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”Treating national governments as if they were centrally coordinated, purposive individuals

provides a useful shorthand for understanding problems of policy. But this simplification -

like all simplifications - obscures as well as reveals. In particular, it obscures the persistently

neglected fact of bureaucracy: the ’maker’ of government policy is not one calculating decision

maker but is rather a conglomerate of large organizations and political actors.”

—Graham Allison, Essence of Decision, p. 3

1 Introduction

In one of the most influential political science books of the last century, Essence of Decision,

Allison (1971) convincingly attacks the unitary actor paradigm of decision-making in interna-

tional relations and proposes that more realistic approaches should analyze crisis situations

by taking account of frictions that arise because the decision makers are teams rather than

individuals. Allison’s book is a case study of the Cuban Missile Crisis, which occurred in the

early years of President John F. Kennedy’s administration, when the government of the So-

viet Union, led at the time by Nikita Khrushchev, secretly began installing ballistic missiles

in Cuba. The book documents how the decision-making team in the Kennedy administration

coalesced on a response to this threat. The crux of the argument in the book, illustrated

with the case study, is that while it may be plausible to model decisions by individuals as

rational, applying the same single-agent rationality model of decision-making to teams can-

not be justified.1 Allison proposes two alternatives to the unitary rational actor model, one

of which emphasizes collective choice processes and procedural constraints (“The Organi-

zational Process Model”) and the second which emphasizes the heterogeneous idiosyncratic

preferences and biases of the individual members of the decision-making organization (“The

Governmental Politics Model”).

The Allison critique of the unitary rational actor model extends far beyond applications to

national security policy and international relations. Similar dynamics arise in many strategic

conflicts in economic environments, where decision-making units are not single actors but

organizations, i.e., groups of individuals working toward shared goals while also navigating

idiosyncratic private objectives and operating collectively under specific organizational rules,

1Allison’s insight has been shown to be far-reaching, as evidence about differences between team and
individual behavior has accumulated from laboratory experiments in economics and psychology over the last
several decades in a wide range of strategic games and decision problems. See Charness and Sutter (2012)
for a survey of some of this evidence.

1



procedures and constraints, which shape their decisions. For example, during union and firm

negotiations over contract amendments or extensions, union members often vote on strike

authorizations, reflecting diverse preferences within the membership. While all members

share the same broad objectives, favoring improved working conditions, higher wages, and

better benefits, they differ in their willingness to bear the costs and risks of striking. Votes

to accept or reject negotiated contracts highlight this internal diversity. Firms, too, are

rarely unitary actors; they are typically large corporations, governmental entities, or even

coalitions in cases of industry-wide collective bargaining.

To understand inter-group bargaining processes such as these, it is necessary to take

the Allison critique seriously and model the diversity of preferences as well as the collective

decision-making mechanism by which those preferences are aggregated into a decision within

each group. A theoretical framework specifically designed for this purpose, called team

equilibrium was developed in Kim et al. (2022). In a team equilibrium, group members have

rational expectations about opponents’ strategies and share common average payoffs, but

have idiosyncratic, privately observed payoff perturbations, modeled as additive, mean zero,

i.i.d. random disturbances for each team strategy, for each team member. That is, each

member of the same team has the same expected payoff for a team action on average, plus

an unbiased additive disturbance term. The common component of team member expected

payoffs captures the fundamental alignment of team member preferences that make them a

‘team’, a group of individuals with a common interest, while the i.i.d payoff perturbations

model the team member heterogeneity that makes collective decision making non-trivial.

The second element of team equilibrium is the voting rule used by teams to select a

team decision. In a team equilibrium, given average expected payoffs for each strategy and

team member payoff perturbations, each team member votes optimally, given the expected

(equilibrium) payoffs of each strategy and their own idiosyncratic payoff disturbances. The

voting rule then aggregates votes into one collective decision. Kim et al. (2022) have shown

that different collective choice rules can lead to vastly different outcomes. For example, if

teams play a prisoner’s dilemma but choose strategies using a supermajority rule, the the

game essentially becomes transformed into a coordination game.

Thus, team equilibrium allows for heterogeneity of preferences among team members

around a common expected preference, and it explicitly models the collective decision making

procedure. Understanding the complex interaction of these two characteristics of teams is
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crucial for understanding the behavior of teams, and how the behavior and outcomes of

games played by teams differ from games played by individuals or unitary actors.

This paper investigates a class of simple crisis bargaining games that model the subse-

quent stages of international crises like the Cuban missile crisis, where, after a threat by one

country, a second country decides to acquiesce or escalate the conflict, in anticipation of the

responses by the instigator of the crisis. The instigator, in the event that the threatened

country fights, makes inferences about the military strength and resolve of the threatened

country and decides whether to carry out the threat, resulting in either a military conflict,

or back down. This is formally modeled as a very simple bluffing game, taking as given that

the threat has already occurred.2

The threatened country is the first mover, called Player 1, and has private information

about their own strength, and decides whether to escalate or acquiesce. The instigator is

the second mover, called Player 2, and responds to an escalation by either engaging the fight

or backing down. If the fight is engaged, then the instigator loses (wins) if the threatened

country is strong (weak).3

These crisis bargaining games are characterized by four parameters: the probability the

threatened country is strong; the concession payoff, a, gained by a player if the other player

acquiesces or backs down (and an equivalent loss, −a, to the other player); the (sender) risky

payoff, s, (or loss, −s) to Player 1 if there is a fight and they win (lose); the (receiver) risky

payoff, r, (or loss, −r) to Player 2 if there is a fight and they win (lose).

Our experiment compares the behavior of 5-person teams operating under two different

decision collective choice rules - majority rule and unanimity rule. Team equilibrium makes

much different predictions about behavior and outcomes under the two rules. We obtain

data for four different payoff variations of crisis bargaining games and also run a parallel

series of sessions with 1-person teams, which allows for an evaluation of pure ”team” effects.

We fix the concession payoff and the probability of a strong Player 1 (0.5) for all four games

2The crisis bargaining model also applies directly to the union-firm negotiation example, with the players
of the game having threat options such as strikes, lockouts, or violence, and each party responds to the other
as the sequence of actions unfolds, with the potential for further escalation. Each party also has the option of
acquiescing to the terms offered by the opposing party. There are a variety of other economic applications, for
example legal conflicts involving lawsuits and counter-suits, or negotiations over plea agreements in criminal
cases.

3Such games are sometimes referred to as ”simplified poker games”. The simple card game in Myerson
(1991, Figure 2.1, p. 38) is one example. The class of games also corresponds to the last two stages of the
canonical crisis bargaining game form in Fearon (1994b) [Figure 2, p.241]
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and only vary the two risky payoffs.

The natural benchmark that guided our choice of four payoff treatments is Perfect

Bayesian Equilibrium (PBE), which uniquely pins down the fight probabilities for each

player. In these games the strong Player 1 has a dominant strategy to fight; the weak

Player 1 bluffs by choosing to fight with a probability strictly between 0 and 1; if Player 1

chooses to fight, then Player 2 responds by backing down with a probability strictly between

0 and 1. Thus, it is a classic bluffing game where PBE mixed strategies are such that the

weak Player 1 and Player 2 are both indifferent between fighting and backing down. The

payoff variations chosen for the experiment span the four canonical PBE mixing probabili-

ties. In one payoff treatment, both players’ PBE fight probabilities are greater than 0.5; in

a second payoff treatment, both are less than 0.5; and in the other two payoff treatments,

one of the player’s PBE fight probabilities is greater than 0.5 and the other’s is less than 0.5.

This four-payoff design allows clear comparative static predictions of the equilibrium effect

of changing payoffs, based on PBE.

All decisions in these games are binary (fight vs. acquiesce for Player 1, fight vs. back

down for Player 2), so the voting process with 5-person teams is straightforward. All team

members cast simultaneous independent votes when it is their team’s turn to make a decision.

In the 5-person teams under majority rule, a team’s decision is to fight if and only if at least

three of the team members vote to fight; with unanimity rule, a team’s decision is to fight

unless every team member votes not to fight.4 In the 1-person team, the single member’s

decision is binding, as in a typical 2-person game experiment, without any voting.

Similarly to the PBE, the team equilibrium is defined in terms of the fight probabilities

of the teams deciding for each player - strong Player 1 (p1S), weak Player 1 (p1W ), Player

2 (p2) - but with the two additional effects of the random payoff disturbances and the

collective choice rule. Formally, a team equilibrium is a solution to the following fixed point

problem. Consider any possible team decision probabilities, p = (p1S, p1W , p2). This in turn

implies expected payoffs for fighting or acquiescing for each type of Player 1 and for Player 2.

Given these expected payoffs, the distribution of random payoff perturbations implies vote

probabilities for each member of each team, which in turn, depending on how the voting

rule aggregates votes into team decisions, imply a profile of team decision probabilities, p′ =

4The unanimity rule is asymmetric. The opposite version of unanimity, which we did not study would
have the team decision as fight if and only if all members voted to fight.
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(p′1S, p
′
1W , p′2). We define p to be a team equilibrium if and only if p′ = p.

The results of the experiment have four main takeaways. First, the collective choice rule

matters; outcomes are significantly different for teams operating under majority rule and

unanimity rule, and the observed qualitative effects of the voting rule are consistent with

team equilibrium. Second, a one-parameter logit specification of the team equilibrium model

provides a close fit to the data and explains most of the qualitative patterns of behavior across

treatments and games. Third, the data clearly reject the predictions of the PBE model. The

purely random model, which completely disregards payoff and team effects and predicts that

weak Player 1 and Player 2 will each choose IN or OUT with probability 0.5 across all game

variations, actually fits the data better than PBE. Relatedly, and crucial to the theme of

this paper, the team equilibrium model makes specific predictions for all games, voting rules,

and player roles about whether the observed IN frequencies should be higher or lower than

PBE, and these predictions are borne out in 88% of the cases. Fourth, teams are “more

rational” than individuals in the sense that they are more likely to make optimal decisions,

given the behavior of the opposing team, consistent with a wide range of other studies of

team behavior in games (Charness and Sutter, 2012). On the other hand, outcomes in games

played by teams are not closer to PBE than outcomes in games played by individuals, as a

result of team equilibrium effects.

The rest of the paper is organized as follows. Section 2 explains the connection of our

paper with related literature on behavioral game theory and crisis bargaining. Section 3

introduces the class of crisis bargaining games used in the experiment, defines, characterizes,

and proves uniqueness of logit team equilibrium under different voting rules, and compares

this to PBE. Section 4 describes the experimental design and procedures, provides computa-

tional solutions showing the qualitative properties of team equilibrium for all the treatments,

and identifies five key research questions that the experiment is designed to answer. Section

5 describes the results of the experiment and the logit estimation of the the team equi-

librium model and interprets these results in the light of the five main research questions

that motivated the study. Section 6 examines the robustness of the results by analyzing the

implications of four alternative models of behavior.

5



2 Related Literature

The crisis bargaining games we employ in our study follow an extensive line of research

using these models to better understand the causes and resolution of international conflicts

such as wars, and the role of threats, strategic deterrence, sanctions, alliances, and military

interventions. Those studies, which all are in the unitary rational actor paradigm, include a

combination of theoretical and empirical analysis. See for example Fearon (1994a), Fearon

(1994b), Lewis and Schultz (2003), Signorino (1999), Morrow (1989), Smith (1995), Smith

(1999).5

The approach of these studies to model state actors as if they are individual decision

makers has been widely criticized, as scholars in the field of international relations have

argued strongly for more realistic behavioral assumptions. Powell (2017) in particular calls

for developing strategic models of international conflict from the bottom up by viewing

individuals as the basic building block, but expresses concerns that this presents a difficult

challenge theoretically, and so far nobody has successfully developed a tractable approach.

Team equilibrium theory offers a tractable modeling framework for such applications, which

is the focus of this paper.

The current paper ties in with the recent and expanding body of research that investigates

experimentally the behavioral differences between teams and individuals in a wide range of

game-theoretic and decision-making environments. See Kocher et al. (2020) and references

therein.6 The series of papers by David Cooper and John Kagel is the most closely related to

our study. In Cooper and Kagel (2005), behaviors of individuals (1×1) and two-person teams

(2 × 2) are examined by using the limit pricing game (Milgrom and Roberts, 1982). The

team decision-making process unfolds as follows: both members are allotted three minutes

to communicate and coordinate their actions. Once their choices align, and there is no

alteration in decisions for four consecutive seconds, the team decision becomes binding. In

cases where no coordination occurs within the three-minute time frame, one team member

is randomly selected to implement their decision as the team’s final decision. The authors

5The class of crisis bargaining games we study in this paper are similar to the final two-stage subgame
of the crisis bargaining games analyzed in Fearon (1994b), Lewis and Schultz (2003), Signorino (1999), and
Smith (1999). Signorino (1999) and Lewis and Schultz (2003) compare the properties of PBE and quantal
response equilibrium in a slightly different class of crisis bargaining games, which foreshadows the use of
payoff disturbances in our team equilibrium framework, except they treat teams as unitary actors.

6See also Charness and Sutter (2012) and Kugler et al. (2012) for the early papers in economics that
compare teams and individuals.

6



demonstrate that teams exhibit greater strategic behavior compared to individuals. This is

evident in their heightened ability to understand opponent players’ incentives and responses,

allowing them to adjust their behavior more effectively. As a result, teams are better at

transferring their learning to games with different parameters, whereas individuals show no

learning transfer between games.

Cooper and Kagel (2009) examine the differences in learning transfer between individuals

(1×1) and two-person teams (2×2) in the limit pricing game by employing a similar design.

In the experiment, the context is meaningful, for example, with players described as ’firms.’

The framing changes as players are asked to choose either quantity or price against their

opponent. A similar result is found, where teams consistently choose strategic behavior,

while individuals exhibit limited learning across the games.

Although there have been many papers about groups playing games, an environment that

corresponds to our design, in which team members vote for an action to determine the team’s

action, is scarce. One notable exception is Kim and Palfrey (Forthcoming), where behavior of

games played by individuals (1×1) is compared to behavior with five-person teams (5×5) in

variations of prisoners’ dilemma and stag hunt games. Three collective choice procedures are

studied: majority rule, majority rule preceded by a poll, and majority rule preceded by chat.

They document significant bandwagon effects under the latter two procedures, which tend to

generate within-team consensus. Their main results are twofold. First, in prisoners’ dilemma

games with relatively weaker incentives to defect, teams cooperate more than individuals,

which is the opposite of findings from previous prisoners’ dilemma experiments with teams.

Second, in stag hunt games, teams consistently coordinate more frequently than individuals

and, when coordination occurs, are more likely to achieve the payoff dominant outcome.

There is a growing experimental literature in political economy that examines the effect of

different voting rules in strategic environments. This includes several studies that compare

the effects of majority and unanimity voting rules in legislative bargaining environments

(Baron and Ferejohn, 1989). Miller and Vanberg (2013) compare majority and unanimity

voting rules in three-person committees. Consistent with theory, they find that the size of

coalitions tends to be larger under the unanimity voting rule, while it takes longer for the

committees with the unanimity voting rule to reach agreements. Miller and Vanberg (2015)

study those two voting rules with committees with different sizes. The finding indicates

that while there is no difference in delays between small and large committees under the
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unanimity voting rules, the majority rule leads to more frequent delays in large than in small

committees. In the presence of communication, Agranov and Tergiman (2014) and Agranov

and Tergiman (2019) use majority and unanimity voting rules in five-person committees,

respectively. While majority voting with communication aligns more closely with theoretical

predictions, the unanimity voting rule produces more egalitarian outcomes and less frequent

delays in reaching agreements.

In the dynamic public goods environments, Battaglini et al. (2012) compare the effects of

majority and unanimity voting rules on investments in the public good. They find that the

unanimity voting rule leads to higher investment in the public good than the majority voting

rule, which is consistent with the theoretical predictions. Battaglini et al. (2020) examine

a dynamic environment that permits lending and borrowing across periods and introduces

uncertainty about the value of the future public good. The main finding concerning different

voting rules is that the efficiency of public good provision increases with the number of votes

required to accept the proposal.

Majority and unanimity rules have also been compared in laboratory experiments in order

to understand strategic voting behavior in the information aggregation problem known as

the Condorcet jury problem.7 The first paper to study this application in the laboratory

is Guarnaschelli et al. (2000), which compares the effect of voting rules between majority

and unanimity, with different group sizes and with/without of straw polls. They find that

voters under the unanimity voting rule are more inclined to vote strategically than under the

majority voting rule. This effect of unanimity on strategic voting is significantly diminished

when the group can communicate via a straw poll, leading to outcomes closer to those

observed under majority rule.8

3 Crisis Bargaining Games and Team Equilibrium

3.1 Crisis Bargaining Games

We model simple crisis bargaining situations using a sender-receiver signaling games, involv-

ing two players, 1 (sender, or first mover) and 2 (receiver, or second mover). A fair coin flip

before the game starts determines whether 1 is either Strong or Weak, and this is private

7See Palfrey (2013) for a survey of experimental studies of jury voting games with information aggregation.
8Goeree and Yariv (2011) find a similar and even stronger effect of preplay communication if a richer

communication protocol is used.
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information to 1. Player 2 only knows that 1 is strong with probability 0.5. The game takes

place in two stages. In the first stage, 1 makes a binary choice between the actions Escalate

(IN) and Concede (OUT). If 1 chooses OUT, the game ends with 1 receiving a payoff of −a,

and 2 receiving a payoff of a, where a > 0 is called the concession payoff.

If 1 instead chooses IN, the game moves to the next stage and it is 2’s turn to choose

between the actions Fight (IN) and Concede (OUT). If 2 chooses OUT, then 2 loses the

concession payoff of −a and 1 gains a. If 2 chooses IN, conflict ensues and payoffs depend

on whether 1 is strong or weak. If 1 is strong, then 1 receives a payoff a + s and player 2

receives a payoff of −(a+ r), where r, s > 0. If 1 is weak, then 1 receives a payoff of −(a+ s)

and 2 receives a payoff of a+ r. We call s the sender risk and r the receiver risk.

This game models a situation in which two parties, an informed sender and an uninformed

responder, can choose - in sequence - between either accepting a certain small loss to the

other party, or risking a larger loss (gain) if they are are weaker (stronger) than the other

party. The motivating example is one where there is a crisis between two countries. One

country (player 1) can threaten to escalate the crisis or suffer the a loss from conceding and

letting the crisis be resolved in the second country’s favor. If the crisis is escalated, the

second country responds by either fighting or conceding.9

3.2 Team equilibrium

The experimental design, hypotheses, and analysis of results are guided by the theory of team

equilibrium in games (Kim et al., 2022). In a team equilibrium, individual members of each

team have rational expectations about the strategies of the other team, and share the same

payoffs on average, but have unobserved i.i.d. payoff perturbations. We specify the payoff

disturbances as being distributed according to an extreme value distribution with precision

λ, so it corresponds to the logit specification of team equilibrium. At each information set,

9There are many other applications. For example, a union that is privately informed of the costs to their
members of striking and accepting an unattractive contract first decides whether to threaten a strike, and
the employer must decide whether to call the bluff or back down upon being threatened. We call such games
’simplified poker’, because, in the special case where r = s, it corresponds to a poker-like card game, where
the first mover is randomly dealt either a high or low card after each player has put in the pot an ante equal
to a. The game also corresponds to the ”simple card game” in Myerson (1991) where first mover is dealt
either a high or low card and can either bet an additional r (IN) or fold (OUT). If she bets, then the second
mover can either meet the bet (IN) or fold. If both players bet, then the first (second) player wins the pot
if the card is high (low). Simplified poker games have a storied history in the theory of games, with many
different variations analyzed by Bellman and Blackwell (1949), Borel and Ville (1938), Morgenstern and von
Neumann (1947), Kuhn (1950), and others.
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2

Nature

Weak Strong

1

(−a, a)

OUT IN

1

IN

(−a, a)

OUT

(a,−a)

OUT

(−a− s, a+ r)

IN

(a+ s,−a− r)

IN

(a,−a)

OUT

Figure 1: Game Tree of Binary Signaling Game.

each team chooses a strategy either by majority rule voting or unanimity rule. Because of

the voting rule and the payoff disturbances, the collective choice rule can result in either

more or less aggressive responses to threats, depending on the exact payoff structure in the

crisis bargaining game.

3.2.1 Preliminaries

We define and characterize the (logit) team equilibrium for our family of crisis bargaining

games as a function of the three payoff parameters, a, r, s, and the responsiveness parameter,

λ, assuming equal-sized teams with an odd number, n, of members of each team.

A team equilibrium consists of a profile of behavioral strategies for each team, and a

belief that the sender is strong, conditional on the sender choosing IN. Team 1 (the sender)

has two information sets and Team 2 (the receiver) has only one information set, so a team

equilibrium strategy profile is denoted by a triple, (pn∗1S,p
n∗
1W ,pn∗2 ), where pn∗1S be the equilibrium

frequency with which team 1 chooses I (IN) when Strong, pn∗1W be the equilibrium frequency

with which team 1 chooses I (IN) when Weak, and pn∗2 is the equilibrium frequency with

which team 2 chooses IN after team 1 chooses IN. The equilibrium belief that the sender is

strong, conditional on the sender choosing IN is denoted by µn∗.

A team equilibrium is a fixed point mapping from the set of team mixed strategy profiles

into itself, and any fixed point of this mapping is an equilibrium of the team game in the
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following way. Consider any profile of team (mixed) strategies and the corresponding beliefs

of team 2 following an IN choice by team 1, where the beliefs are consistent with Bayes’ rule.

Any such profile implies expected payoffs for IN and OUT at each information set. Each

member of a team whose turn it is to choose at that information set votes either IN or OUT.

Because of the payoff disturbances of each voter, the strictly positive probability of each

member of the team voting IN at that information set is given by the logit formula, applied

using the expected payoffs of IN and OUT. The team decision probabilities then depend

on how these votes are aggregated, which is specified by the collective choice rule (either

majority rule or unanimity in our experiment). The resulting team decision probabilities

define new expected payoffs, which in turn imply a new profile of team (mixed) strategies

and beliefs. The profile is a team equilibrium if it is mapped into itself in this way. It is

easy to show that a team equilibrium exists for any finite game. In crisis bargaining games,

it also turns out that the team equilibrium (like the PBE) is always unique.

3.2.2 Equilibrium conditions for majority rule

We denote by the triple, (vn∗1S,v
n∗
1W ,vn∗2 ) the vote probabilities for individual members of a

strong sender team, a weak sender team, and the responder team. respectively. In a (logit)

team equilibrium, these individual member vote probabilities follow best responses. That is:

vn∗1S =
eλ[p

n∗
2 (a+s)+(1−pn∗

2 )a]

eλ[p
n∗
2 (a+s)+(1−pn∗

2 )a] + e−λa

vn∗1W =
eλ[p

n∗
2 (−a−s)+(1−pn∗

2 )a]

eλ[p
n∗
2 (−a−s)+(1−pn∗

2 )a] + e−λa

vn∗2 =
eλ[µ

n∗(−a−r)+(1−µn∗)(a+r)]

eλ[µn∗(−a−r)+(1−µn∗)(a+r)] + e−λa

In case of n > 1, the majority decision probability of In is equal to the probability that

more than n/2 individual voters vote for IN. These probabilities, are given by standard

binomial formulas derived from vn∗1S, v
n∗
1W , and vn∗2 :
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pn∗1S =
n∑

j=n+1
2

(
n

j

)
(vn∗1S)

j(1− vn∗1S)
n−j (1)

pn∗1W =
n∑

j=n+1
2

(
n

j

)
(vn∗1W )j(1− vn∗1W )n−j (2)

pn∗2 =
n∑

j=n+1
2

(
n

j

)
(vn∗2 )j(1− vn∗2 )n−j (3)

In the case of n = 1, the individual member vote probabilities and the team majority rule

decision probabilities coincide.10 The fourth equation characterizing the team equilibrium is

the Bayesian restriction on player 2’s beliefs about player 1’s type conditional on player 1

choosing IN:

µn∗ =
pn∗1S

pn∗1S + pn∗1W
.

3.2.3 Equilibrium conditions for unanimity rule

The unanimity rule we consider here specifies that the team decision is IN unless every

individual member of the team votes for OUT. All of the analysis in the previous section

continues to hold, with the exception of the last three equations, which become:

pn∗1S =
n∑

j=1

(
n

j

)
(vn∗1S)

j(1− vn∗1S)
n−j

pn∗1W =
n∑

j=1

(
n

j

)
(vn∗1W )j(1− vn∗1W )n−j

pn∗2 =
n∑

j=1

(
n

j

)
(vn∗2 )j(1− vn∗2 )n−j.

10When n = 1, the individual member vote probabilities are presented as follows:

p∗1S =
eλ[p

∗
2(a+s)+(1−p∗

2)a]

eλ[p
∗
2(a+s)+(1−p∗

2)a] + e−λa
(4)

p∗1W =
eλ[p

∗
2(−a−s)+(1−p∗

2)a]

eλ[p
∗
2(−a−s)+(1−p∗

2)a] + e−λa
(5)

p∗2 =
eλ[µ

∗(−a−r)+(1−µ∗)(a+r)]

eλ[µ∗(−a−r)+(1−µ∗)(a+r)] + e−λa
(6)
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3.2.4 Uniqueness of team equilibrium in crisis bargaining games

In this section, we prove that team equilibrium is unique in crisis bargaining games for both

majority rule and unanimity rule. We first prove this for the case of n = 1, where team

equilibrium under either majority rule or unanimity rule are the same. The results for (odd)

n > 1 follow immediately.

Proposition 1. Any crisis bargaining game with parameters a, r, s > 0 and n = 1 has a

unique logit team equilibrium for all λ ≥ 0.

Proof. The result is trivial for λ = 0, so consider any λ > 0. Existence is guaranteed by

Brouwer’s fixed point theorem, so let p∗ = (p∗1S, p
∗
1W , p∗2) be a team equilibrium of the game.

Suppose p∗′ = (p∗′1S, p
∗′
1W , p∗′2 ) ̸= p∗ is another team equilibrium with p∗′1S > p∗1S.

11 Then

p∗′2 < p∗2 by the following argument. Fixing p1S at any value p̄ ∈ (0, 1), consider player 2’s

logit reply function to p1W . This must satisfy equation (6), so it is strictly increasing in p1W

and exactly equal to 1/2 when p1W = p̄r
2a+r

. Similarly, consider 1W ’s logit reply function to

p2. This must satisfy equation (5), so it is strictly decreasing in p2, independent of p1S = p̄,

and exactly equal to 1/2 when p2 =
2a+r
2a+2r

. Thus, (p∗1W , p∗2) is the unique intersection point of

these two logit reply functions, when p̄ = p∗1S. Now consider the logit reply functions for 1W

and 2 when p̄ = p∗′1S > p∗1S. Because 1W ’s logit reply function to p2 is independent of p1S,

it is unchanged. However, 2’s logit reply function to p1W shifts, since µ is increasing in p1S

for every value of p1W , thereby reducing 2’s expected payoff of IN. The logit reply function

to p1W for 2 now equals 1/2 when p1W =
p∗′1Sr

2a+r
>

p∗1Sr

2a+r
. Hence, the intersection point of the

logit reply functions for 1W and 2 when p̄ = p∗′1S has p∗′1W > p∗1W and p∗′2 < p∗2. However, 1S’s

logit reply function in (4) is strictly increasing in p2 and independent of p1W . This implies

that p∗′1S < p∗1S, a contradiction.

The uniqueness for n > 1 with majority rule and unanimity rule follows immediately, since

the team strategy probabilities, pn1S, p
n
1W , pn2 , are strictly increasing in the vote probabilities,

vn1S, v
n
1W , vn2 , and the logit reply functions for voting defined by equations (1)-(3) have the

same monotonicity properties as equations (4)-(6) for the case of n = 1.12

11The argument that follows is similar if we suppose p∗′1S < p∗1S .
12In fact, uniqueness will hold for all collective choice rules that are monotone strictly increasing in the

expected payoff of IN.
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3.2.5 Perfect Bayesian Equilibrium as the limit of team equilibrium

In any crisis bargaining game there is a unique totally mixed Perfect Bayesian Equilibrium

(PBE). The PBE of the crisis bargaining game consists of a 4-tuple, (pPBE
1S , pPBE

1W , pPBE
2 , µPBE)

where pPBE
1S is the probability a strong player 1 chooses IN, pPBE

1W is the probability a weak

player 1 chooses IN, pPBE
2 is the probability 2 chooses IN in response to IN, and µPBE is 2’s

belief that 1 is strong, conditional on 1 choosing IN, derived from Bayes’ rule.

The strong player 1 has a dominant strategy to choose IN, so pPBE
1S = 1. Equilibrium re-

quires that weak player 1 mix by choosing IN with probability pPBE
1W such that 2 is indifferent

between responding IN or OUT. Similarly, player 2 mixes to make weak player 1 indifferent

between IN and OUT. It is easy to see that the PBE is pinned down by three equations:

pPBE
2 (−a− s) + (1− pPBE

2 )a = −a

µPBE(−a− r) + (1− µPBE)(a+ r) = −a

µPBE =
1

1 + pPBE
1W

and hence the PBE strategies are: pPBE
1S = 1; pPBE

1W = r
2a+r

; pPBE
2 = 2a

2a+s
.

A natural question to ask is whether, holding fixed the number of members on each team,

the unique team equilibrium converges to the PBE in crisis bargaining games as the logit

response parameter, λ, diverges to ∞. Here we show that this convergence result also holds

for both the majority and unanimity voting rules.13

Proposition 2. Fix n. For both the majority voting rule and unanimity voting rule, the

team equilibrium in crisis bargaining games converges to the PBE as λ → ∞. That is:

lim
λ→∞

(pn∗1S(λ), p
n∗
1W (λ), pn∗2 (λ)) = (1,

r

2a+ r
,

2a

2a+ s
)

Proof. We prove the result for unanimity rule. The proof for majority rule is similar.

It is easy to see that pn∗1S(λ) → 1 since IN is strictly dominant for strong player 1. It is

also clear that if pn∗1W (λ) → r
2a+r

then µn∗(λ) → r
2a+r

. Hence, we only need to show that

(pn∗1W (λ), pn∗2 (λ)) →( r
2a+r

, 2a
2a+s

). Suppose to the contrary that pn∗1W (λ) → p > r
2a+r

. Then

µn∗(λ) → µ < 2a+r
2a+2r

so IN is strictly better than OUT for player 2. Hence, vn∗2 (λ) → 1,

13In fact, the convergence result holds for general threshold voting rules that require at least m out of n
voters to vote for IN in order for IN to be the team decision, for m = 1, 2, ..., n. Moreover, the threshold
does not have to be the same for both teams.
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which in turn implies that pn∗2 (λ) =
∑n

j=1

(
n
j

)
(vn∗2 (λ))j(1− vn∗2 (λ))n−j → 1. But pn∗2 (λ) → 1

implies that OUT is a strict best response for weak player 1, so vn∗1W (λ) → 0, implying

that pn∗1W =
∑n

j=1

(
n
j

)
(vn∗1W )j(1 − vn∗1W )n−j → 0, a contradiction. A similar logic reaches a

contradiction, if we suppose that pn∗1W (λ) → p < r
2a+r

or if we suppose that pn∗2 (λ) → p ̸= 2a
2a+s

.

Given this convergence, the PBE of the game serves as a natural benchmark for com-

paring team and individual behavior. It motivates the hypothesis that multi-member teams

will exhibit behavior more closely aligned with PBE predictions than individuals.14 How-

ever, since these games lack a general monotonicity property in convergence to PBE, it is

theoretically possible—particularly for small or intermediate values of λ, which are common

in experiments—that the team equilibrium could deviate further from the PBE in multi-

member settings.

4 Experimental Design and Research Questions

4.1 Games and Treatments

We implement a 3×4 treatment design that varies both the team structure and the strategic

environment. The three team treatments differ in the number of players and the decision

rule used within each team. In the Individual treatment, individual participants compete in

a 1v1 version of the game. In the Majority treatment, teams of five players make decisions

via majority voting. In the Unanimity treatment, teams of five make decisions via unanimity

voting, with the default action set to IN if consensus is not reached.

The four games differ in their payoff parameters, leading to distinct equilibrium IN prob-

abilities for the weak first mover and the second mover. These probabilities vary not only

in magnitude but also in their relative ordering across players. Crucially, the set of games is

constructed to encompass all four possible orderings of these probabilities, ensuring compre-

hensive coverage of strategically diverse environments. Table 1 presents the specific payoff

parameters, a, s, r, and the corresponding PBE mixed strategies for each game. For exam-

ple, in the LH game (Game 1), the equilibrium IN probability is below 0.5 for the weak first

mover and above 0.5 for the second mover.

14This hypothesis is also supported by evidence on team behavior in a wide range of games, as documented
in the survey by Charness and Sutter (2012).
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Table 1: Game Payoffs and PBE Mixed Strategies

Concession payoff (a) Sender risk (s) Receiver risk (r) pPBE
1W pPBE

2

Game 1 (LH) 10 5 5 1
5

4
5

Game 2 (LL) 4 16 4 1
3

1
3

Game 3 (HL) 3 15 15 5
7

2
7

Game 4 (HH) 4 4 16 2
3

2
3

This design allows us to test how team decision-making responds to variations in strategic

incentives, including cases where one or both players are predicted to play IN with high or

low probability. Each game thus serves as a distinct testbed for comparing individual and

group behavior relative to PBE benchmarks.

4.2 Team Equilibrium Predictions

4.2.1 Convergence and Non-monotonicity

In this subsection, we illustrate the computation of the team equilibrium for Game 1 (LH)

across the three team treatments and two roles. We also provide an explanation of the

equilibrium’s comparative statics for this game as a representative example. As established

in Proposition 2, team equilibrium frequencies of the action IN always converge to the PBE

frequencies as 1
λ
, the variance of team members’ payoff disturbances, approaches zero. In

this case, the PBE mixing probabilities are pPBE
1W = 1/5 and pPBE

2 = 4/5. This example

highlights how convergence to the PBE can be non-monotonic: for small values of λ, the

logit team equilibrium choice probabilities initially move further away from the PBE as λ

increases. Moreover, the team decision rule (majority versus unanimity) can systematically

influence the logit team equilibrium by biasing team choices toward one of the actions.

The left panel of Figure 2 shows how the Game 1 (LH) team equilibrium IN frequency for

weak first movers, p∗1W varies with λ, for each of the three team treatments. The right panel

shows the same for second movers, p∗2. Each curve traces out the logit team equilibrium for

values of λ between 0 and 2, on the x-axis.15 We will first discuss the comparative statics

of the team equilibrium model with respect to λ for majority rule teams and individuals,

15Appendix 2 contains analogous figures for Games 2-4.
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Figure 2: Game 1 Team Equilibrium

then the equilibrium effects of the majority rule treatment, and finally discuss the unanimity

treatment.

The figure shows how team equilibrium always converges to the game 1 PBE of 1/5 for

weak first movers and 4/5 for second movers as λ goes to infinity, irrespective of the choice

rule. At λ = 0, team members are completely unresponsive to payoffs and mix uniformly in

their voting behavior between IN and OUT, resulting in a team frequency of 1/2 for majority

rule and individuals.16

The non-monotonicity of convergence to PBE for Weak first movers arises in Game

1 (LH) because, for values of λ close to 0, the expected payoff of IN is approximately

1
2
a + 1

2
(−a − s) = −1

2
s, which is strictly greater than the OUT payoff of −a since s = 5

and a = 10. Team members become more responsive to expected payoff differences as λ

increases, and so in this game, they begin to vote for IN at higher rates as λ increases from

0. As λ increases, the second mover behavior changes as well, increasing from 1
2
until crossing

the PBE level of 0.8. At that point, the expected payoffs of IN and OUT become equal for

Weak first movers by the definition of equilibrium, and so p∗1W exactly equals 1
2
.

Understanding the comparative statics of p∗2 with respect to λ is more subtle, as one

needs to consider the effects on 2’s incentives resulting from changes in a 50/50 mixture of

Strong and Weak type first movers choosing IN. The more Weak types go IN relative to

Strong types, the greater the incentive for second movers to also go IN. Because strong and

weak first mover team members behave identically at λ = 0, a Bayesian second mover does

not gain any information from the fact that the first mover team chose IN. The probability of

16Not displayed in the graph is the team equilibrium IN frequency for Strong first movers, which also
starts out at 1/2 for majority rule and individuals, and very quickly converges to 1.
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strength conditional on choosing IN is the same as the prior. Consequently, the second mover

expected payoff from going IN against a first mover with λ = 0 is 1
2
(a+ r) + 1

2
(−a− r) = 0,

which is greater than the payoff of −a from choosing OUT. For infinitesimal increases in λ

we can ignore the effect of changes in first mover team behavior on expected payoffs, and

conclude that second mover team members become more likely to vote IN.

In Game 1 (LH), under the majority rule and individual decision treatments, weak first

movers and second movers both converge to the PBE from above. This occurs because,

under these choice rules, teams are more likely in any team equilibrium to select the action

with the higher expected payoff. Whenever a team equilibrium frequency crosses that team’s

PBE, the corresponding opponent’s equilibrium frequency must cross 1
2
at that value of λ,

since the PBE mixing probability equalizes the opponent’s expected payoffs. In this game,

the second mover’s PBE frequency is above 1
2
. Therefore, for large values of λ, IN must

yield a higher expected payoff that OUT for 2, so weak first movers must choose IN too

frequently relative to the PBE. Similarly, since the first mover’s PBE frequency is below 1
2
,

second mover teams also choose IN too often in equilibrium. As a result, both roles select

IN more frequently than prescribed by the PBE when λ is large.

In the unanimity treatment, second mover teams begin above the PBE when λ = 0

because the voting rule biases team behavior toward choosing IN. Specifically, at λ = 0, all

team members mix uniformly between voting for IN and OUT, resulting in a team-level IN

frequency of 31/32, which exceeds the second mover PBE level in all of our games. As a

result, OUT becomes the best response for weak first movers, and the probability that any

team member votes for IN must decline as λ increases. As noted earlier, second mover team

members gain no information from observing that λ = 0 first movers choose IN, which leads

second mover team equilibrium IN frequencies to initially increase with λ at low values. As

shown in the right panel of Figure 2, second mover teams choose IN with near certainty at

low λ, and only begin to noticeably decrease toward the PBE once first movers are already

close to the PBE level of 1/5.

Under the unanimity rule and for large values of λ, team members may need to vote for

IN with very low probabilities in order for the team-level frequency of IN to approach the

PBE, even when the PBE exceeds 1
2
. Because team members are more likely to vote for the

action with the higher expected payoff, OUT must yield a higher expected payoff than IN

in this regime for all of our games. As a result, weak first mover teams under the unanimity
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rule must converge to the PBE from below, while second mover teams must converge from

above.

4.2.2 Equilibrium effect

We now explain the divergence between equilibrium behavior under the majority rule and

individual decision-making. In the team equilibrium model, voters are assumed to vote

sincerely for the team action they prefer, based on their individual expected payoff, which

includes a random disturbance. These disturbances are assumed to follow the same distri-

bution regardless of team size or the decision rule used. Consequently, for a given value of λ

and fixed expected payoffs for IN and OUT, the probability that a team member votes for

IN is identical to the probability that an individual decision maker chooses IN unilaterally.

Under majority rule, however, these individual choice probabilities are amplified through a

Condorcet jury-type mechanism. When each team member votes for IN with a probability

less than (greater than) 1
2
, the probability that IN wins the team vote is pushed closer to 0

(or 1). We refer to this as the reinforcement effect of majority rule voting.

In Figure 2, near λ = 0 the dashed line representing the majority rule team equilibrium

increases faster than the solid line representing the individual team equilibrium, due to

this reinforcement effect. In addition to this effect, there is an ‘equilibrium effect’ created

by the influence of majority rule voting on the opponent team behavior. Since second

mover majority rule teams reach the PBE level of IN frequencies at lower values of λ than

individuals, the majority rule Weak first mover IN frequency must begin to decrease at

lower values of λ than do individuals. This means that majority rule teams vote for IN more

frequently than individuals go IN for some values of λ, and less frequently for higher values

of λ. A similar effect can be seen in the team equilibrium of the second movers, however the

separation between treatments is less pronounced for second movers than for first movers for

this particular set of payoffs.

For sufficiently large values of λ, majority rule teams are closer to PBE than individuals.

In this way our theory captures the typical result of the prior literature that teams are closer

to equilibrium than individual decision makers. For these crisis bargaining games, this result

only holds if subjects have sufficiently small payoff disturbances and use a neutral voting

rule such as majority rule voting. With larger payoff disturbances, in other words, with more

heterogeneity between team members, or non-neutral voting rules, team equilibrium effects
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may drive teams either further or closer to equilibrium depending on payoff parameters.

These observations lead naturally to the research questions we present in the next section.

4.3 Research Questions

Since team equilibrium serves as a benchmark model for the games used in this paper, the

following first question is of primary importance:

Question 1: How well (or poorly) does team equilibrium account for the variation of

behavior across the treatments?

We now turn to the role of collective choice rules in shaping behavior. In previous ex-

periments, the most commonly employed collective decision-making procedure has been a

consensus rule, where team members reach a joint decision through deliberation, typically

via face-to-face discussion or online chat. Given this relatively uniform approach in the liter-

ature, our comparison of different collective choice rules, specifically majority and unanimity,

in strategic interactions represents a novel contribution. The team equilibrium framework

predicts systematic effects of the voting rule on team choices and outcomes, which is directly

related to Question 2. The significant behavioral differences observed under the two choice

rules highlight the limitations of the unitary actor approach and emphasize the importance

of explicitly modeling internal team decision-making processes.

Question 2: Does the collective choice rule matter for team behavior in crisis bargaining

games and, if so, how?

A common claim in the literature, supported by previous experimental findings, is that

teams behave more “rationally” than individuals. In a decision-theoretic context, this claim

can be evaluated straightforwardly by assessing whether teams are more likely to make

optimal choices. However, in strategic settings such as our crisis bargaining games, the

question becomes more complex because the optimality of a team’s decision is endogenous

and depends on the strategy chosen by the opposing team.

To address this, we focus on responsiveness to differences in empirical expected payoffs,

given the empirical strategies of the opponent. According to the team equilibrium model,

a weak type’s expected utility either increases or decreases monotonically with their own

probability of choosing IN, holding the opponent’s behavior constant. Thus, by examining

whether teams or individuals are more responsive to these differences in expected payoffs
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when choosing IN or OUT, we can address the following question.

Question 3: Are teams more rational than individuals in crisis bargaining games?

A common corollary of the claim that teams exhibit superior rationality is that, in many

applications, teams are expected to produce outcomes closer to the Nash equilibrium than

individuals. However, the predictions of team equilibrium suggest that this is not always

the case, due to the potential non-monotonicity in convergence to the PBE. This leads to

the following question, which helps clarify which model is more appropriate for explaining

behavior in teams.

Question 4: Are the outcomes of crisis bargaining games played between teams closer to PBE

than the same games played between individuals?

There are other alternative models to team equilibrium that could potentially explain the

data as well or better than team equilibrium. The most obvious candidate is PBE, which

makes clear unique predictions that vary with the payoff parameters of the crisis bargaining

game, but do not vary with the collective choice rule. Because PBE is nested in team

equilibrium, it is easy to test whether or not PBE can be rejected. We also consider the

logit quantal response equilibrium (QRE) as an alternative to team equilibrium. Finally, all

of these models assume risk neutrality, but crisis bargaining games involve players choosing

between a same alternative (OUT) and a risky alternative (IN), so we also examine whether

risk aversion is useful in as a possible explanation of the data. This leads to the final question

we address:

Question 5: Do other models of behavior explain the variation of behavior across the

treatments, perhaps even better than team equilibrium?

4.4 Procedures

We conducted a total of 19 sessions with subjects recruited either from the Experimental

Social Science Laboratory (ESSL) at UC Irvine, or from UC Santa Barbara. In each session,

one team treatment was implemented. The individual treatment was conducted in 8 sessions,

the majority treatment in 6 and the unanimity rule treatment in 5.

In each session subjects participated in 10 rounds of each of the 4 games for a total of

40 rounds. In half of the sessions, the order of games was 1234, and in the other half of
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sessions, the reverse order, 4321, was used. Subjects were randomly re-matched with new

team members and a new opponent team between every round. Subject roles and the team

treatment was held fixed for all rounds in a session. The subject interface and software for

the experiment was programmed in oTree (Chen et al., 2016).

At the beginning of each session the experimenter read the instructions aloud, including

specific payoff information for the first game of the session, and displayed examples of the

subject interface on a projector in front of the room.17 After these instructions were finished,

a short comprehension quiz was completed by the subjects. Subjects were required to provide

correct answers to all questions before moving on to the first round of the experiment. After

the 10 rounds of the first game were finished, the experimenter announced the new payoffs

for the second game. Subjects then participated in 10 rounds of the second game, and so

forth until all 40 rounds of the experiment were completed.

In each round of the experiment, the game was conducted sequentially as illustrated in

Figure 1. First movers were initially informed of the result of a virtual coin flip, which

determined whether the first mover was strong (Heads) or weak (Tails).

In the 1 × 1 session where each team was composed of a single individual, first movers

were then prompted to choose an action, either IN or OUT. Second movers then observed

their paired first mover’s action choice, but not the result of the coin flip. If the first mover

chose IN then second movers were prompted to make a choice. If the first mover chose OUT,

the game ended without the second mover making a choice. After all decisions were made,

feedback about the outcome was given to all subjects and second movers learned the state

of the world.

In the 5 × 5 session, first movers were then prompted to vote for an action, either IN

or OUT, with the first mover team’s decision decided by the voting rule, either majority or

unanimity, depending on the session. Second movers then observed their paired first mover

team’s decision, but not the result of the coin flip. If the first mover team chose IN then

second movers were prompted to vote for either IN or OUT, with the second mover team’s

decision decided by the voting rule, either majority or unanimity, depending on the session.

If the first mover team chose OUT, the game ended without the second movers making a

choice. After all decisions were made, feedback about the outcome was given to all subjects.

17A sample of the instructions for a reverse-order session, and the corresponding Powerpoint screens, are
provided in the supplemental online appendix.
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Second movers learned the state of the world, and in team treatments subjects were told the

vote totals for both teams.

After the conclusion of all 40 rounds, one round from each game (total of 4 rounds) was

randomly chosen for each subject to determine the payments. Sessions lasted on average

90 minutes, including instructional time. Subject earnings averaged $32.1, which included a

fixed payment of $7 for showing up on time and a completion payment of $5 for completing

all rounds of the experiment. Subjects were paid for their decisions in an artificial currency,

points, where each point had a value of $0.20.18

5 Results

5.1 Descriptive summary

5.1.1 Behavior of strong first movers

Strong first movers face a strategically trivial decision task, since choosing IN is a strictly

dominant strategy for strong first movers. This is reflected in our data. In the Majority

and Unanimity treatments, strong first-mover teams select IN 100% of the time, and in

the Individual treatment IN is chosen in more than 96.7% of cases. Because behavior is

essentially degenerate for strong first movers, our analysis focuses on weak first movers and

second movers, where strategic uncertainty is central.

5.1.2 Behavior of weak first movers and second movers

The strategic calculus is nontrivial for both the weak first movers and the second movers.

First movers find it optimal to ”bluff” by choosing IN if they expect second movers are

sufficiently likely to choose OUT, and that threshold level of expectation varies across the

18When the initial 1− 1 sessions were conducted, in-person experiments were not feasible due to the pan-
demic, so these sessions were conducted online through Zoom video conferencing. Online sessions are clearly
identified in Table 3 in Appendix 1. In these sessions, occasionally a subject would become disconnected
during the experiment, so it was necessary to address this issue by substituting a ‘robot’ stand-in player to
replace a dropout player. If a player became disconnected during the session, the session was briefly paused
to allow the experimenter to make a public announcement informing all remaining subjects. A robot player
then took the place of the dropout, and chose IN with 50% probability and OUT with 50% probability
at every opportunity, for the remainder of the session. Subjects were subsequently advised in any future
round when they were paired with the robot, via a private announcement. It was announced publicly that
rounds played against the robot player would not be selected for subjects’ payoffs. The data from any such
unincentivized games were discarded. In session 10 (the only online 5 × 5 session), a subject disconnection
caused the experimental software to crash immediately following Round 20, so that session did not include
any data from two of the games. See Table 3 in Appendix 1.

23



four games we study. Similarly, it is only optimal for second movers to choose OUT if they

think they believe weak first movers are choosing IN with sufficiently low probability, and

the threshold level of second mover beliefs varies across the four games as well.

The Perfect Bayesian Equilibrium (PBE) IN frequencies provide an obvious natural

benchmark To compare the behavior of weak first movers and second movers across the

four games. This comparison was the basis for choosing the four games in the design of the

experiment, such that the PBE probability of choosing IN varied systematically across the

games and between first and second movers.

Unfortunately, PBE has little predictive power across the games and treatments. Figure

3 displays bar plots of the observed IN vote frequencies and IN team decision frequencies

for weak first movers (left panel) and second movers (right panel), with the PBE predictions

superimposed as dashed lines. If behavior were consistent with PBE and there were no effect

of team size or voting rule, and all of the bars should align with the dashed lines. Instead,

the data reveal systematic and significant deviations from PBE and variation across the

treatments within games.

(a) Weak First Mover Team Decisions (b) Second Mover Team Decisions

Figure 3: Empirical IN frequencies compared to PBE predictions.

As shown in the left panel of Figure 3, weak first movers’ IN decision frequencies often

diverge sharply from PBE predictions. In the Individual treatment, choices differ significantly

from PBE in two of the four games at the 1% level.19 In the Majority and Unanimity

treatments, deviations are significant in three and two games, respectively.

The right panel of Figure 3 shows that second movers also deviate from PBE across

treatments. In the Individual treatment, IN frequencies differ significantly from PBE in

19Unless otherwise noted, significance is based on binomial tests.
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three of the four games, and in the Unanimity treatment the deviations are significant in

all four. Majority-rule teams show smaller but still systematic departures, with significant

deviations in Game 4.

Overall, the evidence demonstrates that PBE does not organize the data well. In both

roles and across treatments, observed play frequently overshoots or undershoots the PBE

mixing probabilities, and the direction of deviation varies with the collective choice rule.

This lack of systematic alignment underscores the need for an alternative model—such as

team equilibrium—to account for behavior.

5.2 How well does Team Equilibrium account for variations of
behavior across treatments?

While the PBE framework fails to account for the systematic deviations in our data, the team

equilibrium (TE) model provides a remarkably successful explanation. The core idea of TE

is that team members evaluate expected payoffs with small idiosyncratic payoff disturbances

and cast votes accordingly, with collective choice rules aggregating these votes into team

decisions.

As a first step, in Section 5.2.1 we fit the data to the (logit) team equilibrium model,

estimating a single logit responsiveness parameter, λ, to the entire data set and compare the

predicted values of IN team decision frequencies for each of the 24 game (1-4) – treatment

(ind/maj/unan) – role (first, second) combinations to the observed decision frequencies.

Thus the team equilibrium model must simultaneously capture variation across different

payoff structures, team sizes, voting rules and player roles—a highly demanding test of the

model.

The second part of this section evaluates whether the directional predictions of team

equilibrium deviations from PBE are borne out in the data. As seen in Figure 3, the

observed team equilibrium theoretical decision frequencies differ quite dramatically from

the PBE IN frequencies, and these differences vary systematically across the four games, two

player roles, and three choice rule treatments. In some cases the team equilibrium predicts

higher IN frequencies than PBE and in other cases it predicts lower IN frequencies than

PBE. Section 5.2.2 documents the extent to which the data reflect these patterns.
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5.2.1 Estimating the logit team equilibrium model

The estimation is conducted using the individual choice data for weak first movers and

second movers.20 The estimated individual vote frequencies imply predicted team equilibrium

decision frequencies which we then compare to the empirical decision frequencies. The results

are striking. Figure 4 plots observed frequencies of IN decisions against TE predicted values

for all 24 game–treatment–role combinations. If TE organized the data perfectly, the points

should all lie along the 45-degree line. This is almost exactly what happens: the fitted

relationship is extremely tight (intercept = 0.04, slope = 0.85, R2 = 0.76). Given the

heterogeneity of our design (four distinct payoff environments, three decision rules, and two

roles), such alignment is exceptional. TE delivers a coherent account of the data with a

single free parameter.

Figure 4: Observed versus predicted frequencies of IN under the fitted team equilibrium
model. Each point corresponds to one game × treatment × role.

The contrast with PBE is stark. Figure 5 plots observed frequencies of IN against PBE

predictions. The fitted regression line has an intercept of 0.36 and a slope of only 0.36, which

is not statistically different from zero, with an R2 of just 0.12. In short, there is only a weak

and noisy relationship between PBE and observed play. A breakdown by role underscores

20Inclusion of strong first mover data leads to almost identical results, since, except for implausibly low
values of λ, the logit equilibrium IN frequencies are very close to 1, as is the data. See the appendix for the
estimation results including the strong first mover observations.
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this point: for second movers the slope rises modestly to 0.57 (R2 = 0.26), while for first

movers it falls to 0.12 (R2 = 0.02), and neither differs significantly from zero.

Figure 5: Observed versus PBE-predicted frequencies of IN. Each point corresponds to one
game × treatment × role.

This side-by-side comparison delivers a clear message: team equilibrium dramatically

outperforms PBE as an explanatory framework for crisis bargaining behavior. With just one

parameter, TE accounts for the broad patterns of play, the systematic treatment effects, and

the sign of departures from PBE. In the subsections that follow, we show that this success

is not accidental but systematically reinforced by the ways in which collective choice rules

shape outcomes and by the greater payoff responsiveness of teams relative to individuals.

5.2.2 Qualitative predictions of team equilibrium departures from PBE

Equally important, TE captures not only aggregate frequencies but also the comparative

statics across treatments. Because there are so many predictions about the treatment, game,

and role effects, a useful lens for focusing and organizing these comparative static predictions

is in terms of the TE-predicted qualitative departures from PBE.

How do the observed deviations from the PBE IN frequencies compare with the differences

between the TE predictions and the PBE frequencies; in particular, do the observed positive

(negative) deviations from PBE coincide with cases where the TE-predicted deviations are

also positive (negative)? The data follow exactly this pattern. Across all games, roles, and
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voting rules, 21 out of 24 TE predictions about whether observed behavior should lie above

or below the PBE benchmark are correct.

Furthermore, in 12 out of 24 cases, the ordering between team equilibrium and PBE is

invariant with respect to the payoff-noise parameter λ. That is, for all admissible λ, the

team equilibrium mixing probability is strictly above the PBE value or strictly below it. In

100% of these 12 cases, the sign of the observed deviation from PBE coincides with this

”global” TE prediction. When the team equilibrium lies above PBE for all values of λ,

observed frequencies exceed the PBE prediction; when it lies below, observed frequencies

fall short of the PBE prediction. This alignment is meaningful because it does not rely on

structural estimation at all; it reflects robust, parameter-free comparative statics.

Figure 6: Observed deviation from PBE IN frequencies of IN (horizontal axis) plotted against
the predicted difference between TE and PBE IN frequencies. Each point corresponds to
one game × treatment × role.

In 9 of the remaining 12 cases, the ordering between the TE-predicted IN frequencies

obtained from the structural estimation of team equilibrium and PBE is correctly mirrored

in the observed IN frequencies. The only three exceptions occur for Player 1 in Game 4 (1x1

and Majority) and Player 2 in Game 1 (Majority). Both the TE-predicted and the observed

deviations from PBE IN frequencies are very small (less than 0.09 in all three cases). In such

cases the model does not imply a significant sign prediction.

A final observation relates to the magnitude of the departures from PBE and how these

magnitudes line up closely with the TE-predicted deviations. The scatter diagram of all

24 cases in Figure 6 shows the strong positive correlation between the observed departures
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from PBE and the TE-predicted deviations.21 The solid dark circles are the 12 cases where

TE makes a global prediction about the direction of deviations from PBE. Three cases

where the direction of observed deviations does not match the TE prediction are indicated

in grey, and are all located very close to (0,0). The remaining 9 cases are displayed as

open circles. While our data clearly reject the notion that teams are systematically closer

to PBE than individuals, they support a stronger claim: team equilibrium organizes the

sign of deviations from PBE in a consistent and theoretically grounded manner. When the

equilibrium benchmark is misspecified, greater rationality does not move teams closer to

PBE. It moves behavior toward the comparative statics captured by team equilibrium.

5.3 Do Collective Choice Rules Matter for Behavior and Out-
comes?

We now turn to the role of collective choice rules. Whereas most previous experiments have

studied teams under a consensus rule based on (face-to-face) discussion, our design directly

compares majority and unanimity voting in a strategic signaling environment. This allows

us to isolate how the voting rule alone affects team behavior.

Figure 3 illustrates how collective choice rules systematically shape team choice behavior.

For weak first movers, the vote frequencies of IN are consistently lower under unanimity than

under majority in all four games (p < 0.01), and as shown in Figure 3, these lower voting

rates translate into significantly lower team choice frequencies in games 2 and 3 (p = 0.027

and p = 0.017). Unanimity therefore makes weak first movers less willing to choose IN,

because a single IN vote is sufficient for the team to select IN, which makes cautious members

pivotal and amplifies their reluctance to support that action. In effect, unanimity magnifies

the influence of the most cautious team members and generates a structural bias toward

restraint on the sender side.

For second movers, the pattern is reversed. Both vote frequencies and team choice

frequencies are consistently higher under unanimity than under majority, with differences

strongly significant across all games (p < 0.01). Here the unanimity rule biases second-mover

choices toward IN unless all members coordinate on OUT, so the willingness of even a single

member to call a bluff is amplified into a team decision. In this role, unanimity magnifies

the influence of the most aggressive members, pushing second-mover teams toward more

21See also Table 4 in Appendix 2.
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frequent confrontation.

Taken together, these figures show that unanimity dampens IN choices by weak first

movers while encouraging IN choices by second movers. This sharp, role-dependent diver-

gence underscores that collective choice rules are not neutral procedural details: they fun-

damentally reshape strategic incentives and drive systematic differences in behavior. PBE,

which predicts identical frequencies across voting rules, cannot account for these effects. By

contrast, team equilibrium incorporates precisely these mechanisms and therefore provides

a natural explanation for the observed patterns.

5.4 Are Teams More Rational Than Individuals?

The explanatory power of team equilibrium rests on the idea that teams are more sensitive

to payoff differences than individuals. In this sense, rationality means adjusting choices more

strongly in the direction favored by expected payoffs. If teams indeed react more sharply

to payoff incentives, this would provide a natural explanation for why the team equilibrium

model captures the data so successfully. We therefore test whether teams behave more

rationally than individuals in our crisis bargaining games.

In equilibrium, weak first movers and second movers should respond monotonically to

their opponents’ strategies: if the opponent plays IN too often relative to equilibrium, the

best response is to play OUT with probability one, and vice versa. Only in the knife-edge

case where the opponent mixes exactly at the equilibrium probability are players indifferent.

This logic suggests a straightforward test: if teams are more rational, their choice frequencies

should shift more sharply with changes in expected payoff differences.

To implement this test, we compute the expected payoff difference between IN and OUT

in each game and treatment, given observed opponent play, and use this difference as the

explanatory variable in a logit regression of team choices. Table 2 reports the results. Across

all specifications, the coefficient on payoff difference is positive and highly significant, showing

that teams are more likely to choose IN when the expected payoff from IN is relatively high.

The first two columns confirm that this responsiveness is robust across roles: first movers

and second movers react similarly to payoff incentives.
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Table 2: Team Choice Logit Regressions

Dependent variable:

Team Choice of IN

(1) (2) (3)

Constant 0.156∗∗∗ 0.143∗∗∗ 0.060
(0.036) (0.049) (0.043)

Majority −0.309∗∗∗

(0.104)

Unanimity 1.439∗∗∗

(0.159)

First Mover 0.0005
(0.076)

Pay Diff 0.134∗∗∗ 0.146∗∗∗ 0.141∗∗∗

(0.009) (0.012) (0.011)

Majority × Pay Diff 0.064∗∗

(0.029)

Unanimity × Pay Diff 0.070∗∗

(0.029)

First Mover × Pay Diff −0.027
(0.019)

Observations 3,285 3,285 3,285
Log Likelihood −2,139.164 −2,138.076 −2,070.334
Akaike Inf. Crit. 4,282.328 4,284.151 4,152.668

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The third column adds interactions with the collective choice rules and reveals important

treatment effects. Majority rule teams are significantly more likely to choose OUT than

individuals when payoffs are balanced (the negative constant), yet they are also significantly

more responsive to payoff differences. Unanimity teams, in contrast, exhibit a strong bias

toward IN at indifference, consistent with the structural tilt of the rule. However, they

too respond more strongly to payoff differences than individuals. Thus, both majority and

unanimity teams are systematically more sensitive to incentives than individual decision-

makers, even though their baseline tendencies differ.

Figure 7 illustrates this result for majority rule teams compared to individuals. Each

31



Figure 7: Majority Voting Logistic Regression

dot corresponds to observed behavior under the Individual treatment, and each square to

behavior under the Majority treatment. The x-axis measures the expected payoff difference

between IN and OUT, and the y-axis the observed frequency of IN. If teams were playing

according to PBE, all points would cluster around zero payoff difference. If teams were

perfect best responders, all points would lie at 0 or 1 depending on the sign of the payoff

difference. In practice, we observe upward-sloping response functions. The dashed line for

majority rule teams is steeper than the solid line for individuals, indicating that majority

voting dampens random play and makes teams more responsive to incentives.

Figure 8 shows the same comparison for unanimity teams. Here the in-built bias of the

unanimity rule is visible in the very high probability of choosing IN at indifference. Yet the

slope of the response function is again steeper than that for individuals. In particular, when

IN is the best response (as for second movers facing overly aggressive weak first movers),

unanimity teams are especially effective at selecting IN.

These findings make clear that teams are not merely averaging individual biases. Voting

rules increase their sensitivity to payoff incentives, leading to behavior that is closer to best

responses. This enhanced rationality is a central reason why team equilibrium provides such

a strong account of our data, and it raises the natural next question of whether this greater

rationality also brings teams closer to equilibrium predictions than individuals.
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Figure 8: Unanimity Voting Logistic Regression

5.5 Are Teams Closer to PBE than Individuals?

Although PBE predictions largely fail to explain behavior, the literature has often suggested

that teams may nevertheless behave more closely in line with equilibrium play than individ-

uals. The logic is that if teams are more rational and payoff-responsive, their choices should

deviate less from PBE. We therefore examine whether teams in our experiment are in fact

closer to PBE than individuals.

The evidence from aggregate team choice frequencies, shown in figure 3, provides little

support for this idea. In several cases, such as second movers under unanimity, team behavior

actually deviates further from PBE than individual behavior. In others, deviations are of

similar magnitude. Overall, there is no consistent evidence that teams converge toward PBE

relative to individuals.

While our data clearly reject the notion that teams are systematically closer to PBE than

individuals, the results reported in Section 5.2.2 showed that they support a much stronger

claim: team equilibrium organizes the sign of deviations from PBE in a consistent and the-

oretically grounded manner. When the equilibrium benchmark is misspecified, information

aggregation by voting does not move teams closer to PBE. Rather, it moves behavior in the

direction of the comparative statics captured by team equilibrium.
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6 Other Models

As a robustness check on our main findings, we compare the explanatory power of team

equilibrium to two natural reference points: a no-information null model that assumes purely

random play, and an omniscient perfect-fit model that matches the data exactly. These

bounds allow us to assess where the performance of team equilibrium lies on the spectrum

from random noise to perfect prediction. We then briefly consider alternative structural

models such as QRE and extensions of TE with risk aversion.

6.1 Two Benchmark Models

(1) No Information Benchmark (NI). Suppose one tries to predict aggregate behavior

in our four crisis bargaining games without any knowledge of the payoff structure. A natural

benchmark is to assume that weak first movers and second movers play IN and OUT with

equal probability. This no information model yields a log likelihood of −4770.2. Strikingly,

this random-guessing benchmark fits the data better than the PBE model (log likelihood

= −4817.8), underscoring the failure of PBE. By contrast, the team equilibrium model

produces a much higher likelihood of −4357.2, representing a highly significant improvement

even relative to NI.22

(2) Perfect Fit Benchmark (PF). At the opposite extreme, one can consider an om-

niscient model that perfectly reproduces the observed frequencies in all games, roles, and

team treatments. This perfect fit benchmark, which uses 24 free parameters, achieves a log

likelihood of −4163.1. No model can improve on this fit, since it simply restates the data.

Relative Fit. To place team equilibrium on this spectrum, we compute a pseudo-R2 measure

analogous to McFadden’s index:

FitTE =
0.087

0.127
= 0.685.

This measure is normalized so that NI has a value of 0 and PF has a value of 1. Team

equilibrium, with a single free parameter, explains nearly 70% of the variation that could

possibly be explained by any model, despite the heterogeneity of payoffs, roles, and collective

choice rules. This result confirms that TE captures the essential systematic patterns in the

data while remaining extremely parsimonious.

22The NI model is nested in the TE model, corresponding to λ = 0.
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6.2 Quantal Response Equilibrium

As pointed out in Section 3.2, the team equilibrium with n = 1 is equivalent to the logit

quantal response equilibrium at every value of λ. However, the case of n = 1 is special, and

the team equilibrium with team sizes n > 1 is different from a quantal response equilibrium.

To analyze a quantal response equilibrium when n > 1, one looks at the 2n person voting

game (10-person in our experiment, with 5 voters for each team). In a quantal response

equilibrium the i.i.d. payoff disturbances are applied for each voter to the expected payoffs

of voting for either IN or OUT, rather than the expected payoff of the team decision to

choose IN or OUT. In a 5×5 team game, the quantal response equilibrium is an equilibrium

of this larger voting game. In contrast to the uniqueness of Perfect Bayesian (and team)

equilibrium for the n = 1 special case, there are typically many Nash equilibria in multi-

player voting games, under either majority rule or unanimity, and there can be multiple logit

quantal response equilibria as well. In fact, there are bifurcations in the graph of the logit

quantal response equilibrium correspondence that arise at values of λ where additional logit

equilibria are picked up.

We are able to compute the unique continuous selection of the logit quantal response

equilibrium correspondence that converges to the Perfect Bayesian equilibrium of the baseline

game for the 5× 5 majority games. 23 This allows us to use maximum likelihood estimation

to compare the fit of the logit quantal response equilibrium model to the team equilibrium

model in our experiment, using all of our pooled data except the 5×5 unanimity games. The

team equilibrium model fits significantly better than the logit quantal response equilibrium

model (χ2 − statistic > 20).

6.3 Risk Aversion

In our crisis bargaining games, OUT is a safe option yielding a guaranteed payoff, while IN

is a risky option that produces a binary lottery. Risk preferences are therefore potentially

relevant for strategic play. The team equilibrium framework accommodates this naturally

by embedding constant relative risk aversion (CRRA) preferences. Each payoff x is mapped

to utility u(x) = x1−ρ

1−ρ
, with ρ denoting the coefficient of relative risk aversion, and logit

responses are then applied to expected utilities rather than expected payoffs. The fixed-

23This was not possible for the 5× 5 unanimity voting games to multiple equilibria and bifurcations.
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point logic of team equilibrium remains unchanged.

We estimate two variants. First, we consider PBE with homogeneous CRRA preferences

but no payoff disturbances (λ = ∞). The resulting estimate implies negative risk aversion,

i.e. risk-seeking behavior, which is implausible. Moreover, this PBE with risk aversion model

fits only marginally better than risk-neutral PBE and still worse than the no-information

benchmark.

Second, we estimate a team equilibrium model with both CRRA preferences and payoff

disturbances. The fitted coefficient is ρ = 0.485, close to quadratic utility and consistent

with prior experimental evidence (e.g. Goeree et al., 2002, 2003). The fitted responsiveness

parameter λ is somewhat higher, reflecting the rescaling of payoffs due to concave utility, but

the qualitative fit is essentially unchanged. Figure 9 shows that the scatter plot of observed

versus predicted frequencies is nearly identical to the risk-neutral case (compare with Figure

4). The OLS fit yields an intercept of 0.09, a slope of 0.82, and an R2 of 0.77, virtually the

same as before.

Figure 9: Team Equilibrium Fit with Risk Aversion

Allowing for risk aversion therefore produces plausible parameter estimates and a slight

quantitative improvement in fit, but does not change the qualitative implications of team

equilibrium. The central explanatory power of the model comes from heterogeneity in payoff

disturbances, not from risk preferences. The effect of risk aversion is second-order.
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7 Conclusion

The application of a unitary rational actor model to analyze crisis decision-making in in-

ternational conflict situations has been sharply criticized, on account of the diversity of

interests in group decision-making and organizational rules that constrain how these diverse

interests are aggregated into a group decision. Crisis bargaining games capture three essen-

tial features of these conflict environments - asymmetric information, sequential timing, and

strategic calculation - and thus provide a valuable paradigm for analyzing these situations.

In this paper, we apply team equilibrium to these games, which is a general frame-

work that extends the standard single-actor equilibrium analysis of games by incorporating

both diversity of team members’ interests and organizational rules that constrain the group

decision-making process. For this class of games, team equilibrium implies sharp predictable

systematic differences from the standard PBE model of behavior, in terms of both group

decisions and bargaining outcomes.

The experiment was designed to test the full range of these team equilibrium predictions,

using four different payoff variations from a simple class of crisis bargaining games. The four

games were carefully selected because they represent four starkly different patterns bluffing

and bluff-calling behavior by first and second movers, respectively: in game 2, PBE predicts

that both players should choose IN less than half the time; in game 4, both players should

choose IN more than half the time; in game 1, only player 2 chooses IN more than half the

time; and in game 3 only the first mover chooses IN more than half the time.

We summarize the findings of the experiment in terms of the answers to the five main

research questions.

How well (or poorly) does team equilibrium account for the variation of behavior across

treatments? A one-parameter logit specification of the team equilibrium model closely tracks

the data and captures essentially all the salient effects of the payoff variations across the

four games, as well as the effects of the group size and collective choice procedure. The

regression of IN frequencies predicted by the logit model on observed IN frequencies produces

an R2 = .76 with a slope of 0.85; the qualitative predictions about the deviations of IN

frequencies (higher or lower) relative Nash equilibrium were observed in 21 out of 24 cases.

Does the collective choice rule matter for team behavior and if so how? Yes, the collective

choice rule has strong effects, as predicted by team equilibrium. Unanimity rule induces first
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mover teams to choose IN less frequently than majority rule, and the opposite is true for

second movers.

Are teams more rational than individuals? Yes, consistent with team equilibrium theory,

based on the a logit regression, teams have a stronger positive response of choosing IN to

payoff differences between IN and OUT than individuals, a comparison that holds true for

both collective choice rules. Unanimity rule biases teams toward choosing IN.

Are the outcomes played between teams closer to PBE than the same games played

between individuals? There is no systematic difference between teams and individuals in

terms of how close the outcomes are to Nash equilibrium.

Do other models of behavior explain the variation of behavior across the treatments,

perhaps even better than team equilibrium? Team equilibrium fits the data significantly

better than quantal response equilibrium. A two-parameter estimation of the logit team

equilibrium model that includes a risk aversion parameter fits the data slightly better (R2 =

.77 vs R2 = .76) but makes identical qualitative predictions to the one-parameter model that

assumes risk neutrality.

This study has implications for understanding strategic decision-making in conflict situ-

ations and we conclude with three remarks about this. First, the experiment demonstrates

that group decision-making in crisis bargaining situations cannot be adequately modeled

by standard game-theoretic approaches that rely on unitary rational actors. By integrat-

ing the diversity of interests and the impact of collective choice rules, the team equilibrium

framework offers a more nuanced and accurate description of group behavior in strategic

contexts.

Second, the findings emphasize the critical role of institutional structures in shaping col-

lective decisions. Variations in group size and voting rules systematically influence behavior

and outcomes, highlighting the importance of organizational design in strategic interac-

tions. For policymakers and institutions managing crises, this points to the need to carefully

consider how decision-making processes and rules impact group behavior, particularly in

high-stakes strategic situations.

Third, the robustness of the team equilibrium model across different payoff structures

and decision-making rules opens promising avenues for further research. Future work could

explore how factors such as communication within teams, the role of leadership, and het-
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erogeneity in team members’ payoffs shape outcomes. Extending this framework to more

complex strategic interactions could offer deeper insights into how groups navigate uncer-

tainty and strategic conflict.
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Appendices

Appendix 1: Experimental Design Details

Table 3: Summary of Sessions

SESSION# TREATMENT #SUBJECTS LOCATION

1 1× 1 18 Online UCI

2 1× 1 20 Online UCI

3 1× 1 10 Online UCI

4 1× 1 14 Online UCI

5 1× 1 14 Online UCI

6 1× 1 12 Online UCI

7 1× 1 18 UCI

8 1× 1 8 UCI

9 5× 5 Majority 20 UCI

10 5× 5 Majority 20 Online UCI

11 5× 5 Majority 20 UCSB

12 5× 5 Majority 20 UCSB

13 5× 5 Majority 20 UCSB

14 5× 5 Majority 20 UCSB

15 5× 5 Unanimity 20 UCI

16 5× 5 Unanimity 20 UCI

17 5×5 Unanimity 20 UCI

18 5× 5 Unanimity 20 UCSB

19 5× 5 Unanimity 20 UCSB
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Figure 10: Game Payoffs

(a) Payoffs for Game 1:

(b) Payoffs for Game 2:

(c) Payoffs for Game 3:

(d) Payoffs for Game 4:

Note: These payoffs were constructed from the payoffs displayed in Table 1 by adding a constant to all
payoffs in a game, which does not affect the PBE or the team equilibrium in any of the games. This was
done to ensure that all payoffs were positive. Specifically, in Game 1, the added constant was 20 for the first
mover and 25 for the second mover. The corresponding pair of added constants for Games 2-4 were (24, 28),
(24, 24), and (24, 28), respectively.
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Appendix 2: Observed and Theoretical Decision Frequencies

Each panel of the above figure displays the team equilibrium for one game and one player

role. Each line traces out the team equilibrium for one team treatment, for all λ values from

0 to 1. The points are plotted on the x-axis at the estimated value of λ, and on the y-axis

at the observed team decision frequency.
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Table 4: Supplemental information for Figure 6

IN Frequency
Game Rule Player Obs TE Nash TE Prediction Correct? Obs−Nash TE−Nash

1 1v1 First 0.624 0.558 0.200 Obs>NE* YES 0.424 0.358
1 1v1 Second 0.719 0.751 0.800 Obs<NE YES −0.081 −0.049
1 Maj First 0.569 0.446 0.200 Obs>NE* YES 0.369 0.246
1 Maj Second 0.768 0.825 0.800 Obs>NE −0.032 0.025
1 Unan First 0.571 0.807 0.200 Obs>NE YES 0.371 0.607
1 Unan Second 1.000 1.000 0.800 Obs>NE* YES 0.200 0.200
2 1v1 First 0.320 0.319 0.333 Obs<NE YES −0.013 −0.014
2 1v1 Second 0.588 0.500 0.333 Obs>NE* YES 0.255 0.167
2 Maj First 0.127 0.270 0.333 Obs<NE YES −0.206 −0.063
2 Maj Second 0.417 0.448 0.333 Obs>NE* YES 0.084 0.115
2 Unan First 0.318 0.250 0.333 Obs<NE YES −0.015 −0.083
2 Unan Second 0.920 0.955 0.333 Obs>NE* YES 0.587 0.622
3 1v1 First 0.386 0.435 0.715 Obs<NE* YES −0.329 −0.280
3 1v1 Second 0.336 0.352 0.285 Obs>NE YES 0.051 0.067
3 Maj First 0.240 0.513 0.715 Obs<NE* YES −0.475 −0.202
3 Maj Second 0.194 0.279 0.285 Obs<NE YES −0.091 −0.006
3 Unan First 0.488 0.416 0.715 Obs<NE YES −0.227 −0.299
3 Unan Second 0.552 0.834 0.285 Obs>NE* YES 0.267 0.549
4 1v1 First 0.749 0.589 0.666 Obs<NE 0.083 −0.077
4 1v1 Second 0.390 0.508 0.666 Obs<NE* YES −0.276 −0.158
4 Maj First 0.722 0.662 0.666 Obs<NE 0.056 −0.004
4 Maj Second 0.459 0.509 0.666 Obs<NE* YES −0.207 −0.157
4 Unan First 0.696 0.859 0.666 Obs>NE YES 0.030 0.193
4 Unan Second 0.848 0.992 0.666 Obs>NE* YES 0.182 0.326

*Global prediction applies for all values of λ
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Online Appendix: Instructions and screenshots

Sample instructions

These are the instructions used for the 1-1 in-person experiments with the reverse game order

(4321). Modifications for the 5-5 majority rule treatment is noted in double brackets at the

appropriate places. Instructions for the unanimity rule treatment were nearly identical to the

majority rule instructions, with the exception of the voting rule explanation. The instructions

were handed out to all subjects so they could follow along while the experimenter read the

instructions aloud. They could also refer back to the instructions during the experiment if

they wished.

For the team experiments, these instructions were slightly modified to explain that each

subject’s action choice was a vote of IN or OUT and all final team decisions was determined

by majority [unanimity] rule. The instructions for online sessions included an explanation of

the procedures that would be followed in case any subject became disconnected. The online

sessions were conducted on Zoom and also used a utility software, Experimentalist, which

streamlined the login, connection, and payoff protocols.

General instructions

Thank you for coming. You are about to participate in an experiment on decision-making.

Your earnings will depend partly on your decisions, partly on the decisions of others, and

partly on chance. This experiment requires your undivided attention. Please refrain from

other activities for the duration of the experiment.

The entire session will take place through computer terminals, and all interaction between

participants will take place through the computers. Please do not attempt to communicate

in any way with other participants during the experiment.

Some of your decisions will be randomly selected for payment. Your earnings are de-

nominated in points, and each point has a value of $0.20. In other words, every 100 points

generates $20 in earnings for you. In addition to your earnings from decisions, you will

receive a show-up fee of $7, and a completion fee of $5. At the end of the experiment, your

earnings will be rounded up to the nearest dollar amount. All your earnings will be paid by

cash.
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Main task

Overview of the experiment:

This experiment consists of 4 matches, and each match has 10 rounds. We will now

review the instructions for match 1. After the conclusion of each match, instructions for the

next match will be read.

Type: First mover and Second mover

At the beginning of the experiment, you will be randomly assigned to one of two types:

First mover or Second mover. Once you become a first mover or a second mover, your type

will remain fixed throughout the entire experiment. As will be explained later, in every

round, first movers make a decision first, and then second movers follow.

Matching and decision

At the beginning of each round, you will be randomly paired with another subject of the

opposite type. If you are a first mover, you will be paired with a second mover, and vice

versa. In each round, when it is your turn to move, you will make a decision to choose an

action (IN or OUT).

[[Team Assignment

At the beginning of each round, first movers will be randomly sorted into first mover

teams, and second movers will be randomly sorted into second mover teams. Each team has

5 members with the same type. In each round, your 5-member team will be randomly paired

with another 5-member team of the opposite type. If your team is a first mover team, your

team will be paired with a second mover team, and vice versa.]]

[[Team Decision

In each round, when it is your team’s turn to move, your team will make a collective

decision to choose an action (IN or OUT). You will be asked to vote for an action in each

round, and your team decision will be determined by majority rule. For instance, if there are

2 member of your team who votes for action In and 3 members who vote for action OUT,

then your team’s collective decision will be action OUT. ]]

Payoff table
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Payoff table 
 Second Mover’s 

Choice of Action 

First Mover’s Choice 
of Action 

IN 
OUT IN 

1000, 220 40, 505 
 

 

On the decision-making screen, you will see three tables that show the payoffs in points

from each combination of choices. The payoffs in the example table above are only for illus-

tration, they are not the actual payoffs used in the experiment. The rows always correspond

to the actions the first mover [[first mover team]] can choose, and the columns correspond to

the actions the second mover [[second mover team]] can choose. The first entry in each cell

represents the first mover’s [[first mover team members’]] earnings, while the second entry

represents the earnings of the second mover [[second mover team members]]. For instance

(1) if the first mover [[team]] chooses action IN and the second mover [[team]] chooses action

OUT, the first mover receives [[each of the first mover team members receives] 1000 points,

while the second mover [[each of the second mover team members]] receives 220 points. (2)

if the first mover [[team]] chooses action IN and the second mover [[team]] chooses action

IN, the first mover receives [[each of the first mover team members receives]] 40 points, while

the second mover receives [[each of the second mover team members receives]] 505 points.

Coin flip: HEADs or TAILs

There will be three different payoff tables on your screen, one upper table and two

lower tables. At the beginning of each round, the computer flips a virtual, fair coin which

determines either HEADs or TAILs. The probability that HEADs (or TAILs) is selected is

50%. A separate virtual, fair coin is flipped for each round, for each pairing. The result of

each coin flip is independent of every other coin flip.

If the result of the coin flip is HEADs, then, among the two lower tables, the table on

the left side of the screen shows the true payoffs to each combination of actions. If the

result is TAILs, then the table on the right shows the true payoffs. As will be explained

later, the upper payoff table is not related to the coin flip result. Only the first mover [[first

mover team members]] knows [[know]] whether HEADs or TAILs has been selected before

he chooses an action [[they vote]]. The second mover [[second mover team members]] only
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learns [[learn]] this information at the end of the round, after all decisions have been made.

This will be further explained in detail below.

Decision-making procedures

There are three stages of decision-making procedures-(1) action choice of the first mover

[[voting of the first mover team members]], (2) action choice of the second mover [[voting of

the second mover team members]], and (3) feedback about decisions and payoffs. We will

now review each of these stages by looking at screenshots of the actual experimental user

interface. All payoffs in these screenshots are the real payoffs used in match 1.

(The screenshots were handed out to subjects and they followed along as the experi-

menter read the following script. Copies of the screenshots are reproduced at the end of this

appendix.)

(1) Action choice of the first mover First mover: [Slide 1] On the first screen, the first

mover [[first mover team members]] will see three tables that show the payoffs in points from

each combination of actions and a random computerized coinflip. The top table, which has

one row and two cells, shows the payoffs resulting from the first mover [[first mover team]]

choosing action OUT. If the first mover [[first mover team]] chooses action OUT, the round

immediately ends and subjects receive the payoffs shown in this table. That is, regardless

of the result of the coin flip, the first mover [[first mover team members]] receives 10 points,

while the second mover [[second mover team members]] receives 35 points. The bottom two

tables show the payoffs if the first mover [[first mover team members]] chooses action IN, for

every combination of computerized coin flip and action of the second mover. The first mover

[[first mover team members]] can choose [[vote for]] an action by clicking a row in the payoff

tables. To finalize a choice [[vote]], the Submit button highlighted in red should be clicked.

Second mover: [Slide 2] The second mover [[second mover team members]] will wait for

the first mover [[first mover team members]] to choose [[vote for]] an action. On this screen,

the computer’s random selection of HEADs or TAILs will not be revealed to the second

mover [[second mover team members]].

(2) Action choice of the second mover. First mover: [Slide 3] This screen appears only if

the first mover [[first mover team]] chooses IN. The first mover [[first mover team]] is asked to

wait for the second mover [[second mover team]] to choose an action in the two payoff tables

below. Choosing [[voting for]] an action, the second mover [[second mover team members]]

does [[do]] not know whether HEADs or TAILs was randomly selected.
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Second mover: [Slide 4] This screen appears only if the first mover [[first mover team]]

chooses IN. The second mover is asked to choose an action in the two payoff tables below.

Choosing [[voting for]] an action, the second mover [[second mover team members]] does not

know whether HEADs or TAILs was randomly selected. The second mover [[second mover

team members]] can choose an action by clicking a column in the payoff tables. To finalize

a choice, the Submit button highlighted in red should be clicked.

(3) Receiving feedback about the payoffs

First mover: [Slide 5] This is the feedback screen for the case in which OUT was chosen

by the first mover [[first mover team]]. The first mover [[first movers]] and the second mover

[[second movers]] will receive feedback about their payoffs and the computer’s random choice

of HEADs or TAILs.

[Slide 6] This is the feedback screen for the case in which IN was chosen by the first

mover. The action of each is highlighted, and the payoffs you will receive are highlighted in

pink. The computer’s random choice of HEADs or TAILs will also be revealed to the second

mover.

Second mover: [Slide 7] This is the feedback screen for the case in which OUT was chosen

by the first mover [[first mover team]]. The first mover[[s]] and the second mover[[s]] will

receive feedback about their payoffs and the computer’s random choice of HEADs or TAILs.

[Slide 8] This is the feedback screen for the case in which IN was chosen by the first

mover [[first mover team]]. The computer’s random choice of HEADs or TAILs will also be

revealed to the second mover [[second mover team]]. For the randomly selected payoff table,

the action of each mover is highlighted, and the payoffs you will receive are highlighted in

purple. On the feedback screen, all subjects should click the Confirm button to advance the

page.

Payoffs

At the end of the experiment, one round from each Match (4 rounds in total) will be

randomly selected for determining the payment of each subject. The rounds chosen may

be different for different subjects. You will be paid the amount of points you earned in the

rounds randomly selected for you.
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Quiz

For your comprehension, before Match 1 begins, you will be asked to solve quiz problems.

You can participate in the experiment only if you enter correct answers for all problems.

Summary of instructions

1. At the beginning of the experiment, you will be randomly assigned to one of two types:

First mover or Second mover. Once you become a first mover or a second mover, your

type will remain fixed throughout the entire experiment.

2. Each of the 4 matches has 10 rounds.

3. At the beginning of each round, you will be randomly paired with a subject of the

other type. In each round, when it is your turn, your will choose an action. [[At the

beginning of each round, you will be randomly sorted into a team of subjects with the

same type, and your team will be randomly paired with another team of the other type.

In each round, when it is your team’s turn to move, your team will make a collective

decision to choose an action.]]

4. If the first mover [[team]] chooses OUT, the round is over and the second mover does

[[team member do]] not make a choice. The payoffs do not depend on the result of the

coin flip.

5. If the first mover [[team]] chooses In, the second mover [[team members vote for]]

chooses an action in the two payoff tables below. After all members of both teams

have voted in their turn, the outcome of the coin flip of HEADs or TAILs and each

team’s choice will determine the payoffs.
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4. Quiz 

For your comprehension, before Match 1 begins, you will be asked to solve quiz problems. You can 
participate in the experiment only if you enter correct answers for all problems.  
 
Summary of instructions  
 
1. At the beginning of the experiment, you will be randomly assigned to one of two types: First mover or 
Second mover. Once you become a first mover or a second mover, your type will remain fixed throughout 
the entire experiment. 
2. Each of the 4 matches has 10 rounds 
3. At the beginning of each round, you will be randomly paired with a subject of the other type. In each 
round, when it is your turn, your will choose an action.  
4. If the first mover chooses OUT, the round is over and the second mover does not make a choice. The 
payoffs do not depend on the result of the coin flip. 
5. If the first mover chooses In, the second mover chooses an action in the two payoff tables below. After 
all members of both teams have voted in their turn, the outcome of the coin flip of HEADs or TAILs and 
each team’s choice will determine the payoffs.  
 

 
 
 
  Figure 11: Match 1 payoffs
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[Subjects answer comprehension questions, after which the first round of Match 1 begins.

After 10 rounds, the experiment is paused and the experimenter reads the next script to

announce the change of payoffs for Match 2.]
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Match 2

We have reached the end of match 1 and match 2 will now begin. The rules and procedures

used in this match are exactly the same as in the first match. However, the payoffs are now

different. The new payoff tables are pasted at the bottom of this page, below the instructions

summary.

Summary of instructions

1. At the beginning of the experiment, you will be randomly assigned to one of two types:

First mover or Second mover. Once you become a first mover or a second mover, your

type will remain fixed throughout the entire experiment.

2. Each of the 4 matches has 10 rounds.

3. At the beginning of each round, you will be randomly paired with a subject of the

other type. In each round, when it is your turn, your will choose an action. [[At the

beginning of each round, you will be randomly sorted into a team of subjects with the

same type, and your team will be randomly paired with another team of the other type.

In each round, when it is your team’s turn to move, your team will make a collective

decision to choose an action.]]

4. If the first mover [[team]] chooses OUT, the round is over and the second mover does

[[team member do]] not make a choice. The payoffs do not depend on the result of the

coin flip.

5. If the first mover [[team]] chooses In, the second mover [[team members vote for]]

chooses an action in the two payoff tables below. After all members of both teams

have voted in their turn, the outcome of the coin flip of HEADs or TAILs and each

team’s choice will determine the payoffs.
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6. Match 2 

We have reached the end of match 1 and match 2 will now begin. The rules and procedures used in this 
match are exactly the same as in the first match. However, the payoffs are now different. The new payoff 
tables are pasted at the bottom of this page, below the instructions summary. 
 
Summary of instructions 

1. At the beginning of the experiment, you will be randomly assigned to one of two types: First mover or 
Second mover. Once you become a first mover or a second mover, your type will remain fixed throughout 
the entire experiment. 
2. Each of the 4 matches has 10 rounds 
3. At the beginning of each round, you will be randomly paired with a subject of the other type. In each 
round, when it is your turn, your will choose an action.  
4. If the first mover chooses OUT, the round is over and the second mover does not make a choice. The 
payoffs do not depend on the result of the coin flip. 
5. If the first mover chooses In, the second mover chooses an action in the two payoff tables below. After 
all members of both teams have voted in their turn, the outcome of the coin flip of HEADs or TAILs and 
each team’s choice will determine the payoffs.  
 

 

 

  Figure 12: Match 2 payoffs

[After 10 rounds, the experiment is paused and the experimenter reads the following

script to announce the change of payoffs for Match 3.]

55



Match 3

We have reached the end of match 2 and match 3 will now begin. The rules and procedures

used in this match are exactly the same as in the previous match. However, the payoffs are

now different. The new payoff tables are pasted at the bottom of this page, below the

instructions summary.

Summary of instructions

1. At the beginning of the experiment, you will be randomly assigned to one of two types:

First mover or Second mover. Once you become a first mover or a second mover, your

type will remain fixed throughout the entire experiment.

2. Each of the 4 matches has 10 rounds.

3. At the beginning of each round, you will be randomly paired with a subject of the

other type. In each round, when it is your turn, your will choose an action. [[At the

beginning of each round, you will be randomly sorted into a team of subjects with the

same type, and your team will be randomly paired with another team of the other type.

In each round, when it is your team’s turn to move, your team will make a collective

decision to choose an action.]]

4. If the first mover [[team]] chooses OUT, the round is over and the second mover does

[[team member do]] not make a choice. The payoffs do not depend on the result of the

coin flip.

5. If the first mover [[team]] chooses In, the second mover [[team members vote for]]

chooses an action in the two payoff tables below. After all members of both teams

have voted in their turn, the outcome of the coin flip of HEADs or TAILs and each

team’s choice will determine the payoffs.
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7. Match 3 

We have reached the end of match 2 and match 3 will now begin. The rules and procedures used in this 
match are exactly the same as in the previous match. However, the payoffs are now different. The new 
payoff tables are pasted at the bottom of this page, below the instructions summary. 
 
Summary of instructions 

1. At the beginning of the experiment, you will be randomly assigned to one of two types: First mover or 
Second mover. Once you become a first mover or a second mover, your type will remain fixed throughout 
the entire experiment. 
2. Each of the 4 matches has 10 rounds 
3. At the beginning of each round, you will be randomly paired with a subject of the other type. In each 
round, when it is your turn, your will choose an action.  
4. If the first mover chooses OUT, the round is over and the second mover does not make a choice. The 
payoffs do not depend on the result of the coin flip. 
5. If the first mover chooses In, the second mover chooses an action in the two payoff tables below. After 
all members of both teams have voted in their turn, the outcome of the coin flip of HEADs or TAILs and 
each team’s choice will determine the payoffs.  
 

  

Figure 13: Match 3 payoffs

[After 10 rounds, the experiment is paused and the experimenter reads the following

script to announce the change of payoffs for Match 4.]
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Match 4

We have reached the end of match 3 and match 4 will now begin. The rules and procedures

used in this match are exactly the same as in the previous match. However, the payoffs are

now different. The new payoff tables are pasted at the bottom of this page, below the

instructions summary.

Summary of instructions

1. At the beginning of the experiment, you will be randomly assigned to one of two types:

First mover or Second mover. Once you become a first mover or a second mover, your

type will remain fixed throughout the entire experiment.

2. Each of the 4 matches has 10 rounds.

3. At the beginning of each round, you will be randomly paired with a subject of the

other type. In each round, when it is your turn, your will choose an action. [[At the

beginning of each round, you will be randomly sorted into a team of subjects with the

same type, and your team will be randomly paired with another team of the other type.

In each round, when it is your team’s turn to move, your team will make a collective

decision to choose an action.]]

4. If the first mover [[team]] chooses OUT, the round is over and the second mover does

[[team member do]] not make a choice. The payoffs do not depend on the result of the

coin flip.

5. If the first mover [[team]] chooses In, the second mover [[team members vote for]]

chooses an action in the two payoff tables below. After all members of both teams

have voted in their turn, the outcome of the coin flip of HEADs or TAILs and each

team’s choice will determine the payoffs.
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8. Match 4 

We have reached the end of match 3 and match 4 will now begin. The rules and procedures used in this 
match are exactly the same as in the previous match. However, the payoffs are now different. The new 
payoff tables are pasted at the bottom of this page, below the instructions summary. 
 
Summary of instructions 

1. At the beginning of the experiment, you will be randomly assigned to one of two types: First mover or 
Second mover. Once you become a first mover or a second mover, your type will remain fixed throughout 
the entire experiment. 
2. Each of the 4 matches has 10 rounds 
3. At the beginning of each round, you will be randomly paired with a subject of the other type. In each 
round, when it is your turn, your will choose an action.  
4. If the first mover chooses OUT, the round is over and the second mover does not make a choice. The 
payoffs do not depend on the result of the coin flip. 
5. If the first mover chooses In, the second mover chooses an action in the two payoff tables below. After 
all members of both teams have voted in their turn, the outcome of the coin flip of HEADs or TAILs and 
each team’s choice will determine the payoffs.  
 

  

Figure 14: Match 4 payoffs

End of Experiment (Read after Match 4 ends): We have reached the end of match

4. Thank you for your participation. Please take your time to review your randomly payoff

on this screen. When you are ready, please click the confirm button and enter your Venmo

username on the next screen for payment. For security reasons, please close your browser

after entering your Venmo username. This concludes the experiment, thank you for your

participation.
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Screenshot slides

These are the slides referred to in the instructions and distributed as handouts to subjects for

the 1-1 sessions. The slides for the 5-5 sessions were similar, except for including the voting

outcomes of each team in the results screen and minor wording changes to be consistent with

teams instead of individuals.

Figure 15: Slide 1

Figure 16: Slide 2
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Figure 17: Slide 3

Figure 18: Slide 4
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Figure 19: Slide 5

Figure 20: Slide 6
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Figure 21: Slide 7

Figure 22: Slide 8
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