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Abstract

Machine tool vibrations in turning processes are analyzed by taking into account the nonlinearity of the cutting force characteris-
tics. Unstable limit cycles are computed for the governing nonlinear delay-differential equation in order to determine the bistable
technological parameter region where stable stationary cutting and large-amplitude machine tool vibrations coexist. Simple closed-
form formulas are derived for the amplitude of limit cycles and for the size of the bistable region considering a general cutting
force characteristics. The analytical results are determined by the method of averaging, which can be used to treat the nonlinearities
without their third-order approximation. The results are confirmed by numerical continuation and using Melnikov’s integral.
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1. Introduction

Understanding the dynamics of harmful machine tool vibra-
tions (chatter) during metal cutting has been of interest since
the 1950’s. Chatter produces noise, reduces the quality of the
machined surface, increases tool wear, and may even dam-
age the machine tool and/or the workpiece, hence it must be
avoided or suppressed. According to the works of Tobias [1]
and Tlusty [2], one main source of machine tool vibrations is
the so-called surface regeneration effect: the vibrations of the
tool are copied onto the machined surface during metal cutting,
which then excite the vibrations in the subsequent cut. This
leads to the regeneration of the waviness of the machined sur-
face during the consecutive cuts.

Since the actual vibrations depend on the vibrations recorded
on the surface at the previous cut, the dynamics of machine
tool chatter is described by delay-differential equations (DDEs).
Turning or drilling processes are typically described by au-
tonomous DDEs, while milling can be modeled by time-
periodic DDEs [3, 4, 5, 6, 7, 8, 9, 10]. In what follows, we
restrict ourselves to autonomous equations. The DDEs gov-
erning machine tool chatter are typically nonlinear, since the
cutting force is a nonlinear function of the chip thickness [7].

Machine tool vibrations can be explained by the instability
of the stationary solution (equilibrium) of the nonlinear (au-
tonomous) DDE. The (in)stability is conventionally illustrated
in stability lobe diagrams. These are depicted in the plane of the
most important technological parameters – the spindle speed

∗Corresponding author
Email addresses: molnar@mm.bme.hu (Tamas G. Molnar ),

insperger@mm.bme.hu (Tamas Insperger), stepan@mm.bme.hu (Gabor
Stepan)

and the depth or the width of cut – and distinguish the regions
associated with stable machining from those of machine tool
chatter. When chatter occurs, the stability of stationary cut-
ting (the equilibrium) is lost via Hopf bifurcation. According
to [11, 12, 13, 14], the Hopf bifurcation is typically subcrit-
ical and gives rise to an unstable periodic orbit (limit cycle)
in the vicinity of the linearly stable equilibrium. Therefore,
there exists a region of bistability [15, 14, 16, 17, 18, 19] where
the basin of attraction of the linearly stable equilibrium does
not cover the whole phase space and chatter occurs to large
enough perturbations. Here, stable stationary cutting coexists
with large-amplitude chatter, hence this region is unsafe and
preferably must be avoided.

In this paper, we focus on computing the limit cycle and the
bistable technological parameter region for turning processes.
Since the phase space of DDEs is infinite dimensional [20],
such analysis is nontrivial, although there exist several analyt-
ical approaches to compute limit cycles for nonlinear DDEs.
The two most popular methods are center manifold reduc-
tion [21, 22, 23, 24, 25] and the method of multiple scales [26],
but there exist several other approaches such as the method of
small parameters [26, 27], harmonic balance [16, 28], or Mel-
nikov’s integral [29]. For orthogonal cutting models, center
manifold reduction is discussed in [11, 12, 13, 14], while the
method of multiple scales is presented in [30, 31, 32]. These
analyses are typically restricted to a cubic approximation of the
nonlinearity, since higher-order terms lead to extremely long
and difficult expressions.

In this paper, we use the method of averaging [33, 34, 35,
36, 37, 38, 39, 40, 41] to compute the periodic orbit. This
method can easily be employed for higher-order nonlinearities,
however, the analysis involves less rigorous derivations than the
center manifold reduction or the method of multiple scales. The
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Figure 1: Single-degree-of-freedom mechanical model of turning.

results obtained below are valid only if the periodic solution of
the nonlinear DDE is close to harmonic. We show that this con-
dition is satisfied for the most typical cutting force expressions.
Note that extensions of the averaging method to use explicitly
given non-harmonic periodic expressions also exist, see for ex-
ample [29, 42]. We also demonstrate that the same analysis
could be conducted alternatively by Melnikov’s integral, and
we verify the analytical results by numerical continuation.

The rest of the paper is organized as follows. The mechani-
cal model of turning processes with the governing DDE is pre-
sented in Sec. 2. Linear stability analysis and the phenomenon
of bistability are reviewed in Sec. 3 based on the existing litera-
ture. The method of averaging is used in Sec. 4 to derive simple
approximate analytical formulas for the amplitude of periodic
solutions in Sec. 5 and for the size of the bistable region in
Sec. 6. Discussion and comparison to other approaches are pre-
sented in Sec. 7.

2. Mechanical Model

Consider the mechanical model of turning processes shown
in Fig. 1. We assume that the workpiece is rigid, the tool is
compliant and its vibrations can be described by a single dom-
inant vibration mode that takes place along the feed direction.
The equation governing the tool’s motion is

q̈(t) + 2ζωnq̇(t) + ω2
nq(t) =

1
mq

Fq (h(t), a) , (1)

where mq is the modal mass, ωn is the undamped natural angu-
lar frequency and ζ is the damping ratio of the dominant vibra-
tion mode described by the generalized coordinate q.

Fq denotes the generalized force that is the q-directional
component of the cutting force acting on the tool. It is typi-
cally proportional to the chip width a and depends on the uncut
chip thickness h [7], see Fig. 2(a). This is expressed by

Fq(h, a) =

a fq(h) if h > 0 ,
0 if h ≤ 0 ,

(2)
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Figure 2: (a) Characteristics (2) of the cutting force; (b) illustration of the fly-
over effect; (c) models (3)-(7) of the specific cutting force [43].

where the specific cutting force fq(h) is a function of the uncut
chip thickness h. The case h ≤ 0 occurs if the tool jumps out of
the workpiece and loses contact with the material due to large-
amplitude vibrations. In such cases, the cutting force becomes
zero. This phenomenon is called flyover and is illustrated in
Fig. 2(b). In what follows, we restrict ourselves to cases where
the tool remains in contact with the workpiece during machin-
ing.

The relationship between the specific cutting force fq and
the uncut chip thickness h can be described by various mod-
els, see [43] and the references therein. The most widely ac-
cepted expressions are the linear (L) and shifted linear (SL)
functions [7], the power law (P) [44, 7], the cubic polyno-
mial (C) [15] and the exponential (E) cutting force character-
istics [45] that are given by

f L
q (h) = Kch , (3)

f SL
q (h) = Ke + Kch , (4)

f P
q (h) = Kνhν , (5)

f C
q (h) = ρ1h + ρ2h2 + ρ3h3 , (6)

f E
q (h) = b1h +

b2

b3
eb3h + b4 , (7)

respectively. Here, Ke,c, Kν, ν, ρ1,2,3, b1,2,3,4 are parameters
that can be obtained from experimental cutting force measure-
ments. The specific cutting force models (3)-(7) are illustrated
in Fig. 2(c). Now, we focus on the nonlinear expressions: we
analyze the power law (5), the cubic polynomial (6) and the
exponential function (7) in detail.

According to the theory of regenerative machine tool chat-
ter [1, 2], the instantaneous uncut chip thickness h(t) is deter-
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mined by the actual tool position q(t) and the position q(t−τ) of
the previous cut taking place one workpiece revolution before.
Therefore,

h(t) = h0 + q(t − τ) − q(t) , (8)

where h0 is the prescribed chip thickness (feed per revolution).
Parameter τ is called the regenerative delay. It is equal to the
rotational period and is related to the angular velocity Ω of the
workpiece by τ = 2π/Ω.

Equations (1), (2) and (8) form a nonlinear delay-differential
equation. This equation has a unique equilibrium q(t) ≡ q0 that
can be given in the form

q0 =
a fq(h0)

mqω
2
n
. (9)

The equilibrium describes the ideal (chatter-free) machin-
ing: stationary cutting with constant prescribed chip thickness
h(t) ≡ h0. The onset of machine tool chatter is associated with
the instability of the equilibrium. In order to analyze stability,
we introduce the dimensionless coordinate

x(t) =
q(t) − q0

h0
. (10)

We also use the dimensionless time t̃ = ωnt and the dimension-
less delay τ̃ = ωnτ. The derivative with respect to t̃ is indicated
by prime and satisfies ẋ(t) = ωnx′(t̃). After dropping the tildes,
we obtain

x′′(t) + 2ζx′(t) + x(t) =
a

mqω
2
n

fq(h(t)) − fq(h0)
h0

, (11)

where h(t) is given by Eq. (8) and can be expressed using coor-
dinate x via Eq. (10).

Now, we expand fq(h(t)) into Taylor series around h0:

fq(h(t)) =

∞∑
m=0

1
m!

f (m)
q (h0)hm

0 (x(t − τ) − x(t))m . (12)

Substitution of Eq. (12) into Eq. (11) yields the dimensionless
equation of motion in the form

x′′(t) + 2ζx′(t) + x(t) = w
∞∑

m=1

ηm(x(t − τ) − x(t))m , (13)

where the expressions of the dimensionless chip width w (that
is proportional to the actual chip width a) and the dimensionless
cutting force coefficients ηm read

w =
a f ′q(h0)

mqω
2
n
, (14)

ηm =
1

m!
f (m)
q (h0)
f ′q(h0)

hm−1
0 , m ∈ Z+ . (15)

Note that η1 = 1.

3. Linear Stability and Bistability

Via linear stability analysis [46], it can be shown that the
machining is stable for chip widths 0 < w < wH. The linear
stability boundaries can be obtained via D-subdivision [46] by
substituting the trial solution x(t) = Xeiωt, X ∈ C\{0} into the
linear part of Eq. (13), separating real and imaginary parts, and
solving

−ω2 + 1 + w (1 − cos(ωτ)) = 0 ,
2ζω + w sin(ωτ) = 0 ,

(16)

which leads to [46]

wH(ω) =

(
ω2 − 1

)2
+ 4ζ2ω2

2
(
ω2 − 1

) ,

τH(ω, j) =
2
ω

(
jπ − arctan

(
ω2 − 1
2ζω

))
,

ΩH(ω, j) =
2π

τH(ω, j)
.

(17)

Equation (17) defines a family of curves called stability lobes
with lobe number j ∈ N. The curves are parameterized by
ω ∈ (0,∞). The stability lobes are conventionally depicted in
the plane of the technological parameters such as the (dimen-
sionless) angular velocity Ω and the (dimensionless) chip width
w, which results in so-called stability lobe diagrams (or stabil-
ity charts) as shown in Fig. 3(a) for ζ = 0.02. Gray shading
indicates the linearly stable region 0 < w < wH that is associ-
ated with chatter-free cutting process. The stability charts help
manufacturing engineers in the selection of optimal technolog-
ical parameters where machine tool chatter is avoided and the
material removal rate (proportional to Ωw) is high.

Along the linear stability boundaries (17), Hopf bifurcation
occurs (as indicated by subscript H). The theory of Hopf bifur-
cation in delay-differential equations is covered by [21, 22, 23,
20, 24], while its analysis for turning processes can be found
in [11, 12, 13, 14]. According to [14], the Hopf bifurcation is
subcritical for the power law (5) and for the cubic cutting force
characteristics (6) with realistic parameters. The subcriticality
implies that the Hopf bifurcation gives rise to an unstable pe-
riodic orbit (unstable limit cycle) in the vicinity of the linearly
stable equilibrium. The approximate dimensionless angular fre-
quency of the limit cycle is ω ∈ (0,∞).

This phenomenon is illustrated qualitatively in Fig. 3(b)
where the phase portrait of Eq. (13) is depicted. Although the
phase space of Eq. (13) is infinite-dimensional, the trajectories
can still be illustrated using three coordinates: x, x′ and x∞,
where x∞ refers to the remaining infinite dimensions. Accord-
ing to Fig. 3(b), the basin of attraction of the linearly stable
equilibrium does not cover the whole phase space when the un-
stable limit cycle exists, thus the equilibrium is not stable in
the global sense. Depending on initial conditions and perturba-
tions (such as material inhomogeneity or external excitation),
the system may leave the basin of attraction and converge to
another stable solution. This solution is large-amplitude chatter
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Figure 3: (a) Stability lobe diagram of turning; (b) illustration of the trajectories near the unstable periodic orbit arising from Hopf bifurcation; (c) illustration of the
bistable region; (d) the corresponding bifurcation scenario; (e) the periodic orbit at loss of contact.

– an intermittent motion where the tool leaves and gets back
into the workpiece repeatedly [11, 12, 13, 47, 14, 48].

The parameter domain where stable stationary cutting and
large-amplitude chatter coexist due to the existence of an un-
stable periodic orbit is referred to as region of bistability (or
unsafe zone). It is important to emphasize that the phenomenon
of bistability is caused by the nonlinearity in the system. If a
linear cutting force characteristics (i.e. ηm = 0 for m ≥ 2) was
considered in Eq. (13), then the bistable region would disap-
pear. However, the existence of the bistable region was verified
experimentally in [12, 49, 16, 43], while its numerical analy-
sis for milling was published in [19]. From practical point of
view, bistability should be avoided, since chatter may occur de-
spite linear stability if the cutting process is perturbed as illus-
trated in Fig. 3(b). The bistable region is shown qualitatively in
Fig. 3(c) with dark grey shading. Light grey shading indicates
the globally stable region, where the cutting process is safe and
no machine tool vibrations evolve.

The corresponding bifurcation scenario is discussed in [48]
in detail and is illustrated in Fig. 3(d). The bifurcation param-
eter is chosen to be the dimensionless chip width w, while the
dimensionless angular velocity Ω = ΩH is fixed (see the dashed
line in Fig. 3(c)). As shown by Fig. 3(d), the amplitude r of
the unstable limit cycle born from Hopf bifurcation increases

with decreasing bifurcation parameter. At the critical ampli-
tude rloss, the (unstable) oscillations get so large that the tool
loses contact with the workpiece as illustrated in Fig. 1(b). In
such cases, the chip thickness drops to zero and to negative val-
ues (h(t) ≤ 0) that is associated with nonsmoothness in the cut-
ting force characteristics (2) and with nonsmooth dynamics: the
governing equation switches from a delay-differential equation
to an ordinary differential equation. The unstable periodic orbit
corresponding to rloss is illustrated in Fig. 3(e).

According to [48], the unstable periodic orbit undergoes a
special nonsmooth fold bifurcation (called Big Bang bifurca-
tion) at rloss. The nonsmooth fold gives rise to a large-amplitude
stable solution that corresponds to machine tool chatter, which
may be a periodic or chaotic motion that is stable in the dy-
namical sense [48]. Thus, the linearly stable equilibrium coex-
ists with the large-amplitude stable solution between the Hopf
bifurcation point w = wH and the Big Bang bifurcation point
w = wBB, see Fig. 3(d). The bistable region is wH < w < wBB,
and its boundary w = wBB can be obtained by locating the point
where the unstable periodic solution first satisfies the condition
h(t) = 0 associated with loss of contact, cf. Fig. 3(e).

The rest of the paper deals with the computation of the un-
stable limit cycle and the bistable region. In [11, 12, 13, 14],
approximate analytical formulas were given for the bistable re-
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gion. These analyses used a cubic (expansion of the) cutting
force characteristics and were valid in the vicinity of Hopf bi-
furcation only. Thus, the formulas for the bistable region are
inaccurate in some cases (for large bistable regions or in the
presence of higher-order nonlinearities). The rest of the pa-
per is devoted to extending these results by the derivation of
more accurate analytical formulas for the bistable region while
considering higher-order nonlinearities. A similar effort can be
found in [16] for the power law (5) – now we consider a general
cutting force characteristics.

4. Method of Averaging

In order to compute the bistable region, the amplitude of
the unstable limit cycle must be determined. In what follows,
we use the Krylov-Bogoliubov-Mitropolsky method of averag-
ing [33] to find the amplitude. The key point of the analysis is
the approximation of the limit cycle by its first harmonic. At
Hopf bifurcation (w = wH), the linear part of Eq. (13) indeed
has harmonic solution. The linear part reads

x′′(t) + 2ζx′(t) + x(t) = wH (x(t − τ) − x(t)) , (18)

whereas its solution can be given in the form

x(t) = r cos(ωt + ϕ) ,
x′(t) = −rω sin(ωt + ϕ) ,

(19)

where the amplitude r and the phase ϕ depend on initial condi-
tions. The solution of the nonlinear system (13) is sought for in
the same form as in Eq. (19), but with time-dependent ampli-
tude r̂(t) and phase ϕ̂(t):

x(t) = r̂(t) cos(ωt + ϕ̂(t)) ,
x′(t) = −r̂(t)ω sin(ωt + ϕ̂(t)) .

(20)

The constant approximation of r̂(t) and ϕ̂(t) implies the har-
monic approximation of the limit cycle. Thus first, we trans-
form Eq. (13) and express it in terms of r̂(t) and ϕ̂(t). Then, we
search for constant (approximate) solutions.

By multiplying the left-hand side of the expressions in
Eq. (20) by cos(ωt + ϕ̂(t)) and − sin(ωt + ϕ̂(t))/ω, respectively,
and by adding them, we get the amplitude as

r̂(t) = x(t) cos(ωt + ϕ̂(t)) − x′(t)
1
ω

sin(ωt + ϕ̂(t)) , (21)

while the following identity can also be obtained in a similar
manner:

0 ≡ x(t) sin(ωt + ϕ̂(t)) + x′(t)
1
ω

cos(ωt + ϕ̂(t)) . (22)

Differentiation of Eq. (21) with respect to time and using
Eqs. (13) and (22) yields the Lie derivative of the amplitude
r̂(t) in the form

r̂′(t) = −
1
ω

(
ω2x(t) − 2ζx′(t) − x(t)

+ w
∞∑

m=1

ηm (x(t − τ) − x(t))m
)

sin(ωt + ϕ̂(t)) . (23)

Similarly, the Lie derivative of the phase ϕ̂(t) can be expressed
via differentiation of Eq. (22) and using Eqs. (13) and (21),
which gives

ϕ̂′(t) =
1

ωr̂(t)

(
ω2x(t) − 2ζx′(t) − x(t)

+ w
∞∑

m=1

ηm (x(t − τ) − x(t))m
)

cos(ωt + ϕ̂(t)) . (24)

From this point on, Eq. (23) is considered only to calculate the
bistable region from the amplitude of the limit cycle.

Now, we make the main assumption of the subsequent anal-
ysis. We suppose that the amplitude r̂(t) and the phase ϕ̂(t)
vary slowly in time (which is reasonable as we seek for their
constant approximation). Note that this can also be considered
as a multiple scales assumption. The slow variation implies
r̂(t − τ) ≈ r̂(t) and ϕ̂(t − τ) ≈ ϕ̂(t). Then, the chip thickness
variation x(t − τ) − x(t) in Eq. (23) can be approximated using
Eq. (20) as

x(t − τ) − x(t) ≈ r̂(t)

√
4 sin2

(
ωτ

2

)
cos(ωt + ϕ̂(t) + ψ) , (25)

where ψ is a phase shift satisfying

sinψ = −
sin(ωτ)√
4 sin2

(
ωτ

2

) . (26)

Substituting Eqs. (20) and (25) into Eq. (23) leads to the differ-
ential equation for r̂(t) in the form

r̂′(t) = −2ζ r̂(t) sin2(ωt + ϕ̂(t))

+

(
1
ω
− ω

)
r̂(t) cos(ωt + ϕ̂(t)) sin(ωt + ϕ̂(t))

−
1
ω

w
∞∑

m=1

ηmrm(t)
(
4 sin2

(
ωτ

2

))m/2

× cosm(ωt + ϕ̂(t) + ψ) sin(ωt + ϕ̂(t)) . (27)

Notice that Eq. (27) is a nonautonomous ordinary differential
equation that does not involve time delay anymore.

Now, the method of averaging is applied to Eq. (27). The the-
oretical background and examples for this method can be found
in [33, 34, 35, 36, 37, 38, 39, 40, 41]. Equation (27) is averaged
by integrating both sides from 0 to 2π/ω with respect to t while
considering r̂ and ϕ̂ time-independent. Multiplying the result-
ing equation by ω/(2π), the averaged system is obtained in the
form

r′(t) = −ζr(t) −
w

2πω

∞∑
m=1

ηmrm(t)
(
4 sin2

(
ωτ

2

))m/2
βm , (28)

where r is the averaged amplitude and βm is defined by

βm =

∫ 2π/ω

0
cosm(ωt + ψ) sin(ωt)ωdt , m ∈ Z+ . (29)
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Note that the phase ϕ̂ is omitted in βm, since a phase shift does
not modify the integral of a periodic function over its time pe-
riod. The expression of βm can be simplified to

β2k−1 = −
π sinψ
4k−1

(
2k − 1

k

)
, β2k = 0 , k ∈ Z+ . (30)

5. Amplitude of the Limit Cycle

Consider the constant approximation r̂(t) ≈ r(t) ≈ r of the
amplitude that corresponds to the harmonic approximation of
the limit cycle. Substitution of r(t) ≡ r and Eq. (30) into
Eq. (28) gives

− ζr +
w

2πω

∞∑
k=1

η2k−1r2k−1

×

(
4 sin2

(
ωτ

2

))(2k−1)/2 π sinψ
4k−1

(
2k − 1

k

)
= 0 . (31)

Now, we substitute ζ from Eq. (16), we use Eq. (26) and divide
by r sin(ωτ)/(2ω) , 0. These yield

wH − w
∞∑

k=1

(
2k − 1

k

)
η2k−1

(
r2 sin2

(
ωτ

2

))k−1
= 0 . (32)

The calculation of the approximate amplitude r of the peri-
odic orbit is reduced to finding a positive real root of the poly-
nomial in Eq. (32). If the nonlinearity in Eq. (13) is a polyno-
mial of low order, then Eq. (32) can be solved analytically for
r2 sin2(ωτ/2) to obtain r. The cubic cutting force characteris-
tics (6), that is, ηm = 0 for m ≥ 4 leads to

r3rd(w) =

√√√
−

w − wH

3η3 sin2
(
ωτ

2

)
w
. (33)

For quintic nonlinearity (ηm = 0 for m ≥ 6), Eq. (32) gives

r5th(w) =

√√√√√√√√−3η3w +

√
9η2

3w2 − 40η5w(w − wH)

20η5 sin2
(
ωτ

2

)
w

. (34)

In a similar manner, Eq. (32) can be solved analytically by
computer algebra for 7th, 9th and 11th-order nonlinearities as
well, but the resulting formulas are too long to be listed here.
Above 11th order and for complete Taylor series, Eq. (32) can
be solved numerically for the amplitude.

The amplitude r of the limit cycle as a function of the dimen-
sionless chip width w is shown in Fig. 4(b). Here, the damping
ratio is ζ = 0.02 and the bifurcation diagrams are computed
for Ω = 0.77486 (i.e., j = 2, ω = 1.1903) as indicated by the
dashed line in the corresponding stability chart in Fig. 4(a). The
exponential cutting force characteristics (5) is considered with
feed per revolution h0 = 0.05 mm. The cutting coefficients
are b1 = 176 N/mm2, b2 = 4386 N/mm3, b3 = −129 1/mm,
b4 = 0, which were identified in [50] for milling aluminum with
four cutting teeth. In order to show the effect of higher-order

nonlinear terms, the nonlinearity in Eq. (13) is truncated after
the 3rd, 5th, 7th, 9th and 11th-order terms as shown by purple,
blue, green, orange and red colors, respectively. The analytical
bifurcation diagrams obtained from Eq. (32) are indicated by
solid lines. The amplitude corresponding to the full nonlinear
term in Eq. (13) is shown by black color. This black curve was
obtained by simplifying the sum in Eq. (32) to a closed-form
expression via computer algebra and by creating a contour plot
based on Eq. (32) afterwards.

The analytical results were verified by numerical continua-
tion using DDE-Biftool [51]. The numerical bifurcation dia-
grams showing half of the peak-to-peak amplitude of the limit
cycle are indicated by dashed lines with the same color scheme
as that of their analytical counterparts. The analytical and nu-
merical results agree well, the solid and dashed branches over-
lap. This justifies that the periodic solution of Eq. (13) is indeed
nearly harmonic.

6. Region of Bistability

Expressions for the amplitude of the limit cycle allow the cal-
culation of the bistable region. Figure 4(b) shows that higher-
order nonlinearities have significant effect on the amplitude and
hence on the size of the bistable region. Thus, we extend the
results of [14] and derive formulas for the size of the bistable
region by taking into account the full nonlinear term in Eq. (13).

According to [48], the boundary w = wBB of the bistable re-
gion is located where the amplitude of the unstable periodic
oscillations gets so large that the flyover shown in Fig. 1(b)
takes place. This happens when the chip thickness drops
to zero. The chip thickness h(t) can be expressed using
Eqs. (8), (10) and (25). Then, substitution of r̂(t) ≈ r and
cos(ωt + ϕ̂(t) + ψ) = −1 into h(t) = 0 gives the smallest am-
plitude rloss where loss of contact takes place in the form

rloss =
1√

4 sin2
(
ωτ

2

) . (35)

Note that the bifurcation diagrams in Fig. 4(b) are valid for
0 ≤ r ≤ rloss only (where rloss = 0.503 in this example).

When the chip width is decreased to w = wBB, the ampli-
tude of the unstable limit cycle becomes rloss. Thus, loss of
contact takes place and the boundary of the bistable region is
reached. After substitution of w = wBB, r = rloss and Eq. (35)
into Eq. (32), the boundary of the bistable region becomes

wBB = wH

 ∞∑
k=1

1
4k−1

(
2k − 1

k

)
η2k−1

−1

. (36)

The size of the bistable region can be compared to the size of
the linearly stable region by introducing the ratio

Rbist =
wH − wBB

wH
(37)
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Figure 4: (a) Stability chart of the turning model (13); (b) bifurcation diagrams for different orders of nonlinearity. Solid lines indicate analytical results obtained
from Eq. (32), dashed lines show the results of numerical continuation by DDE-Biftool.

that can be expressed as

Rbist = 1 −

 ∞∑
k=1

1
4k−1

(
2k − 1

k

)
η2k−1

−1

= 1 −
(
1 +

3
4
η3 +

10
16
η5 +

35
64
η7 +

126
256

η9 + . . .

)−1

. (38)

Note that the approximate size Rbist of the bistable region is in-
dependent of the location of the Hopf bifurcation point (i.e.,
independent of ω or Ω). Besides, recall that the bistable region
disappears for a linear cutting force characteristics. Accord-
ingly, Eq. (38) shows that Rbist = 0 if ηm = 0 for m ≥ 2.

For the power law cutting force characteristics (5), substitu-
tion of Eq. (15) into Eq. (38) and simplification give

Rbist = 1 −
√
πΓ(ν + 2)

2ν+1Γ
(
ν + 1

2

) , (39)

where Γ denotes the Euler gamma function. For the cubic cut-
ting force characteristics (6), the resulting expression is

Rbist =
3ρ3h2

0

4ρ1 + 8ρ2h0 + 15ρ3h2
0

. (40)

In the case of the exponential cutting force characteristics (7),
the size of the bistable region becomes

Rbist = 1 −
b1h0 + b2h0eb3h0

b1h0 + 2
b2

b3
eb3h0 I1(b3h0)

, (41)

where I1 is the modified Bessel function of the first kind.
Using formulas (38)-(41), the bistable region can be com-

puted analytically as shown by the solid lines in Fig. 4(a). Here,
the same color scheme is used as in Fig. 4(b), and the analyti-
cal results were again verified by numerical continuation with
DDE-Biftool, see the overlapping dashed lines. In what fol-
lows, we evaluate formulas (39)-(41) and compare them to ex-
isting results in the literature.

7. Results and Discussion

It must be mentioned that formula (39) associated with the
power law cutting force characteristics (5) was already derived
by Tamás Kalmár-Nagy in [16] and also by Pankaj Wahi ac-
cording to personal communications [52]. In their works an
equivalent approach, the method of harmonic balance was used.
Equation (39) shows that, for the power law, the size of the
bistable region depends on the cutting exponent ν only. As-
suming ν = 3/4 (i.e., the well-known three-quarter rule), the
bistable region occupies 6.5% of the linearly stable region. That
is, the bistable region is small independently of any technologi-
cal parameters. For other cutting force characteristics (that were
not discussed in [16]), the bistable region is more significant
and an accurate closed-form formula for its prediction becomes
more relevant. Formula (38) introduced in this paper is valid
for any cutting force characteristics.

For the cubic polynomial (6) and the exponential cutting
force characteristics (7), the bistable region depends on the feed
h0 per revolution according to Eqs. (40) and (41). Thus, the
bistable region may be significantly larger than 6.5% of the lin-
early stable region, which was also confirmed by experiments
with large feed rates in [43]. The size of the bistable region
is plotted against the feed h0 per revolution in Fig. 5 for the
power law (green), the cubic polynomial (blue), and the ex-
ponential characteristics (red). The cutting force parameters
are ν = 3/4 for the power law, ρ1 = 6.1096 × 103 N/mm2,
ρ2 = −5.41416 × 104 N/mm3, ρ3 = 2.03769 × 105 N/mm4

for the cubic polynomial (that were identified experimentally
in [15] for a milling tool of four teeth), and b1 = 176 N/mm2,
b2 = 4386 N/mm3, b3 = −129 1/mm, b4 = 0 for the expo-
nential function (the same as in Fig. 4). For the cubic and the
exponential cutting force expressions, the bistable region be-
comes significant: it occupies about 50% of the linearly stable
region at certain critical feed per revolutions.

This justifies the relevance of considering other cutting force
characteristics than the power law. To the best knowledge of the
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Figure 5: The size of the bistable region as a function of the feed per revolution
for various cutting force characteristics.

authors, the exponential cutting force expression has not been
analyzed previously from nonlinear dynamics point of view. On
the other hand, the cubic characteristics has been studied exten-
sively in the literature. Cubic nonlinearities and bistability in
orthogonal cutting were first discussed in [15] via the method
of harmonic balance without deriving closed-form formulas for
the bistable region. Later, it was analyzed by center manifold
reduction in [11, 12, 13, 14] and by the method of multiple
scales in [30, 31, 32]. In [14], it was shown that the size of
the bistable region occupies approximately 3/4η3 portion of the
linearly stable region. These analyses, however, are valid in
the vicinity of the Hopf bifurcation only. Farther away, the re-
sults become inaccurate and cannot predict the size of a large
bistable region accurately (an overestimation by a factor of 2
was reported in [14] at critical feed per revolutions).

In [53], a higher-order estimation for the amplitude of limit
cycles was introduced, which is still valid farther from the Hopf
bifurcation. This way, the results of [11, 14] could be refined
and larger bistable regions could also be predicted accurately.
This method is based on center manifold reduction and uses
the property limw→0 r = ∞ of the limit cycle (that is also
captured by Eqs. (32), (33) and (34)). This approach gives
3/4η3/(1 + 3/4η3) for the size of the bistable region, which
is the same that obtained by averaging, see the truncation of
Eq. (38) for cubic nonlinearity.

The method of averaging is not restricted to the cubic ap-
proximation of the cutting force characteristics but can be ap-
plied to higher-order nonlinearities as well. It should be men-
tioned, however, that the coefficients of higher-order terms are
more uncertain and harder-to-measure from engineering point
of view. In the meantime, the experimentally determined size
of the bistable zone can be used well for the identification of
these higher-order terms by applying the results in an inverse
way as shown in [43]. Consideration of higher-order terms is
theoretically possible by center manifold reduction and by the
method of multiple scales, too, but the calculations become un-
manageably complicated.

Note that the approximate solution (20) obtained by the

method of averaging has a certain error and timescale of va-
lidity. In order to investigate this error and timescale, let us
rewrite Eq. (13) in the form

x′′(t) + 2ζx′(t) + x(t) − wH (x(t − τ) − x(t))

= ε

x(t − τ) − x(t) +
w

w − wH

∞∑
m=2

ηm(x(t − τ) − x(t))m

 (42)

with ε = w − wH. This form satisfies that for ε = 0 Eq. (42) has
the harmonic solution of the form (19). Thus, form (42) reveals
that, for ε , 0, solution (20) has a timescale of validity 1/ε and
is accurate with error O(ε) [40]. Here, the timescale of validity
is not of importance, because it is associated with the accuracy
of the phase ϕ̂(t). Since the amplitude of the unstable limit cycle
was required only to obtain the bistable region, the phase was
not even determined and its accuracy is irrelevant from practical
point of view. As for the amplitude, its error turned out to be
practically negligible, see Fig. 4.

Apart from the method of averaging, the amplitude (32) of
the limit cycle and the bistable region can also be derived us-
ing Melnikov’s integral. This method serves equivalent results
to averaging, which is shown in the Appendix for the sake of
completeness. The method of averaging and Melnikov’s inte-
gral serve rigorous results with the possibility of giving error
estimates for the obtained approximate solutions.

In summary, the method of averaging provides simple
closed-form formulas for the size of the bistable region in metal
cutting even in the presence of higher-order nonlinearities. Nu-
merical continuation confirmed the accuracy of the analytical
results even at critical feed per revolutions where the bistable
region is large. Although the key point of the analysis is the
harmonic approximation of the limit cycle, the nonlinearity was
expanded into Taylor series as in center manifold reduction.
However, it is not necessary to truncate the series after finitely
many terms: it is possible to obtain the size of the bistable
region analytically for a complete Taylor series as well, see
Eqs. (39) and (41). The amplitude of the limit cycle can be de-
termined analytically for up to 11th-order nonlinearity and nu-
merically for any order using Eq. (32). Whereas the result (38)
for the size of the bistable region is analytical for any order of
nonlinearity, and this result is relevant from practical point of
view.

Acknowledgements

This work has been supported by the ÚNKP-16-3-I. New
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Appendix A. Solution by Melnikov’s Integral

Finally, we show that Eq. (32) for the approximate amplitude
of the limit cycle can also be obtained using Melnikov’s inte-
gral. This method is discussed in [42] in detail, and its core idea
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is decomposing the dynamical system to a Hamiltonian system
and a perturbation. The unperturbed Hamiltonian system is of
form

x′1(t) =
∂H
∂x2

(t) ,

x′2(t) = −
∂H
∂x1

(t) ,
(A.1)

where the Hamiltonian H is constant along the trajec-
tories of the system, since its Lie derivative is zero:
H′(t) = ∂H

∂x1
(t)x′1(t) + ∂H

∂x2
(t)x′2(t) ≡ 0. For Eq. (13), the unper-

turbed Hamiltonian system is given by Eq. (18), thus with
x1(t) = x(t) and x2(t) = x′(t) the Hamiltonian becomes

H(t) =
x2

1(t)ω2

2
+

x2
2(t)
2

. (A.2)

The solution of the unperturbed system is given by Eq. (19)
and the corresponding trajectories are closed curves in the plane
(x1, x2). According to [42], one of these closed trajectories is
preserved as a limit cycle in the perturbed nonlinear system,
which, in some sense, conserves the property that H is constant
along the closed trajectory.

The perturbed system can be given in the form

x′1(t) =
∂H
∂x2

(t) + g1(t) ,

x′2(t) = −
∂H
∂x1

(t) + g2(t) ,
(A.3)

where the perturbation is

g1(t) = 0 ,

g2(t) = (w − wH)∆x1(t) + w
∞∑

m=2

ηm∆xm
1 (t)

(A.4)

with ∆x1(t) = x1(t − τ) − x1(t), see Eq. (13). In this per-
turbed system, the Lie derivative of the associated Hamiltonian
is H′(t) = ∂H

∂x1
(t)x′1(t) + ∂H

∂x2
(t)x′2(t) = g2(t)x′1(t) − g1(t)x′2(t). Ac-

cording to [42], the condition for a closed trajectory of the un-
perturbed system (that satisfies H(t) = const) to be preserved in
the perturbed system is given by Melnikov’s integral:∮

L

(
g2(t)x′1(t) − g1(t)x′2(t)

)
dt = 0 , (A.5)

where L denotes the closed trajectory of the perturbed system
(i.e., the limit cycle).

Substitution of Eq. (A.4) yields∮
L

(w − wH)∆x1(t) + w
∞∑

m=2

ηm∆xm
1 (t)

 x′1(t)dt = 0 . (A.6)

Now, we approximate the limit cycle L by the corresponding
trajectory of the unperturbed system: we substitute the har-
monic solution (19) into Eq. (A.6) and carry out the integration
over [0, 2π/ω]. We obtain

− (w − wH)r2

√
4 sin2

(
ωτ

2

)
β1

− wr
∞∑

m=2

ηmrm
(
4 sin2

(
ωτ

2

))m/2
βm = 0 , (A.7)

where βm is defined by Eq. (29). Substituting the simplified ex-
pression (30) of βm, Eq. (A.7) becomes equivalent to Eq. (32)
obtained by the method of averaging. Consequently, Eq. (32)
and all the subsequent equations can alternatively be derived
using Melnikov’s integral, while Figs. 4 and 5 can also be ob-
tained by this method.
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