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On the robust stabilizability of unstable
systems with feedback delay by finite
spectrum assignment

Tamas G Molnar and Tamas Insperger

Abstract

An application of the finite spectrum assignment (FSA) control technique is presented for unstable systems with feedback

delay. The FSA controller predicts the actual state of the system over the delay period using an internal model of the real

system. If the internal model is perfectly accurate then the feedback delay can be compensated. However, parameter

mismatches of the internal model or implementation inaccuracies of the control law may result in an unstable control

process. In this paper, the stabilizability of an undamped second-order system is analyzed for different system and delay

parameter mismatches. Theoretical stability and robustness to implementation inaccuracies of the control law are

discussed. It is shown that, for small parameter uncertainties, the FSA controller allows stabilization for significantly

larger feedback delays than conventional delayed proportional-derivative-acceleration controllers do.
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1. Introduction

Control of unstable systems with feedback delay is a
challenging task in engineering and science (Stepan,
1989; Michiels and Niculescu, 2007). Time delay is usu-
ally considered to be a source of unstable behavior,
which should be eliminated from the control system.
Car-following-traffic models (Orosz et al., 2009),
crane payload stabilization (Masoud et al., 2003;
Erneux and Kalmar-Nagy, 2007), control of machine
tool chatter (Lehotzky and Insperger, 2012; Munoa
et al., 2013; Lehotzky et al., 2014) and digital position
control (Stepan, 2001; Habib et al., 2014) are examples
of practical applications. Stability analysis of time-
delayed systems is therefore highly important in engin-
eering. In recent years, several numerical techniques
have been developed for the stability analysis of
delayed systems, such as the semi-discretization
method (Insperger and Stepan, 2011), the continuous
time approximation (Sun, 2009; Zhang and Sun, 2014),
the pseudospectral collocation method (Breda
et al., 2012), the Liapunov–Floquet transformation
(Bobrenkov et al., 2013), the approach of Lambert W
functions (Duan et al., 2012), the cluster treatment
method (Olgac and Sipahi, 2002), the method of

harmonic balance (Liu and Kalmar-Nagy, 2010), the
subspace iteration technique (Zatarain and
Dombovari, 2014) and the extended multi-frequency
solution (Bachrathy and Stepan, 2013).

An effective way to compensate for the destabilizing
effect of feedback delays is the application of model
predictive controllers such as the celebrated Smith pre-
dictor (Smith, 1957) and its modifications (Palmor,
2000), the prediction based on optimal control
(Kleinman, 1969), the finite spectrum assignment
(Manitius and Olbrot, 1979; Wang et al., 1999;
Jankovic, 2009), the reduction approach (Arstein,
1982) and the predictive pole-placement control
(Gawthrop and Ronco, 2002). The main idea behind
model predictive controllers is that the feedback delay
is eliminated from the control loop using a prediction
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of the actual state, based on an internal model of the
plant. It is known that optimum prediction for a system
with input delay is obtained by solving the system equa-
tions over the delay period (Kleinman, 1969; Manitius
and Olbrot, 1979). A detailed overview on time delay
compensation as a more general concept is given in the
book by Krstic (2009).

It is a general view that the original Smith predictor
is capable of compensating for the feedback delay for
stable open-loop systems only. It should be mentioned,
however, that in the case of a large mismatch between
the internal model and the real system, the Smith pre-
dictor can stabilize unstable open-loop plants, too
(Hajdu and Insperger, 2013).

In this paper, we investigate the delay compensation
technique called finite spectrum assignment (FSA) fol-
lowing Manitius and Olbrot (1979). The basic idea of
the FSA controller is that the state variables are pre-
dicted over the delay period using an internal model
with the delayed values of the state as the initial condi-
tions. If the internal model perfectly matches the real
system, there is no noise in the input information, and
the control law is implemented accurately, then the
FSA controller can completely eliminate the delay
from the control loop. A drawback of the FSA control-
ler is however that it is very sensitive to implementation
inaccuracies and to parameter uncertainties
(Engelborghs et al., 2001; Mondie et al., 2002;
Mondie and Michiels, 2003; Michiels et al., 2003).

The goal of this paper is to analyze the stabilizability
of systems with feedback delay by the FSA controller in
the case of internal model mismatches. Note that mod-
eling inaccuracies can also be interpreted as a multi-
plicative noise. An unstable undamped second-order
system is considered, which describes the behavior of
a pendulum around its vertically upward position. In
addition to being a paradigm in control theory (Sieber
and Krauskopf, 2005; Qin et al., 2014), stabilization of
the inverted pendulum with feedback delay is highly
important in understanding human balancing and
human motor control (Moss and Milton, 2003;
Maurer and Peterka, 2005; Milton et al., 2009; Loram
et al., 2011; Suzuki et al., 2012). It is known that a
traditional proportional-derivative (PD) controller
cannot stabilize an unstable system if the feedback
delay is larger than a critical value. The critical time
delay �crit, PD

� �
for an undamped pendulum-like

system can be given as

�crit, PD ¼
Tp

�
ffiffiffi
2
p ð1Þ

where Tp is the period of the small oscillations of the
same mechanical structure hanging at its downward
position (Stepan, 2009). For a proportional-

derivative-acceleration (PDA) controller, this critical
value can be given as

�crit, PDA ¼
Tp

�
ð2Þ

that is, �crit, PDA ¼
ffiffiffi
2
p

�crit, PD (Sieber and Krauskopf,
2005; Insperger et al., 2013). Theoretically, the FSA
controller can stabilize any unstable system for any
large feedback delay. The limitations are the parameter
uncertainties in the internal model, the noise in the sen-
sory input and the problems of the implementation of
the control law. In this paper, we analyze the effect of
the uncertainties in the internal model on the stabiliz-
ability of the system. The structure of the article is as
follows. First, the unstable second-order system sub-
jected to delayed PDA feedback is presented in
Section 2. Then the FSA controller is described with
special attention to its robustness to parameter mis-
matches and implementation inaccuracies in Section 3.
Section 4 presents the robust stability analysis of the
continuous-time unstable second-order system sub-
jected to the FSA controller. The corresponding digital
control system with sampled output and zero-order hold
is analyzed in Section 5. The effect of parameter uncer-
tainties on stabilizability are investigated in Section 6.
The results are concluded in Section 7.

2. Mathematical model and
PDA control

We consider a linear second-order system of the form

€’ðtÞ � a’ðtÞ ¼ �qðt� �Þ ð3Þ

where a is the system parameter, q is the control force
and � is the feedback delay. This equation describes the
well-known pendulum cart model, but many stabiliza-
tion problems can be reduced to this equation (Stepan,
2009). The state space model of the system reads

_xðtÞ ¼ AxðtÞ þ Buðt� �Þ ð4Þ

where

xðtÞ ¼
’ðtÞ

_’ðtÞ

� �
, A¼

0 1

a 0

� �
, B¼

0

1

� �
, uðtÞ ¼�qðtÞ

ð5Þ

In the case of a PDA controller, the control force
reads

qðtÞ ¼ kp’ðtÞ þ kd _’ðtÞ þ ka €’ðtÞ ð6Þ
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where kp, kd and ka are the proportional, derivative and
acceleration control gains. Equation (3) together with
the controller in equation (6) form a neutral functional
differential equation (NFDE), since the highest deriva-
tive (the acceleration term) appears with both actual
and delayed arguments. The characteristic equation of
the system reads

Dð�Þ ¼ �2 � aþ kpe
��� þ kd�e

��� þ ka�
2e��� ð7Þ

It is known that if jkaj4 1, then the system has infin-
itely many characteristic roots with positive real parts
(see Lemma 3.9 on p. 63 in Stepan (1989)). According
to the D-subdivision method, the equation Dði!Þ ¼ 0
gives the D-curves of the system in the form

kp ¼ a, kd 2 R, if ! ¼ 0 ð8Þ

kp ¼ ð!
2þ aÞcosð!�Þþka!

2, kd ¼
!2þ a

! sinð!�Þ
, if ! 6¼ 0

ð9Þ

Equation (8) corresponds to static loss of stability (a
single real characteristic exponent being equal to zero),
while equation (9) is associated with dynamic loss of
stability (a pair of complex characteristic exponents
with zero real part). The D-curves and the stability
chart of the system are shown in Figure 1. It is
known that for a given system parameter a, the
system cannot be stabilized if the feedback delay is
larger than the critical value �crit, PDA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ 2kaÞ=a

p
(Sieber and Krauskopf, 2005; Insperger et al., 2013).
Considering the criteria jkaj5 1, this gives

�crit, PDA ¼

ffiffiffi
4

a

r
ð10Þ

The case of the PD controller is obtained by setting
ka ¼ 0, which gives

�crit, PD ¼

ffiffiffi
2

a

r
ð11Þ

The same feature can be composed in an opposite way.
For a given feedback delay, the system cannot be sta-
bilized if the system parameter is larger than a critical
value given by

acrit, PDA ¼
4

�2
and acrit, PD ¼

2

�2
ð12Þ

3. Finite spectrum assignment

FSA is a predictive control method, which is supposed
to realize pole placement for systems with input delay
by using a control law that contains a distributed delay
term. Time delay compensation is achieved by means of
prediction and feedback of the predicted state. In the
ideal case, FSA allows the realization of a closed-loop
system that operates with a predefined dynamic
behavior.

Consider a system given in the form of equation (4).
In the course of prediction, the controlled system
should be described by a model equation, which is
called the internal model of the controller. This equa-
tion can be written in the form

_xðtÞ ¼ eAxðtÞ þeBuðt� ~�Þ ð13Þ

where eA, eB and ~� are the estimated system and input
matrices and the estimated feedback delay used by the
internal model. The predictor used by the FSA

Figure 1. Stability chart with the number of unstable characteristic exponents (NUE) for the system in equations (4)–(6) with � ¼ 1,

a ¼ 0:5 and ka ¼ 0:9 (gray: stable region).
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approach solves this equation with the initial value
xðt� ~�Þ and formally shifts the argument of the solu-
tion by ~�. This way the predicted state reads

xpðtþ ~�Þ ¼ e
eA ~�xðtÞ þ

Z 0

� ~�

e�
eA�eBuðtþ �Þd� ð14Þ

The controller uses this predicted state for the
feedback. Thus the control signal can be written in
the form

uðtÞ ¼ Ke
eA ~�xðtÞ þ K

Z 0

� ~�

e�
eA�eBuðtþ �Þd� ð15Þ

where K is the control matrix, which contains the con-
trol parameters. In the case of a second-order system
subjected to a PD controller, K ¼ ð�kp �kd Þ. The
control law in equation (13) is a linear Volterra equa-
tion of the second kind and it involves a distributed
delay term. Note that the FSA controller is typically
applied to linear systems and does not work for non-
linear or nonsmooth systems in this form.

In the next subsections, the robustness issues of the
FSA controller are described for the continuous-time
system in equation (4). First, the robustness to param-
eter mismatches is considered, then the robustness to
implementation inaccuracies of the control law is
discussed.

3.1. Robustness to parameter mismatches

If the internal model approximates the system param-
eters with perfect precision (i.e. if eA ¼ A, eB ¼ B and
~� ¼ �), then equations (4) and (15) can be reduced to
the ordinary differential equation (ODE)

_xðtÞ ¼ AxðtÞ þ BKxðtÞ ð16Þ

Thus the feedback delay is eliminated from the control
loop, hence the spectrum of the closed-loop system
becomes finite and the poles can be shifted to any
desired values provided that the pair ðA,BÞ is control-
lable. This way stability can be achieved for arbitrary
system parameters.

If the internal model is not perfectly accurate
(i.e. if eA 6¼ A, eB 6¼ B and ~� 6¼ �), then equations
(4) and (15) define a retarded functional differential
equation (RFDE). For the special case eB ¼ B, the
input uðtÞ can be eliminated and equations (4) and
(15) imply

_xðtÞ ¼ AxðtÞ þ BKe
eA ~�xðt� �Þ þ BK

Z 0

� ~�

e�
eA�ð _xðtþ �Þ

� Axðtþ �ÞÞd� ð17Þ

which can be transformed into the RFDE

_xðtÞ ¼ AxðtÞ þ BKe
eA ~�xðt� �Þ þ BKxðtÞ � BKe

eA ~�xðt� ~�Þ

þ BK

Z 0

� ~�

e�
eA�ðeA� AÞxðtþ �ÞÞd� ð18Þ

If eB 6¼ B, then differentiation of the control law in
equation (15) together with equation (4) give the
system of RFDEs

_xðtÞ ¼ AxðtÞ þ Buðt� �Þ ð19Þ

_uðtÞ ¼ Ke
eA ~�AxðtÞ þ Ke

eA ~�Buðt� �Þ þ KeBuðtÞ
� Ke

eA ~�eBuðt� ~�Þ þ KeA Z 0

� ~�

e�
eA�eBuðtþ �Þd�

ð20Þ

Thus, in case of the slightest mismatch between the
internal model and the actual system, the governing
equation is an RFDE with infinitely many characteris-
tic exponents. Consequently, finite spectrum assign-
ment in this case is not possible.

If the implementation of the control law in equation
(15) is perfectly accurate, then the stability properties
are determined purely by equations (4) and (15). We
call this case ideal stability.

3.2. Robustness to implementation inaccuracies

In order to implement the control procedure in prac-
tice, one must perform the online calculation of the
integral term in the control law of equation (15). Let
this integral term be denoted by

zðtÞ ¼

Z 0

� ~�

e�
eA�eBuðtþ �Þd� ð21Þ

One solution for the realization of zðtÞ is to create a
differential equation by deriving equation (21). The dif-
ferential equation reads

_zðtÞ ¼ eBuðtÞ � e
eA ~�eBuðt� ~�Þ þeAzðtÞ ð22Þ

It is known that this type of realization involves
unstable pole-zero cancellation if matrix A is not
Hurwitz, hence it is not capable of stabilizing an
unstable system (Manitius and Olbrot, 1979; Mondie
et al., 2002; Michiels and Niculescu, 2007).

Another way to realize the integral term zðtÞ is
approximation by a numerical quadrature. In this
case the distributed delay term is substituted by a sum
of point delays. This way, no unstable pole-zero
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cancellation takes place. An approximation of zðtÞ by
numerical quadrature can be given as

zðtÞ ffi z1ðtÞ ¼
X~r

j¼0

e
eA�j,~reBuðt� �j,~rÞhj,~r ð23Þ

where �j,~r 2 ½0, ~��, hj,~r 2 R and ~r is an integer approxi-
mation parameter so that z1ðtÞ ! zðtÞ as ~r!1
(Michiels et al., 2003). For instance, a discrete rectangu-
lar approximation can be given as

z1ðtÞ ¼
X~r

j¼0

e
eAj�teBuðt� j�tÞ�t ð24Þ

where �t ¼ ~�=~r is the discrete time step (i.e. in this case
�j,~r ¼ j�t and hj,~r ¼ �t). The corresponding control law
reads

uðtÞ ¼ Ke
eA ~�xðtÞ þ K

X~r

j¼0

e
eA�j,~reBuðt� �j,~rÞhj,~r ð25Þ

Although such a realization of the control law is con-
venient numerically, it presents a limitation in the sta-
bility of the closed-loop system. Actually, equations (4)
and (25) define a system of NFDEs in the form

_xðtÞ ¼ AxðtÞ þ Buðt� �Þ ð26Þ

_uðtÞ ¼ Ke
eA ~�AxðtÞ þ Ke

eA ~�Buðt� �Þ

þ
X~r

j¼0

Ke
eA�j,~reB_uðt� �j,~rÞhj,~r ð27Þ

As was shown by Mondie et al. (2002), a necessary
condition for the stability of the closed-loop system
described by equations (4) and (25) is the stability of
the associated delay-difference equation (i.e. the differ-
ence part of equations (26) and (27))

xðtÞ ¼ 0 ð28Þ

uðtÞ ¼
X~r

j¼0

Ke
eA�j,~reBuðt� �j,~rÞhj,~r ð29Þ

In the case of ~r!1, the roots of equation (29)
converge to the roots of the functional difference
equation

uðtÞ ¼ K

Z 0

� ~�

e�
eA�eBuðtþ �Þd� ð30Þ

which is obtained by the substitution of xðtÞ � 0 into
the control law in equation (15). Note that equation
(30) can be written in the form of the RFDE

_uðtÞ ¼KeBuðtÞ�Ke
eA ~�eBuðt� ~�ÞþKeAZ 0

� ~�

e�
eA�eBuðtþ �Þd�

ð31Þ

A stable control process can only be obtained if the
closed-loop system is stable (i.e. if the RFDE defined
by equations (4) and (15) is stable), and if the associated
delay-difference equation (29) is stable. In the case of
~r!1, this latter condition is equivalent to the stabil-
ity of the functional difference equation (30). Following
Michiels et al. (2003), we call the stability of equations
(4), (15) and (30) theoretical stability. It is known that
theoretical stability does not imply robust stability with
respect to small perturbations of the discretization par-
ameter �j,~r. As was shown by Michiels et al. (2003),
small perturbations of �j,~r in equation (29) may result
in characteristic exponents, whose real parts do not
converge to those of equation (30). Consequently, the
stability of equations (4)–(15) and (30) is a necessary
condition for robust stability, but not sufficient.
Actually, robust stability requires the strong stability
of the associated delay-difference equation given by
equation (29). For the single-input case, the necessary
and sufficient condition for the strong stability of equa-
tion (29) was given by Michiels et al. (2003) as S5 1,
where

S ¼

Z ~�

0

Ke
eA�eB���� ����d� ð32Þ

The restriction by the associated delay-difference equa-
tion (both on the theoretical and on the robust stability)
can be removed by adding a low-pass filter (Mondie
and Michiels, 2003) or by using piecewise constant
input, for instance by applying a digital controller
(Van Assche et al., 2001; Michiels and Niculescu, 2007).

4. Stability diagrams for ideal,
theoretical and robust stability

In this section, the domains of ideal, theoretical and
robust stability are determined for the system defined
by equations (4) and (5) in the plane ðkp, kdÞ. The esti-
mated system and input matrices used by the internal
model are assumed in the form

eA ¼ 0 1

~a 0

� �
, eB ¼ 0

1

� �
ð33Þ

where ~a is the estimated system parameter. Ideal stabil-
ity can be analyzed using the D-subdivision method
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and Stepan’s formulae (Stepan, 1989) for the character-
istic equation of the ideal closed loop system given by
equations (4) and (15). For theoretical stability, the sta-
bility of the associated functional difference
equation (30) should also be determined. Conditions
for robust stability can be obtained by the analysis of
equation (32).

4.1. Stability of the ideal closed-loop control
system

Based on equations (5) and (15) the input signal pro-
vided by the FSA controller can be given as

uðtÞ ¼ ð�kp �kd Þ
chð ~� ~�Þ 1

~� shð ~� ~�Þ

~�shð ~� ~�Þ chð ~� ~�Þ

 !
’ðtÞ

_’ðtÞ

� �

þ ð�kp �kd Þ

Z 0

� ~�

chð ~� ~�Þ � 1
~� shð ~�

~�Þ

� ~�shð ~� ~�Þ chð ~� ~�Þ

 !

�
0

1

� �
uðtþ �Þd� ð34Þ

where ~� ¼
ffiffiffi
~a
p

, ch and sh indicate cosh and sinh. Here,
kp and kd are the proportional and derivative control
gains for the predicted state.

The solutions for equations (4) and (34) are assumed
to be in the form

’ðtÞ ¼ ’0e
�t, _’ðtÞ ¼ !0e

�t, uðtÞ ¼ u0e
�t ð35Þ

Substitution of equation (35) into equations (4) and
(34) gives the following system of equations

Mð�Þ

’0

!0

u0

0B@
1CA ¼ 0 ð36Þ

where

Mð�Þ

¼

� �1 0

��2 � �e��t

kpchð ~� ~�Þþkd ~�shð ~� ~�Þ
kp
~� shð ~� ~�Þþkdchð ~� ~�Þ fð�Þ

0BB@
1CCA
ð37Þ

f ð�Þ ¼ 1þ
kp
2 ~�

e�ð�þ ~�Þ ~� � 1

�þ ~�
þ
�e�ð�� ~�Þ ~� þ 1

�� ~�

� �
þ
kd
2

�e�ð�þ ~�Þ ~� þ 1

�þ ~�
þ
�e�ð�� ~�Þ ~� þ 1

�� ~�

� �
ð38Þ

with � ¼
ffiffiffi
a
p

. Hence the characteristic equation of the
system in equations (4) and (34) reads

Dð�Þ ¼ detðMð�ÞÞ ¼ 0 ð39Þ

Substitution of � ¼ i! into equation (39) and decom-
position into real and imaginary parts gives a linear
system of equations for kp and kd in the form

Rð!Þ¼�ð�2þ!2Þþkp
!

~�
sinð!�Þshð ~� ~�Þþkp cosð!�Þchð ~� ~�Þ

þkp
�2þ!2

~�2þ!2
1�cosð! ~�Þchð ~� ~�Þ�

!

~�
sinð! ~�Þshð ~� ~�Þ

� 	
þkd

�2þ!2

~�2þ!2
� ~�cosð! ~�Þshð ~� ~�Þ�!sinð! ~�Þchð ~� ~�Þð Þ

þkd!sinð!�Þchð ~� ~�Þþkd ~�cosð!�Þshð ~� ~�Þ¼0

ð40Þ

Sð!Þ¼kp
!

~�
cosð!�Þshð ~� ~�Þ�kp sinð!�Þchð ~� ~�Þ

þkp
�2þ!2

~�2þ!2
sinð! ~�Þchð ~� ~�Þ�

!

~�
cosð! ~�Þshð ~� ~�Þ

� 	
þkd

�2þ!2

~�2þ!2
!þ ~�sinð! ~�Þshð ~� ~�Þ�!cosð! ~�Þchð ~� ~�Þð Þ

þkd!cosð!�Þchð ~� ~�Þ�kd ~�sinð!�Þshð ~� ~�Þ¼0

ð41Þ

Expressing kp and kd from equations (40) and (41)
gives the D-curves for the cases ! ¼ 0 and ! 6¼ 0,
which can be depicted in the plane ðkp, kdÞ as shown
in panel (a) of Figures 2 and 3. The regions divided by
the D-curves are associated with the same number of
unstable characteristic exponents (also called the
instability degree). This number can be calculated by
Stepan’s formulae (see Theorems 2.15 and 2.16 in
Stepan (1989)).

4.2. Stability of the associated functional
difference equation

Substitution of uðtÞ ¼ u0e
�t and xðtÞ � 0 into equation

(34) gives the characteristic equation of the associated
functional difference equation in the form

f ð�Þ ¼ 0 ð42Þ

where f ð�Þ is given in equation (38). Substitution of
� ¼ i! into equation (42) and decomposition into real
and imaginary parts gives

Rð!Þ¼
~�

~�2þ!2

kp
~�
cosð! ~�Þchð ~� ~�Þþkd cosð! ~�Þshð ~� ~�Þ�

kp
~�

�
þ
kp!

~�2
sinð! ~�Þshð ~� ~�Þþ

kd!

~�
sinð! ~�Þchð ~� ~�Þ

�
þ1¼0

ð43Þ
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Sð!Þ ¼
!

~�2 þ !2
�kd þ

kp
~�
cosð! ~�Þshð ~� ~�Þ

�
þkd cosð! ~�Þchð ~� ~�Þ �

kp
!
sinð! ~�Þchð ~� ~�Þ

�
kd ~�

!
sinð! ~�Þshð ~� ~�Þ

�
¼ 0 ð44Þ

The D-curves of the associated functional difference
equation can be given by solving these equations for
kp and kd. If ! ¼ 0 then equations (43)–(44) give

kd ¼
1� chð ~� ~�Þ

~�shð ~� ~�Þ
kp �

~�

shð ~� ~�Þ
ð45Þ

If ! 6¼ 0 then one gets

kp ¼
~�ð ~�2 þ !2Þ !� ! cosð! ~�Þchð ~� ~�Þ þ ~� sinð! ~�Þshð ~� ~�Þð Þ

2 ~�!� 2 ~�! cosð! ~�Þchð ~� ~�Þ þ ð ~�2 � !2Þ sinð! ~�Þshð ~� ~�Þ

ð46Þ

kd ¼
ð ~�2 þ !2Þ ~� sinð! ~�Þchð ~� ~�Þ � ! cosð! ~�Þshð ~� ~�Þð Þ

2 ~�!� 2 ~�! cosð! ~�Þchð ~� ~�Þ þ ð ~�2 � !2Þ sinð! ~�Þshð ~� ~�Þ

ð47Þ

Since the associated functional difference equation
(30) can be written as an RFDE in the form of equation
(31), the number of unstable characteristic exponents
can be calculated using Stepan’s formula (Stepan,
1989). Note, however, that if the approximation
described by equation (23) is used with a sufficiently
large ~r to realize the control law, then the associated
functional difference equation is a delay-difference
equation given by equation (29). If the numerical quad-
rature is equidistant with time step �t ¼ ~�=~r as in equa-
tion (24), then the stability of equation (29) is described
by ~r characteristic multipliers �i, i ¼ 1, 2, . . . ~r, each
associated with infinitely many characteristic exponents
of the form

�i,j ¼
1

�t
lnj�ij þ i

1

�t
ð!i,0 þ j2�Þ, j 2 Z ð48Þ

(a) (b) (c) (d)

Figure 2. Stability chart and the number of unstable characteristic exponents (NUE) of the ideal closed-loop system. (a) Stability

chart and the NUE of the associated functional difference equation, (b) robust stability boundaries of the associated delay-difference

equation, (c) and their superposition (light gray: ideal stability, dark gray: theoretical stability, black: robust stability with respect to

implementation inaccuracies) and (d) for the system defined by equations (4) and (15) with ~a ¼ a ¼ 0:5 and ~� ¼ � ¼ 1.

(a) (b) (c) (d)

Figure 3. Stability chart and the number of unstable characteristic exponents (NUE) of the ideal closed-loop system. (a) Stability

chart and the NUE of the associated functional difference equation, (b) robust stability boundaries of the associated delay-difference

equation, (c) and their superposition (light gray: ideal stability, dark gray: theoretical stability, black: robust stability with respect to

implementation inaccuracies) and (d) for the system defined by equations (4) and(15) with a ¼ 0:5, ~a ¼ 1:2a, � ¼ 1 and ~� ¼ 1:2�.
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where !i,0 is the phase angle of �i so that !i,0 2 ð��,��.
The delay-difference equation (29) is asymptotically
stable if all the ~r characteristic multipliers lie within
the unit disk of the complex plane, which implies that
all the infinitely many characteristic exponents have
negative real parts. If there is a characteristic multiplier
with magnitude larger than 1, then it is associated with
an infinite sequence of characteristic exponents whose
real parts are positive and whose imaginary parts tend
to infinity as j increases. Consequently, for sufficiently
small �t, each unstable characteristic exponent of
equation (30) corresponds to infinitely many character-
istic exponents of equation (29).

The D-curves and the number of unstable character-
istic exponents of the associated functional difference
equation (30) are shown in panel (b) of Figures 2 and 3
for different parameters.

4.3. Robustness to implementation inaccuracies

Expansion of equation (32) gives the condition for the
robust stability of the associated delay-difference equa-
tion (29) with respect to small perturbations of the dis-
cretization parameter �j,~r in the form

S ¼

Z ~�

0

�
1

~�
shð ~��Þkp � chð ~��Þkd

���� ����d� ð49Þ

Robust stability is obtained if S5 1 (Michiels et al.,
2003). The contour curve defined by S¼ 1 gives the
boundaries of robust stability in the plane ðkp, kdÞ as
shown in panel (c) of Figures 2 and 3. Since S¼ 0 for
ðkp, kdÞ ¼ ð0, 0Þ, the domain of robust stability of equa-
tion (29) is the inside the contour curve.

4.4. Combined stability diagrams

Panels (a), (b) and (c) in Figure 2 show the stability
diagram for the ideal closed-loop system given by equa-
tions (4) and (15), the stability diagram for the asso-
ciated functional difference equation (30) and the
region of robust stability for the associated delay-
difference equation (29) for the case when the internal
model is perfectly accurate, i.e. when ~a ¼ a and ~� ¼ �.
Stable domains are indicated by light-gray shading. In
panels (a) and (b), the number of unstable characteristic
exponents for the different parameter regions is also
given. Note that for panel (b), each unstable character-
istic exponent implies infinitely many characteristic
exponents for the actual control system as explained
in Section 4.2. The stability condition for the ideal
closed-loop system (panel (a) in Figure 2) is kp 4 a
and kd 4 0, which corresponds to the stability

condition for the delay-free system. If the approxima-
tion described by equation (23) is used with sufficiently
large ~r to realize the control law, then the region of
theoretical stability in the plane ðkp, kdÞ is reduced to
the small triangular region given by the intersection
of the stable region of the ideal closed-loop system
described by equations (4) and (15) and that of the
associated functional difference equation (30). The
region of robust stability of the closed-loop system
with respect to perturbations in the discretization par-
ameter �j,~r is given by the intersection of the region of
theoretical stability and that of the robust stability of
equation (29). In panel (d) of Figure 2, light-gray, dark-
gray and black shading denotes different stability prop-
erties. Light-gray shading denotes the parameters
where the ideal closed-loop system is stable, but the
associated functional difference equation is unstable,
thus the actual control system is unstable for any
large ~r used in the implementation of the control law.
Dark-gray shading denotes the parameters where both
the ideal closed-loop system and the associated func-
tional difference equation are stable (domain of theor-
etical stability), but the closed-loop system is not
robustly stable with respect to perturbations in
the discretization parameter �j,~r. Black denotes the par-
ameters, where the closed-loop system is robustly
stable with respect to implementation inaccuracies. It
is also shown in this figure, that a finite spectrum is
achieved only for the ideal closed-loop system in
panel (a).

If the internal model is not perfectly accurate, i.e. if
~a 6¼ a and ~� 6¼ �, then the spectrum becomes infinite
and the stable region shrinks, as shown in Figure 3.

Figure 4 shows the responses of a robustly stable
system with ðkp, kdÞ ¼ ð1, 0Þ, a theoretically stable but
not robustly stable system with ðkp, kdÞ ¼ ð1, 1Þ and an
ideally stable but not theoretically stable system with
ðkp, kdÞ ¼ ð1:4, 2:2Þ. These three systems correspond to
points A, B and C in Figure 3(d). The simulation was
performed using the semi-discretization method with a
time step of h ¼ 0:0025. The initial conditions were
’ð0Þ ¼ 0:05, _’ð0Þ ¼ 0 and uð�Þ ¼ 0, � 2 ½��, 0�. The
integral term in the control law was determined by
the discrete rectangular approximation according to
equation (24), but the time step �t was varied period-
ically over every four steps such that �t1 ¼ 0:025,
�t2 ¼ 0:0275, �t3 ¼ 0:025, �t4 ¼ 0:0225: This vari-
ation presents a special perturbation of the discret-
ization step for the integral in the control law. As
can be seen, the ideally stable but not theoretically
stable system (point C) is actually unstable due to
the unstable difference part of the controller. The the-
oretically stable but not robustly stable system (point
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B) is also unstable, since this system is not robust to
perturbations of the discretization step in the integral.
At parameter point A, the robustly stable system con-
verges to zero after a transient vibration.

5. Application of a digital controller

One technique to overcome the difficulties caused by
the sensitivity to implementation inaccuracies of the
control law is the application of piecewise constant
input (Van Assche et al., 2001; Michiels and
Niculescu, 2007). This type of control law corresponds
to a digital control system with a sampled output data
and zero-order hold, which is widely used in many
applications. In this sense, application of a digital con-
troller eliminates the restrictions caused by both the
approximate implementation of the control law (theor-
etical stability) and the sensitivity of the discretization
rule (robust stability). Stability properties however are
still affected by parameter mismatches. In the rest of the
paper, therefore, we analyze the stability of the ideal
closed-loop system in the case of noninfinitesimal par-
ameter mismatches between the internal model and the

actual system and do not count the issues related to
theoretical and robust stability.

If a digital controller is applied with a sampling
period �t, then the governing equations read

_xðtÞ ¼ AxðtÞ þ Buðti�rÞ, t 2 ½ti, tiþ1Þ ð50Þ

uðtÞ ¼eFxðtiÞ þX~r

j¼1

eQjuðti�jÞ, t 2 ½ti, tiþ1Þ ð51Þ

where ti ¼ i�t ði ¼ 1, 2, . . .Þ, r ¼ ceilð�=�tÞ, ~r ¼ ceil

ð ~�=�tÞ, eF ¼ Ke
eA ~� and eQj ¼

eFe�eA ~�e
eAj�teB�t. Using

state augmentation and the notations ui ¼ uðtiÞ and
xi ¼ xðtiÞ, equations (50) and (51) can be written in
one of the following forms. If r4 ~r then

xiþ1

ui

ui�1

..

.

ui�rþ1

0BBBBBBB@

1CCCCCCCA ¼
P 0 � � � 0 0 � � � 0 R

F eQ1 � � �
eQ~r 0 � � � 0 0

0 I � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � I 0

0BBBBBB@

1CCCCCCA

(a)

(b)

(c)

Figure 4. System response in the case of a robustly stable system (a), a theoretically stable but not robustly stable system (b) and an

ideally stable but not theoretically stable system (c).
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�

xi

ui�1

..

.

ui�~r

ui� ~r�1

..

.

ui�rþ1

ui�r

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
ð52Þ

where P ¼ eA�t, R ¼
R�t

0 eAð�t��ÞBd�. If r5 ~r then

xiþ1

ui

ui�1

..

.

ui�~rþ1

0BBBBBBBB@

1CCCCCCCCA
¼

P 0 � � � 0 R � � � 0 0

F eQ1 � � �
eQr�1

eQr � � �
eQ~r�1

eQ~r

0 I � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � I 0

0BBBBBBBB@

1CCCCCCCCA

�

xi

ui�1

..

.

ui�rþ1

ui�r

..

.

ui� ~rþ1

ui�~r

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

ð53Þ

These equations are of the form yiþ1 ¼ (yi, thus the
stability of the system can be determined by the analysis
of the eigenvalues of the coefficient matrix (, which is
actually the monodromy matrix of the discrete-time
system. The condition for asymptotic stability reads

maxðjeigð(ÞjÞ5 1 ð54Þ

In the case of a digital controller, there is no restriction
on stability caused by the implementation of the con-
trol law, thus the stability can be determined by equa-
tion (54) only.

In fact, the discrete maps in equations (52) and (53)
correspond to the semi-discretization of the original
continuous-time system described by equations (4)
and (15) with the discretization step being the sampling
period �t (Insperger and Stepan, 2011). For sufficiently
small �t, the stability properties of the discrete maps in
equations (52) and (53) provide a good approximation
of the ideal stability of the original continuous-time
system.

6. Analysis of the uncertainties in the

parameters

It has been shown that the precision of the approxima-
tion of the system parameters used for prediction
affects the stability of the system. If ~a ¼ a and ~� ¼ �,
then the stable region is a quarter plane in the plane
ðkp, kdÞ. But in the case when ~a 6¼ a and ~� 6¼ � the stable
region shrinks and becomes bounded. This shows that
the control procedure is sensitive to the accuracy of the
parameters used for the prediction. This sensitivity can
be demonstrated on a series of stability charts, shown in
Figure 5, where different approximation accuracies are
used for the system parameter a and for the feedback
delay �. The number of unstable characteristic expo-
nents for the different regions divided by the D-curves
is also presented. Remember that here we assume that
the control process is implemented by a digital control-
ler, thus the issues related to the theoretical and the
robust stability (see Section 4) do not arise.

Figure 5 shows that the stability of the control pro-
cess depends on the accuracy of the parameters ~a and ~�
used by the internal model, which can be characterized
by the absolute errors "a ¼ ja� ~aj=a and "� ¼ j� � ~�j=�.
For a given feedback delay, the critical value of the
system parameter a, for which stabilization is just still
possible in the presence of the given internal model
errors "a and "�, is denoted by acrit, FSA. If a5 acrit, FSA
then there exists a pair of control gains ðkp, kdÞ, which
provides a stable control process for any ~a and ~� satisfy-
ing ð1� "aÞa � ~a � ð1þ "aÞa and ð1� "�Þ� � ~� �
ð1þ "�Þ�. If a4 acrit, FSA then there is no such pair of
control gains. Figure 6 presents the critical system par-
ameter acrit, FSA for the different errors " ¼ "a ¼ "� . The
diagram was determined as follows. The absolute errors
"a and "� and the system parameter a were fixed and the
3� 3 stability charts (similar to the ones shown in
Figure 5) were constructed. The system parameter a
was said to be robustly stable with respect to the internal
model error " ¼ "a ¼ "� if there was at least one point in
the plane ðkp, kdÞ, which was stable in each of the 3� 3
stability charts, regardless of the sign of the perturb-
ation. If a system parameter a was found to be robustly
stable, then it was increased and the same procedure was
repeated. The resolution for the system parameter a was
0.01, i.e. a specific value of a ¼ acrit, FSA was said to be
critical if it was robustly stable in the sense described
above but the same system for a ¼ acrit, FSA þ 0:01 was
not robustly stable. The concept of this analysis is simi-
lar to the stability radius with respect to changes of the
system parameters (Michiels and Roose, 2003; Michiels
and Niculescu, 2007).

The same analysis was performed for the PDA con-
troller described by equations (4) and (6) for different
acceleration gains. The results are shown in Figure 6
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for comparison. As can be seen, the critical system par-
ameter for the FSA controller decreases with increasing
internal model error. If the internal model is perfectly
accurate (i.e. if " ¼ "a ¼ "� ¼ 0) then the theoretical

value of acrit, FSA is infinity, hence the effect of input
delay is totally compensated. Note that if � ¼ 1 then
the same critical parameter for a PD controller without
any parameter uncertainties is acrit, PD ¼ 2 and for a
PDA controller it is acrit, PDA ¼ 4. For the FSA control-
ler with small parameter mismatches the achievable
critical value of acrit, FSA can be essentially larger than
2 or 4. For large modeling errors, however, delayed
state feedback becomes superior to the FSA controller.
For instance, for errors "4 11%, the critical system
parameter for the PDA controller with ka ¼ 0:9 is
larger than that of the FSA controller. This demon-
strates that the FSA controller is more sensitive to
modeling inaccuracies than the conventional delayed-
state feedback.

The above observations can be rephrased to the
critical delay, too. For a fixed system parameter
with small modeling inaccuracies, the FSA controller
allows larger feedback delay than the PDA controller.
However, for large modeling errors, conventional
delayed-state feedback becomes superior to the FSA
controller.

Figure 5. Stability charts and the number of unstable characteristic exponents (NUE) of the system defined by equations (4) and (15)

with a ¼ 0:5 and � ¼ 1 for different accuracies of the internal model parameters ~a and ~� (gray: stable region).

Figure 6. The critical system parameter values as function of

the internal model error " ¼ "a ¼ "� for � ¼ 1.
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7. Conclusions

An unstable second-order system was investigated with
input delay subjected to a FSA controller. If the par-
ameters of the internal model used for the prediction
are not equal to the real system parameters, then the
system is described by equations (4) and (15), which
define a system of RFDEs involving two types of
delay: a point delay � and a distributed delay term
over a delay period of length ~�. For the ideal continu-
ous-time control system, the stability analysis was per-
formed using the D-subdivision method and the
number of unstable characteristic exponents was deter-
mined using Stepan’s formula. Stability diagrams were
constructed, which present the robustness of the system
to parameter mismatches and to implementation inac-
curacies of the control law. Here, robustness to imple-
mentation inaccuracies is meant in an asymptotic sense,
since stability properties are sensitive to arbitrarily
small perturbations of the control law (Michiels et al.,
2003). This implementation difficulty can be avoided by
applying piecewise constant input (e.g. a digital control-
ler). However, in this case, stability properties still
depend on the parameter mismatches between the inter-
nal model and the real system, although not in an
asymptotic sense.

The effect of finite mismatches between the internal
model and the actual system was analyzed without the
effect of the sensitivity to implementation inaccuracies
by assuming a digital control system. The stabilizability
of the system was investigated for different mismatches
through a series of stability charts. The critical system
parameter for which stabilization is just still possible in
the presence of internal model errors was determined. It
was shown that for internal model errors less than 3%,
the critical system parameter acrit, FSA is larger than 5,
which is already larger than the critical system param-
eter of a PD or a PDA controller without any param-
eter uncertainty. For large modeling errors ("4 11%),
however, delayed-state feedback was found to be super-
ior to the FSA controller. Thus, the FSA controller
extends the limits of stabilization against feedback
delay provided that the input signal is available for
control calculation and the system parameters are
available with precision less than 11%.

Although the current analysis was performed for a
second-order system, the FSA controller can be applied
to higher order systems, too. In these cases, stability
properties can be determined in the same way, however,
the different modes of the system may interfere with the
delay, resulting in more intricate stability diagrams.

In addition to stabilization, there are other perform-
ance measures that a control system should satisfy,
such as settling time and overshoot. These measures
can also be determined and optimized based on the
analysis of the eigenvalues of the coefficient matrix (.

The settling time is related to the magnitude of the crit-
ical eigenvalue, while the system converges to the set
point without overshoot if the eigenvalues of ( are
positive real numbers with magnitude less than one.
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