during the run of the algorithm. For example, in Importance Sampling, Subset Sim-

ulation and Adaptive Linked Importance Sampling we sample from the important sampling

density πis, family of conditional distributions π(·|F ) and family of intermediate distribu-

tions πα respectively. The second step is the development of the Markov chain Monte Carlo

(MCMC) strategy for sampling from the above specified artificial PDF(s). Usually different

variations of the Metropolis–Hastings (MH) algorithm are used. Schematically the structure

of advanced simulation algorithm is shown in Fig. 4.1.

The main objective of this Chapter is to develop a novel effective MCMC algorithm for

sampling from complex high-dimensional distributions. This Chapter is based on paper [34].

Our starting point is the standard Metropilis-Hastings algorithm [25, 14]. It has been

shown by Au and Beck in [1] the standard MH algorithm does generally not work in high

dimensions, since it leads to extremely frequent repeated samples. A geometric understand-

ing of why this is true was given in section 2.4, see also [17, 18, 29]. In order to overcome

this deficiency of the MH algorithm one can use the modified Metropolis–Hastings algorithm
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Figure 4.1: Structure of a general advanced simulation method.

(MMH) proposed in [1] for sampling from high-dimensional distributions. It should be em-

phasized that MMH algorithm is suitable only for sampling from very specific distributions,

namely, from the conditional distributions π(·|F ), where unconditional PDF π can be fac-

torized into a product of easy to sample from one-dimensional distributions. To the best of

our knowledge, at the moment there does not exist any efficient algorithm for sampling from

an arbitrary high-dimensional distribution.

Another variation of the MH algorithm, called Metropolis–Hastings algorithm with de-

layed rejection (MHDR) has been proposed by Tierney and Mira in [33]. The key idea behind

the MHDR algorithm is that when a Markov chain remains in the same state for some time,

the estimate obtained by averaging along the chain path becomes less efficient. For the

MH algorithm this happens when a candidate generated from the proposal distribution is

rejected. Therefore, we can improve the MH algorithm by reducing the number of rejected

candidates. A way to achieve this goal is the following: whenever a candidate is rejected,

instead of taking the current state of a Markov chain as its new state, as the case in the

standard MH algorithm, we propose a new candidate. Of course, the acceptance probability

of the new candidate has to be adjusted in order to keep the distribution invariant.

To address high-dimensional reliability problems, in this Chapter we combine the ideas of
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Figure 4.2: Modifications of the standard Metropolis–Hastings algorithm.

both the MMH and MHDR algorithms. As a result we obtain an efficient algorithm, called

Modified Metropolis–Hastings algorithm with delayed rejection (MMHDR), for sampling from

high-dimensional conditional distributions.

Different variations of the standard MH algorithm are schematically shown in Fig. 4.2.

4.1 Modifications of the Metropolis–Hastings algorithm

Throughout this Chapter all the variations of the MH algorithm are discussed in the context

of high-dimensional conditional distributions.

4.1.1 Standard Metropolis–Hastings algorithm

The MH algorithm is the most common MCMC method for sampling from a probability

distribution that is difficult to sample from directly. The algorithm is named after Nicholas

Metropolis, who proposed it in 1953, [25] for the specific case of the Boltzmann distribution,

and W. Keith Hastings, who generalized it in 1970, [14].
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Figure 4.3: Standard Metropolis–Hastings algorithm.

In this method samples are simulated as the states of a Markov chain, which has the target

distribution, i.e., the distribution we want to sample from, as its equilibrium distribution. Let

the target distribution be π(·|F ) = π(·)IF (·)/Z, where Z = P (F ) is a normalizing constant;

x0 be the current state of the Markov chain; and S(·|x0), called proposal PDF, be an N -

dimensional PDF depended on x0. Then the MH update x0 → x1 of the Markov chain works

as follows:

1) Simulate ξ according to S(·|x0),

2) Compute the acceptance probability

a(x0, ξ) = min

{
1,

π(ξ)S(x0|ξ)
π(x0)S(ξ|x0)

IF (ξ)

}
, (4.1)

3) Accept or reject ξ by setting

x1 =





ξ, with prob. a(x0, ξ);

x0, with prob. 1− a(x0, ξ).

(4.2)

One can show that such update leaves π(·|F ) invariant, i.e. if x0 is distributed according to

π(·|F ), then so is x1:

x0 ∼ π(·|F ) ⇒ x1 ∼ π(·|F ). (4.3)

Hence the chain will eventually converge to π(·|F ) as its equilibrium distribution. Note, that

the MH algorithm does not require information about the normalizing constant Z. Assuming

a symmetric proposal distribution, i.e. S(x|y) = S(y|x), one obtains the original Metropolis

algorithm, [25]. The MH update is schematically shown in the Fig. 4.3.
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4.1.2 Metropolis–Hastings algorithm with delayed rejection

Rejecting the candidate state ξ with probability 1− a(x0, ξ) in (4.2) is necessary for keeping

the target distribution π(·|F ) invariant under the MH update. However, remaining in the

current state x0 for some time affects the quality of the corresponding Markov chain by

increasing the autocorrelation between its states and, therefore, it reduces the efficiency of

any simulation method that uses the standard MH algorithm. Thus, reducing the number of

rejected candidate states will improve the standard MH algorithm.

Metropolis-Hastings algorithm with delayed rejection (MHDR), proposed in Tierney and

Mira in [33], allows to achieve this goal: when a reject decision in (4.2) is taken, instead of

getting a repeated sample, we generate a second candidate state using a different proposal

distribution and accept or reject it based on a suitably computed probability. So, the Markov

chain update x0 → x1 in the MHDR algorithm when dealing with conditional distribution

π(·|F ) works as follows:

1) Simulate ξ1 according to S1(·|x0),

2) Compute the acceptance probability

a1(x0, ξ1) = min

{
1,

π(ξ1)S1(x0|ξ1)

π(x0)S1(ξ1|x0)
IF (ξ1)

}
, (4.4)

3) Accept or reject ξ1 by setting

x1 =





ξ1, with prob. a1(x0, ξ1);

go to step 4), with prob. 1− a1(x0, ξ1).

(4.5)

4) Simulate ξ2 according to S2(·|x0, ξ1),

5) Compute the acceptance probability

a2(x0, ξ1, ξ2) = min

{
1,

π(ξ2)S1(ξ1|ξ2)S2(x0|ξ2, ξ1)(1− a1(ξ2, ξ1))

π(x0)S1(ξ1|x0)S2(ξ2|x0, ξ1)(1− a1(x0, ξ1))
IF (ξ2)

}
, (4.6)

6) Accept or reject ξ2 by setting

x1 =





ξ2, with prob. a2(x0, ξ1, ξ2);

x0, with prob. 1− a2(x0, ξ1, ξ2).

(4.7)
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Figure 4.4: Metropolis–Hastings algorithm with delayed rejection.

An interesting feature of this algorithm is that the proposal distribution S2 at the second

stage is allowed to depend on the rejected candidate ξ1 as well as on the current state x0

of the chain. Allowing the proposal PDF S2 to use information about previously rejected

candidate does not destroy the Markovian property of the sampler. So all the asymptotic

Markov chain theory used for the standard MH algorithm can be used for the MHDR method

as well. The MHDR update is schematically shown in Fig. 4.4.

Whether MHDR algorithm is useful depends on whether the reduction in variance achieved

compensates for the additional computational cost.

4.1.3 Modified Metropolis–Hastings algorithm

The standard MH algorithm does not generally work in high dimensions meaning that with

extremely high probability the update of the Markov chain leads to the repeated sample,

x1 = x0, see [1, 17, 18, 29]. Clearly, the MHDR update has the same problem. Thus, a Markov

chain of practically meaningful length constructed in high dimensions having applied either

MH or MHDR algorithm may consist of as few as a single sample. This renders simulation

methods, such as Subset simulation, practically inapplicable.

The modified Metropolis–Hastings algorithm (MMH) was developed in [1] especially for

sampling from high-dimensional conditional distributions. The MMH algorithm differs from

the standard MH algorithm in the way the candidate state ξ is generated. Instead of using

an N -dimensional proposal PDF S to directly obtain the candidate state ξ, in the MMH
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Figure 4.5: Modified Metropolis–Hastings algorithm.

algorithm a sequence of one-dimensional proposals Sj(·|xj
0), j = 1 . . . N is used. Namely,

each coordinate ξj of the candidate state is generated separately using a one-dimensional

proposal distribution Sj(·|xj
0) depended on the jth coordinate xj

0 of the current state. Finally,

we check whether the generated candidate belongs to the failure domain or not. Thus, the

MMH update of the Markov chain works as follows:

1) Generate candidate state ξ:

For each j = 1 . . . N

1a) Simulate ξ̂j according to Sj(·|xj
0),

1b) Compute the acceptance probability

aj(xj
0, ξ̂

j) = min

{
1,

πj(ξ̂
j)Sj(xj

0|ξ̂j)

πj(x
j
0)S

j(ξ̂j|xj
0)

}
, (4.8)

1c) Accept or reject ξ̂j by setting

ξj =





ξ̂j, with prob. aj(xj
0, ξ̂

j);

xj
0, with prob. 1− aj(xj

0, ξ̂
j).

(4.9)

2) Accept or reject ξ by setting

x1 =





ξ, if ξ ∈ F ;

x0, if ξ /∈ F .

(4.10)

53



It can be easily seen that the MMH algorithm overcomes the deficiency of standard MH

algorithm by producing distinct Markov chain states, rather than repeated samples [1, 18].

The MMH update is schematically shown in Fig. 4.5.

4.1.4 Modified Metropolis–Hastings algorithm with delayed rejec-

tion

Here we propose a new MCMC method, called modified Metropolis–Hastings algorithm with

delayed rejection (MMHDR), which combines the ideas of both MMH and MHDR algorithms.

Let ξ1 = (ξ1
1 , . . . , ξ

N
1 ) be a candidate state generated during the MMH update. Divide the

set of all indexes I = {1, . . . , N} into two disjoint subsets: I = T t T , where T = {j ∈ I :

ξj
1 = ξ̂j

1} and T = {j ∈ I : ξj
1 = xj

0}. So, T is a set of all indexes such that the corresponding

coordinates of the current state x0 were really transformed and T is a set of all the remaining

indexes.

Following the MMH algorithm after the candidate is generated we need to check whether

it belongs to the failure domain or not. In the former case we accept the candidate as a

new state of the Markov chain, in the latter case we reject the candidate and get a repeated

sample. In the MMHDR algorithm when a reject decision in (4.10) is taken, instead of getting

a repeated sample, we generate a second candidate state ξ2 using a different one-dimensional

proposal distribution Sj
2 for each j ∈ T and take ξj

2 = xj
0 for all j ∈ T . In other words, at

the second stage we try to update only those coordinates of the current state x0 that have

been transformed at the first stage already. Schematically this is shown in Fig. 4.6.

Finally, when the second candidate is generated, we check whether it belongs to the failure

domain, in which case we obtain a really new state of the Markov chain, or not, in which

case we still get a repeated sample.

So, the MMHDR update x0 → x1 of the Markov chain works as follows:

1) Generate candidate state ξ1:

For each j = 1 . . . N

1a) Simulate ξ̂j
1 according to Sj

1(·|xj
0),
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1b) Compute the acceptance probability

aj
1(x

j
0, ξ̂

j
1) = min

{
1,

πj(ξ̂
j
1)S

j
1(x

j
0|ξ̂j

1)

πj(x
j
0)S

j
1(ξ̂

j
1|xj

0)

}
, (4.11)

1c) Accept or reject ξ̂j
1 by setting

ξj
1 =





ξ̂j
1, j ∈ T with prob. aj

1(x
j
0, ξ̂

j
1);

xj
0, j ∈ T with prob. 1− aj

1(x
j
0, ξ̂

j
1).

(4.12)

2) Accept or reject ξ1 by setting

x1 =





ξ1, if ξ ∈ F ;

go to step 3) if ξ /∈ F .

(4.13)

3) Generate candidate state ξ2:

For each j = 1 . . . N

if j ∈ T , set ξj
2 = xj

0,

if j ∈ T

3a) Simulate ξ̂j
2 according to Sj

2(·|xj
0, ξ

j
1),

3b) Compute the acceptance probability

aj
2(x

j
0, ξ

j
1, ξ̂

j
2) = min

{
1,

πj(ξ̂
j
2)S

j
1(ξ

j
1|ξ̂j

2)S
j
2(x

j
0|ξ̂j

2, ξ
j
1)a

j
1(ξ̂

j
2, ξ

j
1)

πj(x
j
0)S

j
1(ξ

j
1|xj

0)S
j
2(ξ̂2|xj

0, ξ
j
1)a

j
1(x

j
0, ξ

j
1)

}
, (4.14)

3c) Accept or reject ξ̂j
2 by setting

ξj
2 =





ξ̂j
2, with prob. aj

2(x
j
0, ξ

j
1, ξ̂

j
2);

xj
0, with prob. 1− aj

2(x
j
0, ξ

j
1, ξ̂

j
2).

(4.15)

4) Accept or reject ξ2 by setting

x1 =





ξ2, if ξ2 ∈ F ;

x0, if ξ2 /∈ F .

(4.16)

The MMHDR update is schematically shown in the Fig. 4.7. It can be shown that if x0

is distributed according to π(·|F ), then so is x1, i.e. the MMHDR update leaves distribution

π(·|F ) invariant. The reader is referred to the Appendix B for the proof.
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Figure 4.6: MMHDR update at the second stage.

Figure 4.7: Modified Metropolis–Hastings algorithms with delayed rejection.
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The MMHDR algorithm preserves an attractive feature of the MHDR algorithm. Namely,

one-dimensional proposal distributions at the second stage are allowed to depend on the

corresponding coordinates of the first rejected candidate. The usage of information on the

previously rejected candidate potentially can help us to generate a better candidate at the

second stage that will be accepted as a new state of the Markov chain. This certainly reduces

the overall probability of remaining in the current state if compare with the MMH algorithm,

and therefore leads to an improved sampler. However, this improvement is achieved at the

expense of an additional computational cost. Whether the MMHDR algorithm is useful for

solving reliability problems depends on whether the gained reduction in variance compensates

for the additional computational effort.

4.2 Example

To demonstrate the advantage of the MMHDR algorithm over the MMH algorithm we apply

Subset Simulation (SS), with both MMHDR and MMH algorithms for evaluating the small

failure probability of linear problem in high dimensions.

Let N = 1000 be the dimension of the linear problem, pF = 10−5 be the failure probability

and the failure domain F is defined as

F = {x ∈ RN : 〈x, e〉 ≥ β}, (4.17)

where e ∈ RN is a random unit vector drawn from uniform distribution and β = Φ−1(1−pF ) =

4.265 is the reliability index. Here Φ denotes the CDF of the standard normal distribution.

Note, that x∗ = eβ is the design point of the failure domain F .

All one-dimensional proposal distributions in both MMH and MMHDR algorithms are set

to be normal distributions with unit variance and centered at the corresponding coordinates

of the current state:

Sj(·|xj
0) = Sj

1(·|xj
0) = Sj

2(·|xj
0, ξ

j
1) = Nxj

0,1(·) (4.18)

Here, when MMHDR algorithm is used, we do not change the second stage proposal distrib-

utions. How to generate a better candidate at the second stage based on the information on

the first rejected candidate is in need of additional research. In this example we want just to

check which one of the following two strategies is more effective: to have more Markov chains
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Figure 4.8: The CV of the estimates obtained by Subset simulation with MMH and MMHDR algorithms.

with more correlated states (MMH) or to have fewer Markov chains with less correlated states

(MMHDR).

The coefficient of variation (CV) of the failure probability estimates obtained by SS

method against the number of runs are given in Fig. 4.8. The curve denoted as MMH(1)

corresponds to the SS with MMH algorithm where for each intermediate subset n = 1000

samples are used. We refer to the total computational cost of this method, i.e., the mean

of the total number of samples used, as 1. The curve denoted as MMHDR(1.4) corresponds

to the SS with MMHDR algorithm where n = 1000 of MMHDR updates are performed per

each intermediate subset. It turns out that the total computational cost of MMHDR(1.4)

is 40% higher than MMH(1) and the reduction in CV achieved is about 25% (based on 100

of runs). Finally, the curve MMH(1.4) corresponds to the SS with MMH algorithm where

for each intermediate subset n = 1450 samples are used. The total computational cost of

MMH(1.4) is the same as for MMHDR(1.4), i.e. 40% higher than for MMH(1). However,

the the reduction in CV achieved with MMH(1.4) compared to MMH(1) is about 11% only.
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So, in this example SS with MMHDR algorithm clearly outperforms SS with MMH al-

gorithm. In other words, “quality” (fewer Markov chains with less correlated states) defeats

“quantity” (more Markov chains with more correlated states).
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Chapter 5

Horseracing Simulation

A horse is dangerous at both ends
and uncomfortable in the middle.

Ian Fleming

In this Chapter we propose a novel advanced stochastic simulation algorithm for solv-

ing high-dimensional reliability problems, called Horseracing Simulation. The main idea

behind Horseracing Simulation is as follows. Although the reliability problem itself is high-

dimensional, the limit-state function maps this high-dimensional parameter space into a

one-dimensional real line. This mapping transforms a high-dimensional random parameter

vector, which represents the input load, into a random variable with unknown distribution,

which represents the structure response. It turns out, that the corresponding unknown cumu-

lative distribution function (CDF) of this random variable can be accurately approximated

by the empirical CDFs constructed from specially designed samples.

5.1 Basic idea of Horseracing Simulation

Let us start with the discussion of the following auxiliary problem. Let z be a continuous

random variable with PDF f and CDF F , which are unknown. Suppose, that we can draw

samples from the distribution f . Our goal is, trying to use as few samples as possible, to

approximate F in some neighbourhood of a given point z∗ ∈ R. If the point z∗ is not very far

from the median z̃, then we can just draw Monte Carlo samples from f and use the empirical

CDF F (0), constructed based on these samples, as an approximation of F , see Fig. 5.1.

However, if the probability p = 1−F (z∗) is very small p ¿ 1, then the Monte Carlo method
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Figure 5.1: Approximation of the standard Gaussian CDF by empirical CDF, constructed based on Monte

Carlo samples.

will require a lot of samples in order to get some information about F in the neighbourhood

of z∗. Therefore, since it is essential to minimize the number of samples, the direct Monte

Carlo method is not applicable.

Assume now, that we can propagate our Monte Carlo samples towards the important

region (neighbourhood of z∗). Namely, for any sample z(0) ∼ f(z) we are able to draw

samples from the conditional distribution f(z|z ≥ z(0)), for any sample z(1) ∼ f(z|z ≥ z(0))

we are able to draw samples from the conditional distribution f(z|z ≥ z(1)), etc. It can be

proven (see Appendix B), that the kth random variable z(k), defined by this process, has

PDF

fk(z) =
(−1)k

k!
f(z) [log(1− F (z))]k . (5.1)

It is well-known from the importance sampling theory (e.g. see [28]), that if x1, . . . , xn

are independently drawn from a trial distribution h and the weight wi/
∑n

i=1 wi, where wi =

f(xi)/h(xi), is assigned to each xi, then as n → ∞ this approach produces a sample that

is approximately distributed according to f . In standard terminology, a trial distribution h
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and weights wi and wi/
∑n

i=1 wi are called “the importance distribution”, “the importance

weight” and “normalized importance weight” correspondingly.

So, if z
(k)
1 , . . . , z

(k)
n are independently distributed according to the distribution fk, then

the weighted samples (z
(k)
1 , w

(k)
1 ), . . . , (z

(k)
n , w

(k)
n ), where

w
(k)
i ∝ f(z

(k)
i )

fk(z
(k)
i )

∝ 1[
log(1− F (z

(k)
i ))

]k
, (5.2)

are approximately distributed according to f . Therefore, we can construct the empirical CDF

F (k) based on {(z(k)
i , w

(k)
i )}n

i=1 and use it for updating of the empirical CDF F (0), which was

constructed based on Monte Carlo samples {z(0)
i }n

i=1. Note, that the importance weights in

(5.2) depend explicitly only on the CDF F that we want to approximate and do not depend

on the unknown PDF f .

The above discussion suggests the following scheme of an algorithm (which is a prototype

of the Horseracing Simulation algorithm) for the approximation of F .

Horseracing Simulation Scheme

I. Sample z
(0)
1 , . . . , z

(0)
n from f0 = f ,

Set k = 0.

II. Construct the empirical CDF F (k) based on {z(k)
i }n

i=1.

While the stopping criterion C(z∗) is not fulfilled do:

III. Sample z
(k+1)
i from f0(z|z ≥ z

(k)
i ) for each i = 1 . . . n.

IV. Construct the empirical CDF G(k+1) based on {(z(k+1)
i , w

(k+1)
i )}n

i=1.

V. Update CDF F (k) to F (k+1), (F (k), G(k+1)) Ã F (k+1),

Set k=k+1.

Of course the steps of this algorithm should be specified and the the stopping criterion C(z∗)

should be properly chosen. Then we can naturally expect that in some neighbourhood of z∗

F (k) ≈ F. (5.3)

Before we explain how this scheme can help to solve the reliability problem, let us strike

some life into notation and explain the name origin for this algorithm. One can think of
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Figure 5.2: Dimension reduction induced by the limit-state function.

z1, . . . , zn as about horses participating in a race, where z
(k)
i denotes the position of the ith

horse at time instant k. The race is over when the finishing rule given by C(z∗) is fulfilled,

for example, when one of the horses (z
(k)
i ) reaches the finish line (z

(k)
i ≥ z∗).

Let us now relate the Horserace Simulation scheme with the reliability problem. Recall,

that the structural reliability problem is to compute the probability of failure, that is given

by the following expression:

pΩ = P (x ∈ Ω) =

∫

Ω

π0(x)dx, (5.4)

where x ∈ RN is a random vector with joint PDF π0, which represents the uncertain input

load or other uncertain model parameters, and Ω ⊂ RN is the failure domain1, i.e. the set of

inputs that lead to the exceedance of some prescribed critical threshold z∗ ∈ R+:

Ω = {x ∈ RN | g(x) > z∗}. (5.5)

Here g : RN → R+ is the limit-state function, which maps the high-dimensional parameter

space into a one-dimensional real line. This mapping transforms the high-dimensional random

parameter vector x into a random variable z = g(x), which represents the structure response.

This is schematically shown in Fig. 5.2.

Let f and F be PDF and CDF of z respectively, then the probability of failure in (5.4)

1In the previous Chapters the symbol F was used to denote a failure domain. In this Chapter we shall

use Ω instead, since F is the standard notation for a CDF, which will be used frequently.
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can be rewritten as follows:

pΩ =

∞∫

z∗

f(z)dz = 1− F (z∗). (5.6)

If the limit-state function g is continuously differentiable, then

f(z) =

∫

{x: z=g(x)}

π0(x)

‖∇g(x)‖ dV, (5.7)

where ∇g(x) = (∂g/∂x1, . . . , ∂g/∂xn) is the gradient of the limit-state function, integration

is taking over the (N −1)-dimensional surface {x : z = g(x)} and the differential volume dV

must be replaced by a parametrization of this surface for a particular calculation. Although

for any given x we can calculate the value g(x), we cannot obtain any other information such

as explicit formula, gradient, and so on (see condition (ii) in Chapter 1). As a consequence,

neither f nor F is known. Hence, the limit-state function allows us to shift the difficulty

of the reliability problem from geometry (in (5.4) we have to calculate the high-dimensional

integral over a complex domain that is only known implicitly) to probability ((5.6) is just a

one-dimensional integral, yet of an unknown function), see Fig. 5.2.

Thus, in order to use (5.6) for failure probability estimation one should find an approx-

imation of the CDF F of the random variable z. In the rest part of this Chapter we shall

show how the Horseracing Simulation scheme can be successfully used for this purpose.

5.2 Implementation issues

In this section we discuss the details of the proposed Horseracing Simulation scheme in the

context of the reliability problem.

5.2.1 Sampling

According to step I of the scheme, we have to sample from the distribution f0 = f . In other

words, we have to define the initial positions of the horses participating in a race. Although

the distribution f0 is unknown, it is very simple to get a sample from it. Namely, Monte Carlo

samples x
(0)
1 , . . . , x

(n)
n ∼ π0, being transformed by the limit-state function, will automatically

provide independent samples from f0:

z
(0)
1 = g(x

(0)
1 ), . . . , z(0)

n = g(x(n)
n ) ∼ f0. (5.8)
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Figure 5.3: Conditionally distributed samples.

Based on these samples F 0 is constructed, according to the step II.

Next, according to step III of the Horseracing Simulation scheme, we have to sample from

f0(z|z ≥ z
(k)
i ), where z

(k)
i ∼ fk, i.e., we need to find the position of the ith horse at time

k + 1. The main idea is the same as in step 1: to sample in the high-dimensional parameter

space and then apply transformation, generated by the limit-state function.

Let x
(k)
i be one of the previously generated samples, that corresponds to z

(k)
i , i.e., g(x

(k)
i ) =

z
(k)
i . Define the subset Ω

z
(k)
i
⊂ RN as follows:

Ω
z
(k)
i

= {x ∈ RN | g(x) ≥ z
(k)
i }. (5.9)

Note, that x
(k)
i belongs to the boundary of Ω

z
(k)
i

, i.e. x
(k)
i ∈ ∂Ω

z
(k)
i

. It is clear, that if x is

sampled from the conditional distribution π0(x|x ∈ Ω
z
(k)
i

), then z = g(x) is automatically

distributed according to f0(z|z ≥ z
(k)
i ). So, the problem of sampling from f0(z|z ≥ z

(k)
i )

reduces to the sampling from π0(x|x ∈ Ω
z
(k)
i

). It turns out, that the latter task can be done

by using the modified Metropolis-Hastings (MMH) algorithm.

Let R
z
(k)
i

denote the half-line in front of z
(k)
i ,

R
z
(k)
i

= g(Ω
z
(k)
i

) = {z ∈ R | z ≥ z
(k)
i }, (5.10)

and Z
(t)

z
(k)
i

denote the set of all horse positions at time t, which are in front of z
(k)
i :

Z
(t)

z
(k)
i

= {z(t)
j }n

j=1 ∩ Rz
(k)
i

= {z(t)
j | z(t)

j ≥ z
(k)
i , j = 1, . . . , n}, t = 1, . . . , k. (5.11)
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Figure 5.4: Sampling algorithm.

All samples from Z
(t)

z
(k)
i

are distributed according to the conditional distribution ft(z|z ≥ z
(k)
i ).

Therefore, the weighted samples {(z(t)
j , w

(t)
j ) | z(t)

j ∈ Z
(t)

z
(k)
i

}, where

w
(t)
j ∝ f0(z

(t)
j )

ft(z
(t)
j )

∝ 1[
log(1− F (z

(t)
j ))

]t , (5.12)

are approximately distributed according to the conditional distribution f0(z|z ≥ z
(k)
i ). Note,

that instead of the unknown CDF F in (5.12) we can use its approximation F (k), obtained in

step V (or in step II) of the scheme. So, at time k we have k sets of weighted samples approx-

imately drawn from the conditional distribution f0(z|z ≥ z
(k)
i ). These sets are schematically

shown in Fig. 5.3.

The following algorithm can be used for sampling from f0(z|z ≥ z
(k)
i ):

Sampling Algorithm

i. Select Z
(t0)

z
(k)
i

from Z
(t)

z
(k)
i

, t = 1, . . . , k according to their sample sizes χ
(t)

z
(k)
i

= #(Z
(t)

z
(k)
i

).

ii. Select z
(t0)
j0

from Z
(t0)

z
(k)
i

according to the weights given by (5.12).

iii. Take previously generated sample x
(t0)
j0

, that corresponds to z
(t0)
j0

, i.e. g(x
(t0)
j0

) = z
(t0)
j0

,

and perform the MMH update x
(t0)
j0

→ x̂ with invariant distribution π0(x|x ∈ Ω
z
(k)
i

).

iv. Set z
(k+1)
i = g(x̂).
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Figure 5.5: The zeroth approximation.

The way we select z
(t0)
j0

guarantees that it is distributed according to f0(z|z > z
(k)
i ). Therefore,

the corresponding sample x
(t0)
j0

has conditional distribution π0(x|x ∈ Ω
z
(k)
i

). Since the MMH

update preserves the invariant distribution, x̂ has distribution π0(x|x ∈ Ω
z
(k)
i

) as well. From

the latter in turn, it follows, that z
(k+1)
i = g(x̂) is distributed according to f0(z|z ≥ z

(k)
i ).

The proposed sampling algorithm is schematically shown in Fig. 5.4.

5.2.2 Construction of the empirical CDF and its updating

In step II of the Horseracing Simulation scheme, we have to construct a zeroth approximation

F (0) of the CDF of interest F , based on the Monte Carlo samples z
(0)
1 , . . . , z

(0)
n ∼ f0. For this

purpose we use the following piecewise linear approximation:

F (0)(z) =
z

n
(
z

(0)
i+1 − z

(0)
i

) +
(2i− 1)z

(0)
i+1 − (2i + 1)z

(0)
i

2n
(
z

(0)
i+1 − z

(0)
i

) , for z ∈ [z
(0)
i , z

(0)
i+1], (5.13)

where i = 1, . . . , n − 1. Samples z
(0)
1 , . . . , z

(0)
n are assumed to be ordered in (5.13), so that

z
(0)
1 < z

(0)
2 , . . . , < z

(0)
n . The zeroth approximation F (0) is shown in Fig. 5.5. Note, that F (0)

is not defined for z ∈ (−∞, z
(0)
1 ) ∪ (z

(0)
n ,∞).

Next, in step IV we have to construct the empirical CDF G(k+1) based on the weighted

samples {(z(k+1)
i , w

(k+1)
i )}n

i=1. If the weights {w(k+1)
i }n

i=1 are given, then we can define the
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empirical CDF G(k+1) in a similar way as the zeroth approximation:

G(k+1)(z) =
w

(k+1)
i + w

(k+1)
i+1

2
(
z

(k+1)
i+1 − z

(k+1)
i

) z +

(
2
∑i

j=1 w
(k+1)
j − w

(k+1)
i

)
z

(k+1)
i+1 −

(
2
∑i

j=1 w
(k+1)
j + w

(k+1)
i+1

)
z

(k+1)
i

2
(
z

(k+1)
i+1 − z

(k+1)
i

) ,

(5.14)

for z ∈ [z
(k+1)
i , z

(k+1)
i+1 ] and i = 1, . . . , n − 1. Samples z

(k+1)
1 , . . . , z

(k+1)
n are assumed to be

ordered in (5.14), so that z
(k+1)
1 < z

(k+1)
2 , . . . , < z

(k+1)
n . Note, that if all weights are equal, i.e.

w
(k+1)
i = 1/n, then (5.14) becomes (5.13).

In order to use (5.14), the weights w
(k+1)
1 , . . . , w

(k+1)
n should be calculated. Since the

samples z
(k+1)
1 , . . . , z

(k+1)
n are approximately distributed according to fk+1, their weights are

given by (5.12), where t = k+1 and F is replaced by its approximation F (k), obtained in step

V (or in step II). However, the approximation F (k), which was constructed using samples

{(z(t)
1 , . . . , z

(t)
n )}k

t=1, is defined only for z ∈ [mini z
(0)
i , maxi z

(k)
i ]. So, in order to calculate

the weights of the “fastest” horses, i.e. of z
(k+1)
i such that z

(k+1)
i > maxi z

(k)
i , we have to

interpolate F (k) on the interval [maxi z
(k)
i , maxi z

(k+1)
i ]. Thus, the weights w

(k+1)
1 , . . . , w

(k+1)
n

are defined as follows:

w
(k+1)
i ∝





1h
log(1−F (k)(z

(k+1)
i ))

ik+1 , if z
(k+1)
i ≤ maxi z

(k)
i ;

1h
log(1−F

(k)
int (z

(k+1)
i ))

ik+1 , if z
(k+1)
i > maxi z

(k)
i ,

(5.15)

where F
(k)
int is the interpolation of the CDF F (k). According to the notation introduced in

the sampling algorithm (section 5.2.1), χ
(k+1)

maxi z
(k)
i

is the number of samples {z(k+1)
i }n

i=1, that

are larger than maxi z
(k)
i . Let z

(k+1)
j0

be the smallest from such samples, z
(k+1)
j0

= mini{z ∈
Z

(k+1)

maxi z
(k)
i

}. Then, the interpolation of the CDF F (k) is defined as the piecewise linear function

shown in Fig. 5.6. Note, that χ
(k+1)

maxi z
(k)
i

= n− j0 + 1.

Finally, in step V we need to update the CDF F (k), using new information provided by

G(k+1), and construct a new approximation F (k+1) of the CDF F . Suppose for convenience,

that samples z
(t)
1 , . . . , z

(t)
n are ordered for each t = 1, . . . , k + 1:

z
(0)
1 < z

(0)
2 , . . . , < z(0)

n ,

z
(1)
1 < z

(1)
2 , . . . , < z(1)

n ,

. . .

z
(k+1)
1 < z

(k+1)
2 , . . . , < z(k+1)

n .

(5.16)
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Figure 5.6: The interpolation of F (k).

The CDF G(k+1) is not defined on the interval [z
(0)
1 , z

(k+1)
1 ). This means, that at time

t = k + 1 we do not get any new information about CDF F on this interval relative

to the information available at time t = k, so F (k+1)(z) = F (k)(z) for z ∈ [z
(0)
1 , z

(k+1)
1 ).

On the interval [z
(k+1)
1 , z

(0)
n ], the approximation F (k) is constructed using k + 1 sets of

samples {z(0)
i }n

i=1, . . . , {z(k)
i }n

i=1, while the approximation G(k+1) is based only on one set

{z(k+1)
i }n

i=1. Therefore, it is natural to define a new approximation F (k+1)(z) = ((k +

1)F (k)(z) + G(k+1)(z))/(k + 2), for z ∈ [z
(k+1)
1 , z

(0)
n ]. Using this line of reasoning, we de-

fine the new approximation F (k+1) as follows:

F (k+1)(z) =





F (k)(z), for z ∈ [z
(0)
1 , z

(k+1)
1 );

(k+1)F (k)(z)+G(k+1)(z)
k+2

, for z ∈ [z
(k+1)
1 , z

(0)
n ];

kF (k)(z)+G(k+1)(z)
k+1

, for z ∈ (z
(0)
n , z

(1)
n ];

. . . , . . .

F (k)(z)+G(k+1)(z)
2

, for z ∈ (z
(k−1)
n , z

(k)
n ];

G(k+1)(z), for z ∈ (z
(k)
n , z

(k+1)
n ].

(5.17)

However, since some of the weights in (5.15) are calculated using the interpolation function

F
(k)
int , the CDF G(k+1) approximates not exactly F . More precisely, G(k+1) can be decomposed

as follows:

G(k+1) = G
(k+1)
F + G

(k+1)
int , (5.18)

where G
(k+1)
F is an approximation of F and G

(k+1)
int is a perturbation due to the slightly in-

correct weights. Therefore, F (k+1), given by (5.17), also approximates not exactly F due
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to the perturbation term G
(k+1)
int . Note, that the norm ||G(k+1)

int || is a decreasing function of

χ
(k+1)

maxi z
(k)
i

: the less number of samples with weights calculated with F
(k)
int in (5.15), the less the

norm ||G(k+1)
int ||. So, if the number of such samples is relatively small, which is the case in

applications, we can assume, that the norm ||G(k+1)
int || is small enough. In order to completely

eliminate the influence of G
(k+1)
int , we propose the following iterative updating algorithm:

Updating Algorithm

i. Set s = 1, ε = 1,

Define Hs according to (5.17).

While the error ε > ε0 do:

ii. Recalculate the weights {w(k+1)
i }n

i=1 using (5.15) with Hs instead of F (k) and F
(k)
int .

iii. Recalculate G(k+1) using (5.14) with new weights.

iv. Define Hs+1 according to (5.17).

v. Recalculate the error:

ε = max
z∈{z(t)

i }n,k+1
i=1,t=1

{∣∣∣∣
Hs+1(z)−Hs(z)

1−Hs(z)

∣∣∣∣
}

(5.19)

Set s = s + 1.

End while

vi. Set F (k+1) = Hs.

The error ε, defined in (5.19), describes the relative change in two successive iterations Hs

and Hs+1. Note, that ε is more sensitive to the changes in the important region, where Hs

is close to 1. When this error is smaller than some prescribed threshold ε0 (in the further

example the value ε0 = 0.01 is used) we take the last Hs as the new approximation F (k+1) of

the CDF F .
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5.2.3 Stopping criterion

The stopping criterion C(z∗) plays a very important role in the Horsracing Simulation algo-

rithm. As it was already mentioned in section 5.1, one of the possible choices for C(z∗) is

the following rule: the race is over when at least one of the horses (z
(k)
i ) reaches the finish

line (z
(k)
i ≥ z∗). The main advantage of this rule is that it allows to obtain the estimate

of the failure probability pΩ = 1− F (z∗) with the minimum possible computation effort (as

soon as we reach the threshold z∗ we stop the algorithm). However, this rule has a serious

drawback: the estimate may be very inaccurate. Indeed, if, for instance, pΩ = 0.01 and we

use n = 100 samples, then in average 1 out of 100 Monte Carlo samples z
(0)
1 , . . . , z

(0)
n will be

a failure sample. In this case, the estimate for the failure probability will have coefficient of

variation δ =
√

(1− pΩ)/npΩ ≈ 1.

Another natural candidate for the stopping criterion is the following rule: the race is

over when r% of horses reach z∗. The problem with this criterion is the it is difficult to

find an optimal ratio r, since it is a trade-off between the accuracy of the estimate and the

computational effort. As a matter of fact, the situation is even more complicated, since due

to (5.19), the approximation F (k) of the CDF F tends to be more accurate in the region of the

largest values of F (k). So, if we go too far beyond z∗, the estimate of the failure probability

may degenerate.

In the real-life example considered in this Chapter, we use the following stopping criterion:

the race is over when 10 horses reach z∗. This rule preserves the advantage of the first

discussed criterion (relatively small computation effort) and at the same time guarantees, that

if the Horseracing Simulation reduces to the Monte Carlo algorithm, then the corresponding

CV of the failure probability estimate will be approximately 30%. Indeed, if n samples are

used and 10 of them turn out to be failure samples, then the CV is δ =
√

(1− pΩ)/npΩ ≈
1/
√

10 ≈ 0.32.

The Fig. 5.7 summarizes the Horserace Simulation Scheme and the discussed implemen-

tation issues into the Horserace Simulation Algorithm.
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Figure 5.7: Horeracing Simulation Algorithm.
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Figure 5.8: CAARC standard tall building model.

5.3 Example

In this section we demonstrate the efficiency and accuracy of the Horseracing Simulation

algorithm with a real-life example which is taken from [16].

5.3.1 CAARC standard tall building model

We consider an along-wind excited steel building (Fig. 5.8), which has the same geometric

shape as the Commonwealth Advisory Aeronautical Research Council (CAARC) standard

tall building model [23]. A 45-story, 10-bay by 15-bay rectangular tubular framework is used

to model this building. With story height of 4 m and bay width of 3 m, the building has

a total height of 180 m and a rectangular floor with dimension 30 m by 45 m. Each floor
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Floor zone Column members Beam members

1 ∼ 9F W14X550 W30X357

10 ∼ 18F W14X500 W30X326

19 ∼ 27F W14X370 W30X292

28 ∼ 36F W14X257 W30X261

37 ∼ 45F W14X159 W30X221

Table 5.1: Design of column members and beam members.

Excitation Acting height (m) Acting area (m2)

U1(t) 24 45× 45

U2(t) 68 45× 45

U3(t) 112 33.75× 45

U4(t) 136 22.5× 45

U5(t) 156 22.5× 45

U6(t) 176 11.25× 45

Table 5.2: Acting heights and acting areas of 6 excitation forces in the discretization scheme.

is assumed to be rigid and has lumped swaying mass of 6.75 × 105 kg and rotational mass

moment of inertia of 1.645 × 108 kg.m2 at the geometric center of the floor. The members

of beams and columns have standard AISC steel sections, and the details of the design are

presented in Table 5.1. With the above configurations, the established building model has

the following first three modal frequencies: 0.197 Hz, 0.251 Hz and 0.422 Hz.

5.3.2 Wind excitation

The along-wind excitation in the Y -direction of the building is considered. In our example

the excitation field is discretized using Nu = 6 excitation forces U1(t), . . . , UNu(t). The

acting heights and acting areas for this discretization scheme are shown in Table 5.2, and the

discretized excitation field is schematically shown in Fig. 5.9.

At a given point located at height hj from the ground, the wind velocity is

Vj(t) = V̄j + vj(t), (5.20)

where V̄j is the mean wind speed and vj(t) is the fluctuating component of the wind velocity.
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Figure 5.9: Discretized excitation filed.

According to the Hong Kong wind code, the mean wind speed V̄j (m/s) is given by the

power law [32]:

V̄j = 41

(
hj

180

)0.25

, j = 1, . . . , Nu. (5.21)

The generation of the fluctuating components is carried out by simulation of an Nu-variate

zero-mean stationary stochastic vector process v(t) = [v1(t), . . . , vNu ]T using the spectral rep-

resentation method [30, 31, 7, 13]. In this method, the stochastic vector process is simulated

using its cross-power spectral density matrix

S0(ω) =




S0
11(ω) . . . S0

1Nu
(ω)

...
...

S0
Nu1(ω) . . . S0

NuNu
(ω)


 . (5.22)

We refer the reader to Appendix C for details.

The cross spectral density matrix S0(ω) is modeled by formulas proposed by Davenport

in [5, 6]. Namely, the power spectral density function S0
jj(ω) of vj(t), j = 1, . . . , Nu, is given

by

S0
jj(ω) =

V̄ 2
j K2

(
ln

hj

h0

)2

8πa(ω)2

ω(1 + a(ω)2)4/3
, (5.23)

a(ω) =
600ω

πV̄10

, (5.24)
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where ω (rad/s) is the frequency, K = 0.4 is Von Karman’s constant, h0 = 0.05 m is the

roughness length, and V̄10 = 19.9 m/s is the mean wind velocity at height of 10 m. The

cross-power spectral density function S0
jk(ω) of vj(t) and vk(t) is given by

S0
jk(ω) =

√
S0

jj(ω)S0
kk(ω)γjk(ω), j, k = 1, . . . , Nu, j 6= k, (5.25)

γjk(ω) = exp

(
− ω

2π

Ch|hj − hk|
0.5(V̄j + V̄k)

)
, (5.26)

where γjk(ω) is the coherence function between vj(t) and vk(t), and Ch is a constant that can

be set equal to 10 for structural design purposes [32].

To perform the generation of the wind velocity fluctuations according to (6.34), the cutoff

frequency is taken as ωc = 0.8π rad/s, so that the ratio rc of the neglected power spectrum

content over the total content, defined in (6.32), is less than 10% for all components S0
jk(ω),

j, k = 1, . . . , Nu. The frequency step is set equal to 4ω = π/900, therefore, the period

Tv = 4π/4ω of the fluctuating wind velocity components v(t) is 3600 s.

The wind excitation forces Uj(t), j = 1, . . . , Nu can be expressed as follows:

Uj(t) =
1

2
ρAjVj(t)

2 =
1

2
ρAj(V̄j + vj(t))

2, (5.27)

where ρ is the air density, taken to be 1.2 kg/m3, and Aj is the area upon which the discretized

force Uj(t) is assumed to act (see Table 5.2).

5.3.3 Geometric description of the failure domain

From the above chosen parameters and (6.34), it follows that the number of standard gaussian

random variables involved in the simulation of wind excitation is

N = 2×Nu ×Nω = 2×Nu × ωc/4ω = 8640. (5.28)

In other words, the failure domain Ω is a subset of a high-dimensional parameter space

Ω ⊂ RN , where N = 8640.

In this example we assume that the displacement response Y (t) at the top floor of the

building is of interest. The relationship between the response Y (t) and the excitation forces

Uj, j = 1, . . . , Nu is given by

Y (t) =
Nu∑
j=1

∞∫

0

qj(t, τ)Uj(τ) dτ, (5.29)
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where qj(t, τ) is the response function for Y (t) at time t due to a unite impulse excitation

for Uj at time τ . We assume that the system starts with zero initial conditions, is time-

invariant, i.e., qj(t, τ) = qj(t− τ), and is causal, i.e., qj(t, τ) ≡ 0 for t < τ , so that (5.29) can

be rewritten as follows:

Y (t) =
Nu∑
j=1

t∫

0

qj(t− τ)Uj(τ) dτ. (5.30)

The required impulse response functions q1(t), . . . , qNu(t) are obtained through Nu dynamic

analyses of the established finite element model of the building using the software SAP 2000.

Summarizing the above discussion, the simulation scheme is shown in Fig. 5.10.

The failure event is defined as the response Y (t) exceeding in magnitude a specified

threshold z∗ within one hour, i.e., the assumed duration time is T = 3600 s. This duration

time is conventionally used in wind engineering, for consistence with the duration of actual

strong winds. Thus, in the discrete time formulation, where the sampling time interval is

chosen to be 4t = 0.01 s and the number of time instants is Nt = T/4t = 3.6 · 105, the

failure domain Ω ⊂ RN is defined as follows:

Ω =
Nt⋃
i=1

{
x ∈ RN : |Y (i)| > z∗

}
. (5.31)

So, in the space of standard normal random variables, the failure domain Ω is a union of

2Nt elementary failure domains:
{
x ∈ RN : Y (i) > z∗

}
and

{
x ∈ RN : Y (i) < −z∗

}
, for

i = 1, . . . , Nt. The limit-state function is given by

g(x) = max{|Y (i)|, i = 1, . . . , Nt}. (5.32)

For each sample x ∈ RN a dynamic analysis is required in order to evaluate the corresponding

value g(x) of the limit-state function. We refer to the total number of such dynamic analysis

(or, equivalently, to the total number of limit-state function evaluations) used in a run of an

algorithm as the total computation effort of the algorithm.
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Figure 5.10: Simulation scheme.
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Figure 5.11: The CV of estimates obtained by Horseracing Simulation and Monte Carlo.

5.3.4 Simulation results

The failure events with thresholds z∗1 = 1.25 m, z∗2 = 1.35 m, and z∗3 = 1.45 m are considered

in the simulation. The corresponding Monte Carlo (MC) estimates of the failure probabilities

are found to be pΩ1 = 3.3×10−2 (with CV δ1 = 5.4%), pΩ2 = 6.8×10−3 (with CV δ2 = 12.1%),

and pΩ3 = 1.5× 10−3 (with CV δ3 = 25.8%). For each failure event nMC = 104 samples were

used.

The Horseracing Simulation algorithm (HRS) is applied with n = 500 initial samples. The

total computational efforts (CE) required by the algorithm are CE1 = 500, CE2 = 1000, and

CE3 = 1500 for pΩ1 , pΩ2 , and pΩ3 respectively. In order to get approximately the same CE,

Subset Simulation is applied with n = 500, n = 360, and n = 540 initial samples respectively.

The obtained mean values of the failure probability estimates and their CVs based on 40 runs

of these algorithms are shown in the Fig. 5.11 in comparison with the CVs of the Monte

Carlo estimates (with the same CE). In the first case, when z∗1 = 1.25 m, both HRS and SS

reduces to MC. The latter is expected, since the average number nΩ of failure samples out

of n is nΩ = npΩ = 500 × 3.3 × 10−2 = 16.5 > 10. In the second case (z∗2 = 1.35) as well
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as in the third case (z∗3 = 1.45) the HRS outperforms MC. The reductions in CV achieved

are (δMC
2 − δHRS

2 )/δMC
2 = 20.6% and (δMC

3 − δHRS
3 )/δMC

3 = 24.6% correspondingly. However,

in the two last cases SS outperforms the presented version of HRS. Since the Horseracing

Simulation algorithm is a new developed reliability method, it contains a lot of rooms for

improvements. So, the future research will be dedicated to the fine-tuning of HRS, which

may result into superiority over Subset Simulation algorithm.

In Fig. 5.12 the comparison between HRS and MC is made in terms of computational

effort. It is well known, that the number of MC samples requited to achieve the CV δ, when

trying to compute failure probability pΩ, is given by

n =
1− pΩ

pΩδ2
. (5.33)

Using (5.33), we calculate the CE required by MC in order to obtain the CV achieved by

HRS. The results are shown in Fig. 5.12. In the first case the CEs are the same as expected.

In the second and third cases MC requires 1.58 and 1.76 times more CE.

So, the Horserace Simulation algorithm clearly outperforms the standard Monte Carlo

Simulation for the considered real-life example.
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Chapter 6

Conclusion

I guess I should warn you, if I turn out to be particularly
clear, you’ve probably misunderstood what I’ve said.

From a 1988 speech at the Economic Club of New York
by Alan Greenspan, Chairman of Federal Reserve

In this Chapter we briefly summarize the main results obtained in the present work.

The Thesis is dedicated to the exploration and development of advanced stochastic sim-

ulation algorithms for solving high-dimensional reliability problems.

Chapter 2 can be considered as a “critics” of the well-known and widely used reliability

methods. The critics is based on deep understanding of the geometric features of high-

dimensional reliability problem. We highlight the difficulties associated with these methods.

Namely,

• The design point itself as well as the direction of the design point can be of no conse-

quence when searching the main parts of the failure domain, which are the intersections

of failure domain with the Important Ring.

• Importance Sampling is not applicable in general nonlinear high-dimensional reliability

problems of practical interest.

• A geometric explanation as to why the standard Metropolis-Hastings algorithm does

“not work” in high-dimensions is given.

In Chapters 3 and 4 we develop two useful modifications of the well-known algorithms:
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• Adaptive Linked Importance Sampling (ALIS) generalizes Subset Simulation (SS) and

in some cases, as it was shown with academic examples, can offer drastic improvements

over SS.

• Modified Metropolis-Hastings algorithm with Delayed Rejection (MMHDR) is a novel

modification of the Metropolis-Hastings algorithm, designed specially for sampling from

conditional high-dimensional distributions.

Finally, in Chapter 5:

• A new advanced stochastic simulation algorithm, called Horseracing Simulation (HRS),

is proposed for solving high-dimensional reliability problems. The accuracy and effi-

ciency of the new method is demonstrated with a real-life wind engineering example.
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Appendix A: Markov chains

The only good Monte Carlo is a dead Monte Carlo

Trotter & Tukey

In this appendix we prove that conditional distribution π(·|F ) is an equilibrium distribu-

tion for any Markov chain generated by the MMHDR algorithm, described in section 2.4. In

other words, if we generate a Markov chain X0, X1, . . . using MMGDR update, started from

essentially any X0 ∈ F , then for large n the distribution of Xn will be approximately π(·|F ).

We start with recalling of the needed definitions and facts from the theory of Markov chains.

A Markov chain on a state space F ⊂ RN is a sequence of random vectors {Xn, n ≥ 0}
such that

P (Xn+1 ∈ A|Xn = x,Xj, j < n) = P (Xn+1 ∈ A|Xn = x) ≡ Kn(x,A), (6.1)

for all A ⊂ F and x ∈ F . The probability measure Kn(x, ·) is called the transition kernel.

Typically, we assume that the transition kernel does not dependent on the time n, Kn = K.

In this case the corresponding Markov chain is called time-homogeneous.

Usually the transition kernel in Markov chain simulations has both continuous and discrete

components and can be expressed as follows:

K(x, dy) = k(x, y)dy + r(x)δx(dy). (6.2)

Here k : F ×F → R+ with k(x, x) = 0 describes the continuous part of the transition kernel,

r(x) = 1− ∫
F

k(x, y)dy, and δx denotes point mass at x (Dirac measure):

δx(A) =





1, if x ∈ A;

0, if x /∈ A.
(6.3)

Thus, transition kernel (6.2) specifies that transitions of the Markov chain from x to y occur

according to k(x, y) and the Markov chain remains at x with probability r(x). Transition

kernel (6.2) is schematically shown in the Fig. 6.1.
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Figure 6.1: Transitional kernel with both continuous and discrete components.

Let π be a probability distribution on F . Assume that π has a density with respect to

the Lebesgue measure:

π(dx) = π(x)dx. (6.4)

For simplicity, π will be used to denote both distribution and density. The probability

distribution π is called invariant distribution for a transition kernel K if

π(dy) =

∫

x∈F

π(x)K(x, dy)dx. (6.5)

It is easy to check, that a sufficient condition for π to be the invariant distribution for K

is to satisfy the so-called reversibility condition:

π(dx)K(x, dy) = π(dy)K(y, dx). (6.6)

The central result of the Markov chain theory is the following. Let K be a transition

kernel with invariant distribution π. In addition, assume that the transition kernel K satisfies

certain ergodic conditions (it is irreducible and aperiodic). Then the invariant distribution

π is the equilibrium distribution of the corresponding Markov chain: if we run the Markov

chain for a long time (burn-in period), started from anywhere in the state space, then for

large n the distribution of Xn will be approximately π. The required burn-in period heavily
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depends on the choice of the transition kernel K and on π itself. It also should be mentioned,

that in practical application it is very difficult to check whether the Markov chain has reached

its invariant distribution or not. Even if it has, it is hard to tell for sure.

Now let K denote the transitional kernel of the Markov chain generated by the MMHDR

algorithm.

Theorem 1. The transition kernel K of the MMHDR update satisfies the reversibility con-

dition with respect to the conditional distribution π(·|F ):

π(dx0|F )K(x0, dx1) = π(dx1|F )K(x1, dx0). (6.7)

Proof. By the definition of the MMHDR algorithm all the Markov chain samples lie in F ,

therefore, it is sufficient to consider the transition only between states in F . So, without loss

of generality, we assume that both x0 and x1 belong to F, x0, x1 ∈ F . In addition, we assume

that x0 6= x1, since otherwise (6.7) is trivial.

The MMHDR update is naturally divided into two stages. At the first stage (Steps 1 and

2), being in the current state x0 ∈ F , we generate a candidate state ξ1, which can either

belong to the failure domain F or not. At the second stage (Steps 3 and 4), still being in

the current state x0 and having rejected candidate ξ1 ∈ F̄ = RN \F , we generate the second

candidate state ξ2, and take ξ2 or x0 as the next state x1 of the Markov chain depending on

whether ξ2 belongs to the failure domain or not:

1st stage : F → RN , x0 7→ ξ1,

2nd stage : F × F̄ → F, (x0, ξ1) 7→ x1.
(6.8)

Denote the transition kernels of the first and second stages by K1 and K2, respectively. Then

the transition kernel of the MMHDR update can be written as follows:

K(x0, dx1) = K1(x0, dx1) +

∫

ξ∈F̄

K1(x0, dξ)K2(x0, ξ, dx1). (6.9)

Lemma 1. If x0, x1 ∈ F , then

π(dx0)K1(x0, dx1) = π(dx1)K1(x1, dx0). (6.10)

Proof. According to Step 1, the transition of individual coordinates of x0, when the first

candidate state is generated, are independent. So the transition kernel K1 can be expressed
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as a product of the coordinate transition kernels:

K1(x0, dx1) =
N∏

j=1

Kj
1(x

j
0, dxj

1), (6.11)

where Kj
1 is the transition kernel for the jth coordinate of x0 at the first stage. Therefore,

(6.10) can be equivalently rewritten in the coordinates as follows:

N∏
j=1

πj(dxj
0)K

j
1(x

j
0, dxj

1) =
N∏

j=1

πj(dxj
1)K

j
1(x

j
1, dxj

0). (6.12)

To prove (6.12) it is sufficient to show that for any j = 1 . . . , N

πj(dxj
0)K

j
1(x

j
0, dxj

1) = πj(dxj
1)K

j
1(x

j
1, dxj

0). (6.13)

According to Step 1, the transition kernel Kj
1 for xj

0 at the first stage can be written as

follows:

Kj
1(x

j
0, dxj

1) = kj
1(x

j
0, x

j
1)dxj

1 + rj
1(x

j
0)δxj

0
(dxj

1), (6.14)

where

kj
1(x

j
0, x

j
1) = Sj

1(x
j
1|xj

0)a
j
1(x

j
0, x

j
1), (6.15)

and aj
1 is given by (4.11), namely

aj
1(x

j
0, x

j
1) = min

{
1,

πj(x
j
1)S

j
1(x

j
0|xj

1)

πj(x
j
0)S

j
1(x

j
1|xj

0)

}
. (6.16)

Assume that xj
0 6= xj

1, since otherwise (6.13) is trivial. Then, using the identity b min{1, a/b} =

a min{1, b/a}, which is valid for any two positive numbers a and b, we have:

πj(dxj
0)K

j
1(x

j
0, dxj

1) = πj(x
j
0)k

j
1(x

j
0, x

j
1)dxj

0dxj
1

= πj(x
j
0)S

j
1(x

j
1|xj

0) min

{
1,

πj(x
j
1)S

j
1(x

j
0|xj

1)

πj(x
j
0)S

j
1(x

j
1|xj

0)

}
dxj

0dxj
1

= πj(x
j
1)S

j
1(x

j
0|xj

1) min

{
1,

πj(x
j
0)S

j
1(x

j
1|xj

0)

πj(x
j
1)S

j
1(x

j
0|xj

1)

}
dxj

0dxj
1

= πj(x
j
1)k

j
1(x

j
1, x

j
0)dxj

0dxj
1 = πj(dxj

1)K
j
1(x

j
1, dxj

0).

(6.17)

So, Lemma 1 is proved.

Remark 1. In essence, the proof of Lemma 1 repeats the one given in Au and Beck (2001)

for the Modified Metropolis algorithm.
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Thus, keeping in mind (6.9) and Lemma 1, it remains to show that for any x0, x1 ∈ F and

x0 6= x1

π(dx0)

∫

ξ∈F̄

K1(x0, dξ)K2(x0, ξ, dx1) = π(dx1)

∫

ξ∈F̄

K1(x1, dξ)K2(x1, ξ, dx0). (6.18)

According to Step 3, the transition of individual coordinates of x0, when the second candidate

state is generated, are independent. So the transition kernel K2, as well as K1, can be

expressed as a product of the coordinate transition kernels:

K2(x0, ξ, x1) =
N∏

j=1

Kj
2(x

j
0, ξ

j, dxj
1), (6.19)

where Kj
2 is the transition kernel for the jth coordinate of x0 at the second stage. Therefore,

(6.18) can be equivalently rewritten in the coordinates as follows:

∫

ξ∈F̄

N∏
j=1

πj(dxj
0)K

j
1(x

j
0, dξj)Kj

2(x
j
0, ξ

j, dxj
1) =

∫

ξ∈F̄

N∏
j=1

πj(dxj
1)K

j
1(x

j
1, dξj)Kj

2(x
j
1, ξ

j, dxj
0). (6.20)

To satisfy the condition (6.20) it is sufficient to show that for any j = 1 . . . , N the following

holds:

πj(dxj
0)K

j
1(x

j
0, dξj)Kj

2(x
j
0, ξ

j, dxj
1) = πj(dxj

1)K
j
1(x

j
1, dξj)Kj

2(x
j
1, ξ

j, dxj
0). (6.21)

According to Step 3, the transition kernel Kj
2 for xj

0 at the second stage can be written as

follows:

Kj
2(x

j
0, ξ

j, dxj
1) =





δxj
0
(dxj

1), if ξj = xj
0;

kj
2(x

j
0, ξ

j, xj
1)dxj

1 + rj
2(x

j
0, ξ

j)δxj
0
(dxj

1), if ξj 6= xj
0,

(6.22)

where

kj
2(x

j
0, ξ

j, xj
1) = Sj

2(x
j
1|xj

0, ξ
j)aj

2(x
j
0, ξ

j, xj
1), (6.23)

and aj
2 is given by (4.14), namely

aj
2(x

j
0, ξ

j, xj
1) = min

{
1,

πj(x
j
1)S

j
1(ξ

j|xj
1)S

j
2(x

j
0|xj

1, ξ
j)aj

1(x
j
1, ξ

j)

πj(x
j
0)S

j
1(ξ

j|xj
0)S

j
2(x

j
1|xj

0, ξ
j)aj

1(x
j
0, ξ

j)

}
. (6.24)

Assume that xj
0 6= xj

1, since otherwise condition (6.21) is trivial. Consider the following three

cases separately: ξj 6= xj
0 and ξj 6= xj

1 (1st case), ξj = xj
0 (2nd case) and ξj = xj

1 (3d case).
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i. ξj 6= xj
0, ξj 6= xj

1.

Then we have:

πj(dxj
0)K

j
1(x

j
0, dξj)Kj

2(x
j
0, ξ

j, dxj
1)

= πj(x
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0)k
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j)kj
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1)dxj
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j
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j
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j)aj
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}
dxj
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1(ξ
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1)a
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j)×
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{
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0)S
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2(x

j
1|xj

0, ξ
j)aj
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j)
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1)S
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1(ξ
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1)S
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2(x

j
0|xj

1, ξ
j)aj
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j
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j)

}
dxj

0dξjdxj
1

= πj(x
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1)k

j
1(x

j
1, ξ
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2(x

j
1, ξ

j, xj
0)dxj

0dξjdxj
1

= πj(dxj
1)K

j
1(x

j
1, dξj)Kj

2(x
j
1, ξ

j, dxj
0).

(6.25)

So, in this case (6.21) is fulfilled.

ii. ξj = xj
0.

In this case the left-hand side of (6.21) is zero, since Kj
2(x

j
0, x

j
0, dxj

1) = δxj
0
(dxj

1) = 0.

The last equality holds, because we have assumed that xj
0 6= xj

1. Let us now analyze

the right-hand side of (6.21) when ξj = xj
0:

πj(dxj
1)K

j
1(x

j
1, dxj

0)K
j
2(x

j
1, x

j
0, dxj

0)

= πj(dxj
1)k

j
1(x

j
1, x

j
0)

(
kj

2(x
j
1, x

j
0, x

j
0)dxj

0 + rj
2(x

j
1, x

j
0)δxj

1
(dxj

0)
)

dxj
0

= πj(dxj
1)k

j
1(x

j
1, x

j
0)k

j
2(x

j
1, x

j
0, x

j
0)dxj

0dxj
0 = 0,

(6.26)

since dxj
0dxj

0 = 0, which is a standard result of the measure theory. So, the right-hand

side of (6.21) is also zero. Basically, when ξj = xj
0 the left-hand side of (6.21) is zero by

definition of the MMHDR algorithm: in the 2nd stage the MMHDR update transforms

only those coordinates of the current state, which have been already transformed during

the 1st stage. At the same time, the right-hand side is zero, because the “probability”

to transform any coordinate of the current state to the same value twice (during both

1st and 2nd stages) is infinitessimally small.

iii. ξj = xj
1.

This case can be considered in exactly the same way as the 2nd one where xj
0 and xj

1

are replaced by each other.
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Thus, Theorem 1 is proved.

Corollary 1. The conditional distribution π(·|F ) is invariant for the kernel K and, therefore,

any Markov chain generated by the MMHDR algorithm will eventually converge to π(·|F ) as

its equilibrium distribution.

Remark 2. When MMHDR algorithm is used together with Subset simulation the starting

state of the Markov chain is already distributed according to π(·|F ). It means that there is

no burn-in period in this case.

Remark 3. Following the proof of Theorem 1, it can be shown that keeping fixed those

coordinates of the current state, that have not been transformed at the first stage of the

MMHDR update, is essential for satisfying the reversibility condition (6.7).
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Appendix B: fk-distribution

Let z0 be a random variable with PDF f0 and CDF F0, and let ξ ∼ f0 be its realization.

Define z1 to be a new random variable with conditional distribution f0(z|z ≥ ξ). In general,

if ξ ∼ fk is a realization of the random variable zk, define zk+1 to be a new random variable

with conditional distribution f0(z|z ≥ ξ). This procedure defines a Markov chain z0, z1, . . .,

which, as a matter of fact, is completely defined by the distribution of the random variable

z0.

Theorem 2. The PDF fk of the random variable zk is

fk(z) =
(−1)k

k!
f0(z) [log(1− F0(z))]k (6.27)

Proof. We prove this theorem by induction on k. For k = 0 the statement of the theorem is

obvious. Suppose that (6.27) holds for k. Then for k + 1 we have:

fk+1(z) =

∞∫

−∞

f0(z|z ≥ ξ)fk(ξ)dξ

=
(−1)k

k!

∞∫

−∞

f0(z)IF{z ≥ ξ}
1− F0(ξ)

f0(ξ) [log(1− F0(ξ))]
k dξ

=
(−1)k

k!
f0(z)

z∫

−∞

[log(1− F0(ξ))]
k dF0(ξ)

1− F0(ξ)

=
(−1)k+1

k!
f0(z)

z∫

−∞

[log(1− F0(ξ))]
k d(1− F0(ξ))

1− F0(ξ)

=
(−1)k+1

(k + 1)!
f0(z) [log(1− F0(z))]k+1 .

(6.28)

Which proves the theorem.
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Appendix C:

Spectral representation method

According to the spectral representation method, the stochastic vector process is simulated

as a superposition of harmonic waves with random phases or random amplitudes.

Let S0(ω) be the cross-power spectral density matrix of the stochastic vector process

v(t) = [v1(t), . . . , vN(t)]T ,

S0(ω) =




S0
11(ω) . . . S0

1N(ω)
...

...

S0
N1(ω) . . . S0

NN(ω)


 , (6.29)

which is assumed to be real due to the negligibility of the quadrature spectrum [32], symmetric

and positive definite [9] for each frequency ω. Then, according to Cholesky decomposition,

the matrix S0(ω) can be factorized as follows:

S0(ω) = H(ω)H(ω)T , (6.30)

where H(ω) is a lower triangular real matrix (so called “the Cholesky triangle” of S0(ω)).

Let Hj(ω), j = 1, . . . , N denote the j-th column vector of H(ω) , so that

H(ω) = [H1(ω), . . . , HN(ω)]. (6.31)

Let ωc be the cutoff frequency above which all components S0
jk(ω), j, k = 1, . . . , N are

insignificant for practical purposes. More precisely, if rc,jk denotes the ratio of the neglected

power spectrum content over the total content, i.e.

rc,jk =

∞∫
ωc

S0
jk(ω) dω

∞∫
0

S0
jk(ω) dω

, (6.32)
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then ωc is defined such that all rc,jk are smaller than some predefined threshold. Divide

the interval [0, ωc] into Nω equal segments, each having length 4ω = ωc/Nω, and define a

sequence of frequencies as follows:

ωi =
(2i− 1)4ω

2
, i = 1, . . . , Nω. (6.33)

Then, the stochastic vector process v(t) is simulated according to the following formula [13]:

v(t) =
√
4ω

Nω∑
i=1

N∑
j=1

Hj(ωi)(x
1
ij cos(ωit) + x2

ij sin(ωit)), (6.34)

where x1
ij and x2

ij, i = 1 . . . , Nω, j = 1, . . . , N are independent standard gaussian variables.
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